ELECTRONIC SUPPLEMENTARY INFORMATION

Similar documents
Electronic Supplementary Information (ESI) for Chem. Commun.

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Supporting Information

A Computational Model for the Dimerization of Allene: Supporting Information

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Supplementary Information

Supporting Information

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

Supplementary Information:

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

Electrochemical Reduction of Aqueous Imidazolium on Pt (111) by Proton Coupled Electron Transfer

SUPPORTING INFORMATION

Supporting Information

Supporting Information. Detection of Leucine Aminopeptidase Activity in Serum Using. Surface-Enhanced Raman Spectroscopy

SUPPLEMENTARY INFORMATION

Driving forces for the self-assembly of graphene oxide on organic monolayers

Elucidating the structure of light absorbing styrene. carbocation species formed within zeolites SUPPORTING INFORMATION

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells

Supporting Information

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

Electronic relaxation dynamics of PCDA PDA studied by transient absorption spectroscopy

Supporting Information. Reactive Simulations-based Model for the Chemistry behind Condensed Phase Ignition in RDX crystals from Hot Spots

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

Supplementary information

Supporting Information Computational Part

Table S1: DFT computed energies of high spin (HS) and broken symmetry (BS) state, <S 2 > values for different radical systems. HS BS1 BS2 BS3 < S 2 >

DFT and TDDFT calculation of lead chalcogenide clusters up to (PbX) 32

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

Supplementary Material: 2D-IR Spectroscopy of an AHA Labelled Photoswitchable PDZ2 Domain

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Supporting Information

Nucleophilicity Evaluation for Primary and Secondary Amines

SUPPORTING INFORMATION. Mechanistic Analysis of Water Oxidation Catalyzed by Mononuclear Copper in Aqueous Bicarbonate Solutions

Supporting Information

Out-Basicity of 1,8-bis(dimethylamino)naphthalene: The experimental and theoretical challenge

Infrared Spectra and Electronic Structure Calculations for the

How Large is the Elephant in the Density Functional Theory Room?

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Supporting Information

Supporting Material Biomimetic zinc chlorin poly(4-vinylpyridine) assemblies: doping level dependent emission-absorption regimes

Supporting Information for. Acceptor-Type Hydroxide Graphite Intercalation Compounds. Electrochemically Formed in High Ionic Strength Solutions

Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR

Supporting Information

Unveiling the role of hot charge-transfer states. in molecular aggregates via nonadiabatic. dynamics

Department of Chemistry, School of life Science and Technology, Jinan University, Guangzhou , China b

Electronic Supplementary Information for:

Supporting Information

Asymmetric Redox-Annulation of Cyclic Amines. Supporting Information

Atmospheric syn Vinyl Hydroperoxide Decay Mechanism. Austin Parsons and Liam Peebles (Kuwata; Macalester College)

Supporting Information

SUPPORTING INFORMATION. In Search of Redox Noninnocence between a Tetrazine Pincer Ligand and Monovalent Copper

Highly sensitive detection of low-level water contents in. organic solvents and cyanide in aqueous media using novel. solvatochromic AIEE fluorophores

Scalable synthesis of quaterrylene: solution-phase

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Electronic Supplementary Information (ESI)

SUPPORTING INFORMATION

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

Ionic liquid electrolytes for reversible magnesium electrochemistry

Metal-Free Hydrogenation Catalysis of Polycyclic Aromatic Hydrocarbons

Supporting information for: Role of N7 protonation of guanine in determining structure, stability and function of RNA base pairs

Supporting Information (SI)

Two Spin-state Reactivity in the Activation and Cleavage of CO 2 by [ReO 2 ]

Supporting Information

Motooka, Nishi, Fukuoka , Japan.

Ring expansion reactions of electron-rich boron-containing heterocycles. Supporting Information Contents

excited state proton transfer in aqueous solution revealed

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Organic photodiodes constructed from a single radial heterojunction. microwire

Supporting Information

Journal of Chemical and Pharmaceutical Research, 2017, 9(2): Research Article

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Detailed Syntheses. K 5H[Co II W 12O 40] 15H 2O (1). The synthesis was adapted from published methods. [1] Sodium tungstate

Electronic Supplementary information

Ethynylene-linked Figure-eight. Octaphyrin( ): Synthesis and. Characterization of Its Two Oxidation States

Computational Material Science Part II

Sodium Intercalation Chemistry in Graphite

Supporting information

SUPPLEMENTARY MATERIAL. Nitrogen Containing Ionic Liquids: Biodegradation Studies and

Supporting Information

Aluminum Siting in the ZSM-5 Framework by Combination of

Observation of Guanidine-Carbon Dioxide Complexation in Solution and Its Role in Reaction of Carbon Dioxide and Propargylamines

Supporting Information for

Supporting Information

Speciation of Adsorbed Phosphate at Gold Electrodes: A Combined. Surface-Enhanced Infrared Absorption Spectroscopy and DFT Study

Magnesium-mediated Nucleophilic Borylation of Carbonyl Electrophiles

A Fluorescent Heteroditopic Hemicryptophane Cage for the Selective Recognition of Choline Phosphate

Spin-Orbit Coupling, Spin-Spin, NMR and Electric Properties of Hydrogen Chloride Molecule

Synthesis, electrochemical and theoretical studies of. V-Shaped donor-acceptor hexaazatriphenylene. (HAT) derivatives for second harmonic generation

Supporting Information

Transcription:

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 S-1 ELECTRONIC SUPPLEMENTARY INFORMATION OCT. 1, 2017 Combined Quantum Mechanical and Molecular Mechanical Method for Metal-Organic Frameworks: Proton Topologies of NU-1000 Xin-Ping Wu, Laura Gagliardi * and Donald G. Truhlar * Department of Chemistry, Inorganometallic Catalyst Design Center, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States Corresponding Authors *E-mail: gagliard@umn.edu (L.G.). *E-mail: truhlar@umn.edu (D.G.T.). ORCID Xin-Ping Wu: 0000-0003-3147-8333 Laura Gagliardi: 0000-0001-5227-1396 Donald G. Truhlar: 0000-0002-7742-7294 Force Field Parameterization Recently, Bristow et al. developed a transferable force field called BTW-FF 1 for six MOFs including MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. We chose this force field as a starting point for making a force field for NU-1000 because (i) UiO-66 and UiO-67 have the same node structure, [Zr 6 (μ 3 -O) 8 H 4 ] 12+, as NU-1000, and (ii) BTW-FF uses the functional form of MM3, 2-4 which is available in many programs. For example, TINKER 5 contains the full set parameters of the MM3 force field. Therefore, only a small number of parameters, namely those associated with the -OH and -OH 2 chemical groups (see Fig. S1) needed to be added.

S-2 Fig. S1 Atom type definitions for the NU1T(OBz)-MIX-S cluster. The newly added atom types are in red dashed circles, while atom types already included in BTW-FF are in black dashed circles. In addition to adding the missing parameters, we changed the charge parameters. In particular, considering that CM5 6 charges can predict more accurate dipole moments than other charge models and that accurate bond dipoles are important for describing electrostatic interactions in MOFs with polar bonds, we used averaged CM5 charges for each atom type (see Table S1) to replace the original atomic partial charge parameters in the BTW-FF. We first optimized the NU1T(OBz) structure with the most stable MIX-S topology, 7 using the M06-L functional 8 with the 6-31G(d,p) 9 basis set for H, C, and O and the Stuttgart [8s7p6d1f 6s5p3d1f] ECP10MDF contracted effective core potential (SDD) 10 basis set for Zr in Gaussian 09 11. Then we obtained the CM5 charges through a single-point calculation on the optimized structure using the M06-L functional with the 6-311+G(df,p) 9 basis set for H, C, and O and the SDD basis set for Zr.

S-3 Table S1. CM5 charges for each atom type. Atom Type 902 912 913 75 170 171 173 Element C C C O O O O Charge -0.014-0.082 0.270-0.665-0.362-0.777-0.676 Atom Type 174 21 915 916 917 918 192 Element O H H H H H Zr Charge -0.604 0.343 0.095 0.302 0.337 0.306 1.493 Van der Waals parameters for new atom types of oxygen and hydrogen were taken to be identical to those of other oxygen and hydrogen types in the BTW-FF force field. Equilibrium bond lengths and bond angles were derived from the DFT optimized structure. Then force constants were derived by fitting the classically optimized structure of NU1T(OBz)-MIX-S to its DFT optimized counterpart. The classical calculations were performed in TINKER 6.3. The MINIMIZE program of TINKER was utilized to perform geometry optimization. All eight phenyl groups of the cluster were fixed during optimization. The derived parameters are summarized in Tables S2 through S7. Combining those parameters, the CM5 charges, and the original parameters in BTW-FF generates a modified version of the BTW-FF force field, which is called the NU1T force field, and which allows calculations on NU-1000. From Fig. S2 and Table S8, we can see that classical optimization on the NU1T(OBz)-MIX-S cluster using the NU1T force field well reproduces the DFT optimized structure with an MUE of 0.011 Å and 1.23 deg for bond lengths and bond angles, respectively. Therefore, it can be concluded that the NU1T force field accurately predicts the NU1T(OBz)-MIX-S structure. Although parameterization of the NU1T force field is solely based on the NU1T(OBz)-MIX-S structure, the NU1T force field can still be used for QM/MM calculations on the other NU1T(OBz) clusters with different proton topologies because their MM subsystems are almost identical. The NU1T force field is also validated by the encouraging QM/MM results given in the article properly. Table S2. vdw radii and ε parameters. Atom Type Element vdw radii (Å) ε (kcal mol -1 ) 173 O 1.820 0.059 174 O 1.820 0.059 916 H 1.620 0.020 917 H 1.620 0.020 918 H 1.620 0.020

S-4 Table S3. Hydrogen bonding force constant (k) and equilibrium bond length (r). Bond k (kcal mol -1 / Å 2 ) r (Å) 173-918 23.080 1.624 Table S4. Bond stretching force constants (k) and equilibrium bond lengths (r). Bond k (kcal mol -1 / Å 2 ) r (Å) 916-173 3.630 0.963 917-174 6.500 0.966 918-174 32.800 1.015 173-192 10.500 2.108 174-192 10.500 2.322 Table S5. Angle bending force constants (k) and equilibrium bond angles (θ). Angle k (kcal mol -1 / radian 2 ) θ (deg) 916-173 - 192 5.099 111.274 917-174 - 192 4.500 104.371 918-174 - 192 5.000 107.997 170-192 - 173 1.000 77.805 170-192 - 174 1.000 73.874 171-192 - 173 0.000 91.328 171-192 - 174 0.000 84.026 173-192 - 174 4.630 114.934 917-174 - 918 6.000 106.048 912-912 - 915 5.000 119.517 912-912 - 912 5.000 120.966 174-192 - 75 0.000 71.667 173-192 - 75 0.000 74.852 Table S6. Out-of-plane bending force constants (k). Angle k (kcal mol -1 / radian 2 ) 192-171 - 192-192 0.000 915-912 - 902-912 0.000 912-912 - 902-915 0.000 915-912 - 912-912 0.000

S-5 Table S7. Torsion force constants (k), equilibrium phase angles (Ф 0 ), and integer periodicity (n). Angle k (kcal mol -1 / radian 2 ) Ф 0 (deg) n 173-192 - 170-913 5.000 180.0 2 174-192 - 170-913 5.000 180.0 2 170-192 - 173-916 5.000 180.0 2 170-192 - 174-917 5.000 180.0 2 170-192 - 174-918 5.000 180.0 2 174-192 - 173-916 5.000 180.0 2 173-192 - 174-917 5.000 180.0 2 173-192 - 174-918 5.000 180.0 2 173-192 - 171-192 5.000 180.0 2 174-192 - 171-192 5.000 180.0 2 171-192 - 173-916 5.000 180.0 2 171-192 - 174-917 5.000 180.0 2 171-192 - 174-918 5.000 180.0 2 915-912 - 912-912 4.930 180.0 2 915-912 - 912-915 0.000 180.0 2 912-912 - 912-912 4.930 180.0 2 75-192 - 174-917 5.000 180.0 2 75-192 - 174-918 5.000 180.0 2 75-192 - 173-916 5.000 180.0 2 173-192 - 75-21 5.000 180.0 2 174-192 - 75-21 5.000 180.0 2 173-192 - 75-192 5.000 180.0 2 174-192 - 75-192 5.000 180.0 2

S-6 Table S8. Structural properties of NU1T(OBz)-MIX-S cluster. DFT NU1T Signed Deviation Percentage Error (%) # of bonds Averaged bond length (Å) C(913) C(902) 8 1.491 1.467-0.024 1.610 C(913) O(170) 16 1.270 1.281 0.011 0.866 Zr(192) O(75) 12 2.315 2.292-0.023 0.994 Zr(192) O(170) 16 2.277 2.305 0.028 1.230 Zr(192) O(171) 12 2.097 2.097-0.000 0.000 Zr(192) O(173) 4 2.108 2.096-0.012 0.569 Zr(192) O(174) 4 2.322 2.309-0.013 0.560 O(75) H(21) 4 0.963 0.958-0.005 0.519 O(173) H(916) 4 0.963 0.961-0.002 0.208 O(173) H(918) 4 1.624 1.622-0.002 0.123 O(174) H(917) 4 0.966 0.960-0.006 0.621 O(174) H(918) 4 1.015 1.025 0.010 0.985 MUD = 0.011 # of angles Averaged bond angle (deg) C(912) C(902) C(913) 16 120.506 120.390-0.116 0.096 O(170) C(913) O(170) 8 125.647 123.264-2.383 1.897 C(902) C(913) O(170) 16 117.172 118.296 1.124 0.959 Zr(192) O(170) C(913) 16 133.600 133.739 0.139 0.104 Zr(192) O(75) Zr(192) 12 101.245 104.345 3.100 3.062 Zr(192) O(171) Zr(192) 12 117.105 119.462 2.357 2.013 Zr(192) O(75) H(21) 12 116.780 114.077-2.703 2.315 Zr(192) O(173) H(916) 4 111.274 110.737-0.537 0.483 Zr(192) O(174) H(917) 4 104.371 103.751-0.620 0.594 Zr(192) O(174) H(918) 4 107.997 107.729-0.268 0.248 H(917) O(174) H(918) 4 106.048 105.911-0.137 0.129 MUD = 1.226 Fig. S2 Optimized structures for the NU1T(OBz)-MIX-S cluster using DFT and the NU1T force field.

ble S9. Full QM total energies (in Hartree). NU1T(OBz) NU1T(OAc) NU1T(formate) MIX-S -4860.426844-3326.292756-3011.655954 OH -4860.299807-3326.164959-3011.521561 OH 2-4860.322633-3326.187982-3011.561869 MIX-L -4860.329538-3326.196413-3011.556485 MIX-C -4860.368265-3326.232037-3011.595211 IX-E(30) -4860.371345-3326.237690-3011.601701 MIX-E(8) -4860.368384-3326.234768-3011.600521 ble S10. QM/MM total energies based on H link atoms (in Hartree). Mechanical Embedding Electronic Embedding BRC BRC2 BRC3 BRCD BS Amber-2 MIX-S -3011.504897-3011.647141-3011.633604-3011.621557-3011.670118-3011.914815-3011.616266 OH -3011.367982-3011.522149-3011.506616-3011.492259-3011.547129-3011.790405-3011.488138 OH 2-3011.409191-3011.538463-3011.527725-3011.519799-3011.558678-3011.805009-3011.512396 MIX-L -3011.407374-3011.549607-3011.536308-3011.524165-3011.572337-3011.817628-3011.518911 MIX-C -3011.445091-3011.587982-3011.574269-3011.562045-3011.611154-3011.855739-3011.556831 IX-E(30) -3011.450560-3011.591815-3011.578500-3011.567162-3011.614584-3011.859372-3011.561463 MIX-E(8) -3011.445841-3011.586880-3011.573624-3011.562194-3011.609607-3011.854342-3011.556590 ble S11. QM/MM total energies based on the F* link atoms (in Hartree). Mechanical Embedding Electronic Embedding BRC BRC2 BRC3 BRCD BS Amber-2 MIX-S -3186.146108-3190.354069-3189.247819-3188.579132-3191.469994-3190.851100-3188.794768 OH -3186.001758-3190.222347-3189.112233-3188.441647-3191.342063-3190.717822-3188.658284 OH 2-3186.063291-3190.259029-3189.155674-3188.491053-3191.372113-3190.755471-3188.704526 MIX-L -3186.047315-3190.252134-3189.148788-3188.480238-3191.365172-3190.751708-3188.695778 MIX-C -3186.085966-3190.294524-3189.187929-3188.519156-3191.410790-3190.791417-3188.734817 IX-E(30) -3186.094036-3190.301045-3189.194843-3188.526905-3191.416926-3190.797820-3188.742126 MIX-E(8) -3186.088798-3190.295961-3189.189726-3188.521592-3191.411920-3190.792556-3188.736940

S-8 References 1. J. K. Bristow, D. Tiana and A. Walsh, J. Chem. Theory Comput., 2014, 10, 4644-4652. 2. N. L. Allinger, Y. H. Yuh and J. H. Lii, J. Am. Chem. Soc., 1989, 111, 8551-8566. 3. J. H. Lii and N. L. Allinger, J. Am. Chem. Soc., 1989, 111, 8566-8575. 4. J. H. Lii and N. L. Allinger, J. Am. Chem. Soc., 1989, 111, 8576-8582. 5. J. W. Ponder, TINKER, version 6.3, Washington University, St. Louis, MO, 2014. 6. A. V. Marenich, S. V. Jerome, C. J. Cramer and D. G. Truhlar, J. Chem. Theory Comput., 2012, 8, 527-541. 7. N. Planas, J. E. Mondloch, S. Tussupbayev, J. Borycz, L. Gagliardi, J. T. Hupp, O. K. Farha and C. J. Cramer, J. Phys. Chem. Lett., 2014, 5, 3716-3723. 8. Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101. 9. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley, New York, 1986. 10. J. M. L. Martin and A. Sundermann, J. Chem. Phys., 2001, 114, 3408-3420. 11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford, CT, 2009.