Pre-biotic Chemistry in the ISM: from Cold Cores to Galactic Center Clouds

Similar documents
ESO in the 2020s: Astrobiology

Chemical modelling of formamide and methyl isocyanate in star-forming regions

The HDO/H2O and D2O/HDO ratios in solar-type protostars

Astrochemistry from a Sub-pc Scale to a kpc Scale. Satoshi Yamamoto Department of Physics and RESCUE The University of Tokyo

MOLECULES IN THE CIRCUMNUCLEAR DISK OF THE GALACTIC CENTER

INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks

Fractionation in Infrared Dark Cloud Cores

Chemical Diagnostics of Star Forming Regions

The influence of cosmic rays on the chemistry in Sagittarius B2(N)

arxiv: v1 [astro-ph.ga] 12 May 2017

Lecture 6: Molecular Transitions (1) Astrochemistry

Astrochemistry with SOFIA. Paola Caselli Center for Astrochemical Studies Max-Planck-Ins:tute for Extraterrestrial Physics

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia

Dimethyl Ether and Methyl Formate (DME & MF)

arxiv: v1 [astro-ph.sr] 23 Sep 2014

Solid-state formation of complex molecules under dense cloud conditions

The Center for Astrochemical Studies at MPE

CHESS, Herschel Chemical Survey of Star Forming Regions

Observational Properties of Protoplanetary Disks

COMBINED IRAM, Herschel/HIFI and ALMA STUDIES of abundant molecules in ORION KL

9 - The Hot Corinos. Complex organic molecules in the inner 100 AU envelope of Solar type protostars

Water in protoplanetary disks: D/H ra4o

Production of complex organic molecules: H-atom addition versus UV irradiation

arxiv: v1 [astro-ph.sr] 28 Oct 2017

IX. Star and planet formation. h"p://sgoodwin.staff.shef.ac.uk/phy111.html

Cover Page. The handle holds various files of this Leiden University dissertation.

The French-Spanish Large Program ASAI: Chemistry along Protostellar Evolution

A voyage from dark clouds to the early Earth

Setting the stage for solar system formation

Cover Page. The handle holds various files of this Leiden University dissertation.

Detection of cyanopolyynes in the protostellar shock L1157-B1

Astrochemistry Lecture 7 Chemistry in star-forming regions

Methyl Formate as a probe of temperature and structure of Orion-KL

The ASAI View on the Evolution of Molecular Complexity along the Formation of Sun-Like stars.

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis

Astrochemistry the summary

arxiv: v1 [astro-ph.ga] 5 Dec 2017

- Strong extinction due to dust

ALMA Science Verification Program. Martin Zwaan ALMA Regional Centre ESO, Garching

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain)

arxiv:astro-ph/ v1 15 Nov 2006

" There's life Jim...but we don't KNOW it (yet): a journey through the chemically controlled cosmos from star birth to the formation of life"

The Unbearable Lightness of Chemistry

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

UCLCHEM: A Gas-grain Chemical Code for Clouds, Cores, and C-Shocks *

Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks

arxiv: v1 [astro-ph.ga] 30 Nov 2015

arxiv: v1 [astro-ph.ga] 23 Aug 2018

arxiv: v2 [astro-ph.ga] 5 Jul 2017

The Interstellar Medium

Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. R. T. Garrod 1 and E. Herbst 1,2 ABSTRACT

Isotopic reservoirs of interstellar nitrogen

arxiv: v1 [astro-ph.ga] 29 Jul 2016

Tricks of Resolution and Dynamics

PROPOSAL FOR 30M TELESCOPE Deadline: 15 Mar 2012 Period: 01 Jun Nov IRAM Chemical Survey of Sun-Like Star-Forming Regions

Possible Extra Credit Option

Physics and Chemistry of the Interstellar Medium

arxiv: v1 [astro-ph.ep] 29 Dec 2014

Early Phases of Star Formation

Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel

Stefanie N. Milam NASA Goddard Space Flight Center Astrochemistry Laboratory

Stellar evolution Part I of III Star formation

line analysis and chemical modelling the case of NH 2 CHO

Earliest phases of high mass star formation in the Galactic Plane

Gaia Revue des Exigences préliminaires 1

THE STAR FORMATION NEWSLETTER No. 266 (#36-40) 17 Apr. 2015

Modelling complex organic molecules in dense regions: Eley Rideal and complex induced reaction

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

The Interstellar Medium (ch. 18)

arxiv: v1 [astro-ph.sr] 11 Jan 2015

Interstellar Dust and Extinction

Spatially Resolved Observations of Protoplanetary Disk Chemistry

Radio flares from young stars in Orion

Gas 1: Molecular clouds

A high-resolution study of complex organic molecules in hot cores

arxiv: v1 [astro-ph.sr] 27 Dec 2017

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

UV photodesorption of intact molecules and of photofragments from solid formaledhyde and methanol

Probing the embedded phase of star formation with JWST spectroscopy

Chapter 11 The Formation and Structure of Stars

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

Astrochemistry (2) Interstellar extinction. Measurement of the reddening

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

Interstellar Medium by Eye

Lec 22 Physical Properties of Molecular Clouds

PLANETARY NEBULAE AND ALMA. Patrick Huggins, New York University

INTRODUCTION TO SPACE

Interstellar Medium and Star Birth

Sunbathing around low-mass protostars: new insights from hydrides

Challenges for the Study of Hot Cores with ALMA: NGC 6334I

Chapter 10 The Interstellar Medium

Physics and chemistry of the interstellar medium. Lecturers: Simon Glover, Rowan Smith Tutor: Raquel Chicharro

Notes: Most of the material presented in this chapter is taken from Stahler and Palla (2004), Chap. 3. v r c, (3.1) ! obs

Infrared Dark Clouds seen by Herschel and ALMA

Infall towards massive star forming regions

Feeding and Feedback in nearby AGN:

Cosmic-ray induced diffusion, reactions and destruction of molecules in interstellar ices

Laboratory Measurements and Astronomical Search of the HSO Radical

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Transcription:

Pre-biotic Chemistry in the ISM: from Cold Cores to Galactic Center Clouds Izaskun Jimenez-Serra (STFC Ernest Rutherford Fellow) Shaoshan Zeng (QMUL), David Quenard (QMUL), Paola Caselli (MPE), Serena Viti (UCL), Anton Vasyunin (MPE), Victor Rivilla (Arcetri), Rafael Martin-Domenech (CAB), Leonardo Testi (ESO), Jesus-Martin-Pintado (CAB), Sergio Martin (ESO), Miguel Requena-Torres (JU), Denise Riquelme (MPIfR), Nuria Marcelino (ICMM), Nicolas Billot (IRAM), Charlotte Vastel (IRAP), Bertrand Lefloch (IPAG), Rafael Bachiller (OAN), Rebeca Aladro (Chalmers)

Pre-biotic Chemistry in the ISM: from Cold Cores to Galactic Center Clouds Izaskun Jimenez-Serra (STFC Ernest Rutherford Fellow) Shaoshan Zeng (QMUL), David Quenard (QMUL), Paola Caselli (MPE), Serena Viti (UCL), Anton Vasyunin (MPE), Victor Rivilla (Arcetri), Rafael Martin-Domenech (CAB), Leonardo Testi (ESO), Jesus-Martin-Pintado (CAB), Sergio Martin (ESO), Miguel Requena-Torres (JU), Denise Riquelme (MPIfR), Nuria Marcelino (ICMM), Nicolas Billot (IRAM), Charlotte Vastel (IRAP), Bertrand Lefloch (IPAG), Rafael Bachiller (OAN), Rebeca Aladro (Chalmers)

Star Formation in our Galaxy Star formation deeply embedded in molecular clouds A v >100 mag è only accessible at λ = mm/sub-mm & far-ir

The Formation of a Solar-type System

The Formation of a Solar-type System Caselli & Ceccarelli (2012) n & T different physical conditions and processes at every stage è different types of chemistry è different levels of chemical complexity

From the ISM to the Origin of Life Caselli & Ceccarelli (2012)

Molecules in Space Almost 200 molecules have been detected in space From CDMS catalog (https://www.astro.uni-koeln.de/cdms)

Molecules in Space Almost 200 molecules have been detected in space SgrB2(N) & SgrB2(M) Tmb (K) IRAM 30m NOEMA Rest Frequency (Mz) Belloche+2013 Observe molecular rotational transitions at mm/sub-mm λ s JCMT 8 ALMA SMA

Complex Organic Molecules (COMs) in Space COMs are carbon-based compounds with >6 atoms (erbst & van Dishoeck 2009) From CDMS catalog (https://www.astro.uni-koeln.de/cdms)

Complex Organic Molecules (COMs) in Space COMs are carbon-based compounds with >6 atoms (erbst & van Dishoeck 2009)

Complex Organic Molecules (COMs) in Space COMs are carbon-based compounds with >6 atoms (erbst & van Dishoeck 2009)

Complex Organic Molecules (COMs) in Space COMs are carbon-based compounds with >6 atoms (erbst & van Dishoeck 2009)

Complex Organic Molecules (COMs) in Space COMs are carbon-based compounds with >6 atoms (erbst & van Dishoeck 2009)

Complex Organic Molecules (COMs) in Space COMs are carbon-based compounds with >6 atoms (erbst & van Dishoeck 2009)

Pre-biotic COMs in Space Prebiotic COMs: species believed to be involved in the processes leading to the origin of life Formamide (N 2 CO) Glycolaldehyde (C 2 OCO) Amino Acetonitrile (N 2 C 2 CN)

Pre-biotic COMs in Space Prebiotic COMs: species believed to be involved in the processes leading to the origin of life Formamide (N 2 CO) Glycolaldehyde (C 2 OCO) Amino Acetonitrile (N 2 C 2 CN) Phosphorus Monoxide (PO)

First detections of COMs in the ISM Ø Star forming regions: ot Cores and ot Corinos (ollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017) Ø Galactic Center GMCs (SgrB2) (Martin-Pintado+2001;Requena-Torres+2006,2008) Glycolaldehyde (C 2 OCO) T B (K) δ (J2000) Beltran+2009 α (J2000) ν (Gz) Amino Acetonitrile ( 2 NC 2 CN)

First detections of COMs in the ISM Ø Star forming regions: ot Cores and ot Corinos (ollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017) Ø Galactic Center GMCs (SgrB2) (Martin-Pintado+2001;Requena-Torres+2006,2008) δ (J2000) Beltran+2009 COM chemistry triggered by α (J2000) T B (K) proto-stellar heating (T gas /T dust > 100 K) ν (Gz) Glycolaldehyde (C 2 OCO) Amino Acetonitrile ( 2 NC 2 CN)

COM formation in hot sources COMs formed mainly via: 1. ydrogenation ( addition; Charnley et al. 1997, 2001) 2. Radical-radical surface reactions (efficient at T>30 K; Garrod et al. 2008) (Burke & Brown 2010)

COMs ubiquitous in the ISM Ø Star forming regions: ot Cores and ot Corinos (ollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017) Ø Galactic Center GMCs (SgrB2) (Martin-Pintado+2001;Requena-Torres+2006,2008) Ø Molecular Outflows (Arce+2008; Codella+2015,2017) Ø Photon-Dominated Regions (Guzman+2013; Cuadrado et al. 2017) Ø Dark Clouds Cores and Pre-stellar Cores (Marcelino+2007; Oberg+2010; Bacmann+2012; Cernicharo+2012; Vastel+2014)

COMs ubiquitous in the ISM Ø Star forming regions: ot Cores and ot Corinos (ollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017) Ø Galactic Center GMCs (SgrB2) (Martin-Pintado+2001;Requena-Torres+2006,2008) Ø Molecular Outflows (Arce+2008; Codella+2015,2017) Ø Photon-Dominated Regions (Guzman+2013; Cuadrado et al. 2017) Ø Dark Clouds Cores and Pre-stellar Cores (Marcelino+2007; Oberg+2010; Bacmann+2012; Cernicharo+2012; Vastel+2014) Radical-radical surface formation inefficient at T<30 K

COM formation in cold sources (T=10 K) Radical-radical surface formation inefficient at T<30 K New mechanisms proposed: 1. Gas phase formation (Vasyunin & erbst 2013; Balucani+2015; Vasyunin+2017) 2. Non-canonical explosions (Rawlings et al. 2013) 3. Cosmic-ray induced radical diffusion (Reboussin et al. 2014) 4. Impulsive spot heating on grains (Ivlev et al. 2015) 5. Formation after atom addition/abstraction on grains (Chuang et al. 2016) Av=3 Av=10 time (years) time (years)

Pre-stellar cores: Precursors of Solar-type systems L1544 (Taurus) Pre-stellar cores: Cold and dense cores on the verge of gravitational collapse (no star inside yet) Keto & Caselli 2008 Caselli+2002 Δδ (arcsec) Δδ (arcsec)

Caselli+2002 Δδ (arcsec) L1544 as a testbed Water vapour in L1544 (Caselli+2012) Δδ (arcsec) Caselli+2012

Caselli+2002 Δδ (arcsec) L1544 as a testbed Water vapour in L1544 (Caselli+2012) COMs released alongside water (C 3 O, 2 CCO, COO, C 3 CO) (Vastel+2014) Δδ (arcsec) C 3 O-ring at r~4000 AU C 3 O peak (0,0 ) Bizzocchi et al. 2014 Intermediate density shell interesting chemistry appears

IRAM 30m Detection of large COMs in L1544 C3OCO, C3OC3, C3CO, c-c32o, C2CCN, C3NC, CCNC, CCCO (0,0) Jimenez-Serra et al. (2016)

IRAM 30m Detection of large COMs in L1544 C3OCO, C3OC3, C3CO, c-c32o, C2CCN, C3NC, CCNC, CCCO C3O peak Jimenez-Serra et al. (2016)

COM abundance profile in L1544 Jimenez-Serra et al. (2016) C 3 O, C 3 CO: >6-10 x more abundant at r~4000 AU C 3 OC 3, C 3 OCO and N-bearing COMs: ( ~2-3 x more abundant at r~4000 AU

COM abundance profile in L1544 Jimenez-Serra et al. (2016) Important non-detections: X [Glycine] < 10-10 X [N 2 CO] < 10-12 (Lopez-Sepulcre+2014) X [C 3 NCO] < 10-12 (Cernicharo+2016)

O-bearing COM chemical modelling in L1544 4000 AU Vasyunin et al. (2017) UV photodissociation of COMs n( 2 )<10 4 cm -3 Strong depletion onto grains n( 2 )>10 6 cm -3 Moderate Av + No severe depletion (CO) n( 2 )~10 4 cm -3

O-bearing COM chemical modelling in L1544 4000 AU Vasyunin et al. (2017) Catastrophic depletion of CO è CO snow-line in pre-stellar cores Strong depletion onto grains Moderate Av + No severe depletion (CO) UV photodissociation of COMs n( 2 )<10 4 cm -3 n( 2 )>10 6 cm -3 n( 2 )~10 4 cm -3

Small-scale structure of the C3O peak C3O shows inward motions (gas accretion?) Gas dynamics need to be considered Punanova+17, subm.

Modelling the chemistry of N-bearing COMs Glycine (N 2 C 2 COO) Methylamine N 2 C 3 Glycolaldehyde OC 2 CO ydroxylamine N 2 O Cyanamide N 2 CN Methyl Formate COOC 3 Acetamide N 2 COC 3 Aminoacetonitrile N 2 C 2 CN Acetic Acid C 3 COO Formamide N 2 CO N-methyl Formamide N-C 3 NCO Isocyanic Acid (+isomers) NCO/CNO/OCN Methyl Isocyanate C 3 NCO Requires understanding of the chemistry of the precursors of glycine and of any COM-related species.

Modelling the chemistry of N-bearing COMs David Quenard Methylamine N 2 C 3 Glycolaldehyde OC 2 CO ydroxylamine N 2 O Glycine (N 2 C 2 COO) Cyanamide N 2 CN Methyl Formate COOC 3 Acetamide N 2 COC 3 Aminoacetonitrile N 2 C 2 CN Acetic Acid C 3 COO Formamide N 2 CO N-methyl Formamide N-C 3 NCO Isocyanic Acid (+isomers) NCO/CNO/OCN Methyl Isocyanate C 3 NCO Requires understanding of the chemistry of the precursors of glycine and of any COM-related species.

Modelling the chemistry of N-bearing COMs David Quenard Methylamine N 2 C 3 Glycolaldehyde OC 2 CO ydroxylamine N 2 O Glycine (N 2 C 2 COO) Cyanamide N 2 CN Methyl Formate COOC 3 Acetamide N 2 COC 3 Aminoacetonitrile N 2 C 2 CN Acetic Acid C 3 COO Formamide N 2 CO N-methyl Formamide N-C 3 NCO Isocyanic Acid (+isomers) NCO/CNO/OCN Methyl Isocyanate C 3 NCO Mar=n- Domenech+(2017) Ligterink et al. (2017) Requires understanding of the chemistry of the precursors of glycine and of any COM-related species.

Modelling of N 2 CO, C 3 NCO, NCO (& isomers) UCL_CEM (Viti et al. 2004; oldship et al. 2017; Quenard et al. subm.) https://uclchem.github.io/ Gas-phase + Dust Grain chemical code (310 species; 3097 # of reactions) Recently proposed gas-phase/grain-surface reactions (including isomers): Quenard et al. subm.

Modelling of N 2 CO, C 3 NCO, NCO (& isomers) UCL_CEM (Viti et al. 2004; oldship et al. 2017; Quenard et al. subm.) https://uclchem.github.io/ Astronomical sources considered in the modelling: L1544 IRAS16293 B Cold Core T=10 K n( 2 )~10 5-10 6 cm -3 Cold envelope T=20 K n( 2 )~10 6 cm -3 ot corino T=250 K n( 2 )~10 8 cm -3

L1544 (core center + C 3 O peak) N 2 CO is produced by a combination of gas-phase and dust-grain processes T=10 K N 2 CO formed mainly by gas phase reaction N 2 + 2 CO -> N 2 CO + at cold T (better match obtained with E a ~25 K, slightly higher than that of Skouteris+2017) C3O peak (T=10 K) X(N 2 CO)~7x10-13 X(C 3 NCO)~6x10-12 (Jimenez-Serra+2016)

X(N 2 CO)~6x10-10 -2x10-9 X(C 3 NCO)~2x10-10 (Coutens+2016; Martin-Domenech+2017; Ligterink+2017) IRAS16293-2422 (cold envelope + hot corino) Cold envelope (T=20 K) gas-phase dominates hydrogenation unlikely (Noble+2015; Fedoseev+15) T=110 K X(N 2 CO)~3x10-12 (Lopez-Sepulcre+2014) T=20 K ot corino (T=250 K) Radical-radical diffusion dominates

X(N 2 CO)~6x10-10 -2x10-9 X(C 3 NCO)~2x10-10 (Coutens+2016; Martin-Domenech+2017; Ligterink+2017) IRAS16293-2422 (cold envelope + hot corino) Cold envelope (T=20 K) gas-phase dominates hydrogenation unlikely (Noble+2015; Fedoseev+15) X(N 2 CO)~3x10-12 T=110 K (Lopez-Sepulcre+2014) Formamide forms both in the gas-phase and/ or on grains depending on the physical conditions T=20 K ot corino (T=250 K) Radical-radical diffusion dominates

Search for pre-biotic species Advantages: Tgas<10 K low level of line confusion! Narrow linewidths <0.5 kms-1 little line blending L1544 Easier line identification. Not limited by sensitivity any longer Searches with ALMA and SKA!!!

Formamide with SKA1 TW ydrae ALMA GASS + LIME N 2 CO @ 15.4 Gz Abundance (wrt 2 ) 10-6 N 2 CO 10-8 10-10 10-12 10-14 10-16 UCL_CEM TW ya @ 1 arcsec (~50 AU) SKA-MID Band 5 (Phase 1) Quenard et al., in prep. 10-18 10 0 10 1 10 2 10 3 Radius (AU)

Formamide with SKA2 TW ydrae ALMA GASS + LIME N 2 CO @ 15.4 Gz 10-6 N 2 CO 10-8 Abundance (wrt 2 ) 10-10 10-12 10-14 10-16 UCL_CEM TW ya @ 40 mas (~2 AU) SKA-MID Band 5 (Phase 2) 10-18 10 0 10 1 10 2 10 3 Radius (AU) Quenard et al., in prep.

T mb (K) Simulations of Glycine in L1544 Jimenez-Serra et al. (2014) T(K), log[n (cm -3 )] χ(mol) Derived 2 O vapour profile (Caselli+2012) Glycine abundance in ices ~0.01% wrt 2 O (Munoz-Caro+2002; Bernstein+2002). Radius (AU) Intensities > 10 mk!!! L1544 (T=10K) Brightest lines appear at ν < 85 Gz ALMA Band 2

Chemical complexity in the Galactic Center Shaoshan Zeng Central Molecular Zone (central 100 pc) hosts 80% of dense gas in the MW (star-forming + quiescent GMCs)

Chemical complexity in the Galactic Center Battersby et al. (2016) G+0.2-0.03 G+0.76-0.05 G-0.02-0.07 Martin-Pintado et al. (2001); Requena-Torres et al. (2006,2008)

Requena-Torres et al. (2006,2008) Chemical complexity in the Galactic Center Battersby et al. (2016) G+0.2-0.03 G+0.76-0.05 G-0.02-0.07 The quiescent GMCs in the Galactic Center: main reservoir of COMs in the Galaxy

Chemical complexity in the Galactic Center G0693-0.03 Quiescent GMC -> no sign of star-formation activity q n( 2 )~4x10 4 cm -3 q T dust <20 K q T gas >100 K q Richest quiescent GMC in COMs (Requena-Torres et al. 2008)

G+0.693-0.33 G0693-0.03 3mm survey 2mm survey 93 species detected 50% of them are COMs

O-O O C=O -C=O <8.6E-10 3.1E-10. 2 C=O 8.8E-9 6.5E-8 C 3 O 2.1E-9 <3.4E-9 O C 3 O 4.5E-7 1.1E-6 COO 2.7E-9 3.7E-9 2 CO 2 O O-bearing COMs in G+0.693-0.33 COO C C COOC 3 4.5E-8 7.8E-8 3 COOC C C 3 OC 3 C 3 OC 3 2.7E-8 5.6E-8 C 3 COO <1.6E-9 <8.0E-10 CCOO O. C=C=O 2 C=C=O 7E-9 1.6E-8 2 C 2 =CO <4.5E-9 <1.8E-8 C 3 C=O 1.4E-8 3.0E-8 2 O C 3 C 2 O 3.1E-8 6.0E-8 OC 2 C 2 O 9.0E-9 2.8E-8 C C-C C-C-C 3 2 C 2 OC=O 6.8E-9 1.8E-8 2 O=C-C=O OCCO C-C 2 4 O 3.0E-9 5.6E-9 C. C C-C=O <5.7E-10 <3.6E-9 C C-C=O 9.0E-10 2.3E-9 2 C 2 =C-C=O 4.5E-10 2.3E-9 2 C 3 C 2 C=O 2.3E-9 4.4E-9 2 C 3 C 2 C 2 O <7.2E-9 <1.2E-8 Zeng et al., in prep. O-N N=C=O 9.6E-8 1.3E-7 O NCO N 2 CO 3.4E-9 6.7E-10 N 2 CO N 2 C 2 O COON 2 O-O-N C COCON 2 C 2 OCON 2 C 3 OCON 2 <1.2E-10 <4.3E-8 N=C=C=O 2 N 2 C=C=O 2 N 2 C 2 C=O 2 N 2 C 2 C 2 O <1.1E-9 <1.0E-8 C(O)C N <9.0E-10 <2.3E-9 N 2 C(O)C 3 3.6E-9 3.4E-9 N C-C=C=O 4.5E-10 <1.0E-9

N-O-O C C-C C 3 OCON 2 C COON 2 <8.08E-10 2 C-C-C C-C-C-C C-C-C-C-C COOC 2 N 2 N-O N N-N -N=C 3.81E-9 NC=N <3.53E-10 CO CO CNO 3.22E-10 ONC <7.71E-12 N 2 C=N 8.65E-10 O N OCN 4.87E-10 O C N N NCO -C N 6.74E-9 2 C=N 1.04E-9 C 2 N 1.37E-9 O C 2 N 2 N 2 C 2 O N 2 CO N 2 CO 9.06E-10 NCO C 3 N 2 3.29E-9 NCO 8.86E-8 C 3 N C C C N 2 C 2 C 2 O <2.2E-10 2 N 2 C 2 C=O N 2 C(O)C 3 4 3 C-C N 6.64E-7 C 3 C=N C 3 C 2 N -CO-C N <9.71E-11.. -C-C N 3.22E-11. 2 C-C N 4.65E-9 O CCN C 3 C 2 N 2 2 C=C=N <2.38E-9 C 2 C=N C 3 C=N C-C 2 4 N <2.87E-10 C 2 C=N 2 <1.17E-9 C 3 CN 2 C 3 NCO 1.4E-9 C 3 CNO <3.87E-11 C 3 OCN <1.22E-10 2 -C N-CO C C C O C C-C N 8.65E-10 -C C-C N 1.5E-8 -NC-C C 5.85E-11 -C C-NC 1.54E-9 C-C-C N C 2 =C-C N 1.81E-9 C 3 CC N C 3 C 2 C N 1.40E-9 C 3 C 2 CN C 3 C 2 CN C 3 C 2 C 2 N C 3 C 2 C 2 N 2 N-bearing COMs in G+0.693-0.33 N C-C=C=O <4.24E-10 C C.. -C C-C-C N <4.44E-11 2 C=C=C-C N <1.06E-10 C 4 N. 2 C=C=C-C N 8.86E-10 3 C-C C-C N 5.59E-10 C 3 C 3 =N C 3 C 3 =N C 3 C 3 2 N C 3 C 3 2 N 2 C C C 3 C 2 C=N C 3 C 2 2 C=N C 3 C 2 3 C=N C 3 C 2 4 C=N Zeng et al., in prep. C 5 N -C C-C C-C N 6.13E-9 C -C 7 N 3.45E-10 -C 9 N <2.93E-11

Conclusions Ø COMs are ubiquitous in the ISM. Large COMs even detected in PSCs and quiescent GC GMCs. Ø COM abundance profile predicted by chemical modelling -> Outer, intermediate-av shells in PSCs represent the main O-bearing COM reservoir. Ø Chemistry of N 2 CO, C 3 NCO, NCO in PSCs and hot corinos can be reproduced considering both gas-phase chemistry and dust grains. Ø Quiescent GC GMCs richest COM repository in the MW. Survival of COMs under extreme conditions.

Modelling of N 2 CO, C 3 NCO, NCO (& isomers) L1544 -> N 2 CO gas-phase formation (N 2 + 2 CO -> N 2 CO + ) requires a small activation barrier of 25 K (Quenard et al., subm.)

Chemical differentiation in L1544 Spezzano et al. (2017)

Where does CO depletion occur? Caselli et al. (1999) DEC Offset (arscsec) Integrated Intensity (km s -1 ) RA Offset (arscsec) RA Offset (arscsec) Low-Av shell: MAIN RESERVOIR of COMs IN PRE-STELLAR CORES

Modelling of N 2 CO, C 3 NCO, NCO (& isomers) UCL_CEM (Viti et al. 2004; oldship et al. 2017; Quenard et al. subm.) https://uclchem.github.io/ Gas-phase + Dust Grain chemical code (310 species; 3097 # of reactions) a) Thermal desorption (Viti et al. 2004; Collings et al. 2004) b) Non-thermal desorption (direct UV, CR-induced UV, direct CR, 2 form.) New treatment of grain surface chemistry (Quenard et al. in prep.): 1. Diffusion (asegawa et al. 1992) 2. Chemical reactive desorption (Minissale et al. 2016) 3. Reaction-diffusion competition (Garrod & Pauli 2011; Ruaud et al. 2015)