ROOT UPTAKE AND TRANSLOCATION OF PERFLUORINATED ALKYL ACIDS BY THREE HYDROPONICALLY GROWN CROPS

Similar documents
Trends of Perfluorinated Alkyl Substances in Herring Gull Eggs from Two Coastal. Colonies in Northern Norway:

Supporting Information

Determination of Polyfluoroalkyl Substances (PFAS) in Food Products

8 Laboratory of Environmental Pollution Control and Remediation Technology, Sun

Characterization of Two Passive Air Samplers for Per and Polyfluoroalkyl Substances

Supporting Information. Mass Balance of Perfluorinated Alkyl Acids in a Pristine Boreal Catchment

Supporting Information

Kalinovich, I., Thalheimer. A.H., Loney, B.

Per and Polyfluoroalkyl Substances (PFAS) in AFFF Formulations and Groundwater

Supporting Information

Water-to-air transfer of perfluorinated carboxylates and sulfonates in a sea spray simulator

Sorptive Remediation of Perfluorooctanoic Acid (PFOA) Using Mixed Mineral and Graphene/Carbon-Based. Materials

A comparison between HRAM Orbitrap technology and MS/MS for the analysis of polyfluoroalkyl substances by EPA Method 537

Perfluorinated Alkyl Acids (PFAA) in Water by LC/MS/MS - PBM

A Fully Validated LC-MS/MS Method for Analysis of Trace Fluorotelomer Alcohols from Water

ADVANCES IN POLY- AND PERFLUORALKYL SUBSTANCES (PFAS) ANALYTICAL TECHNIQUES

A Technique for Determining Total Oxidizable Precursors (TOP) of Perfluoroalkyl Compounds

SUPPORTING INFORMATION

Perfluorinated Alkyl Acids (PFAAs): Practical Answers to Frequently Asked Questions

Biomagnification of Perfluorinated Compounds in a Remote Terrestrial Food Chain: Lichen-Caribou-Wolf

Supporting Information. Treatment of Aqueous Film-Forming Foam by Heat-Activated. Persulfate Under Conditions Representative of

Supporting Information

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

Coupling Large Volume Injection for Aqueous Samples and Organic Extracts with LC-Tandem Mass Spectrometry

CASE STUDY 3: Quantitative and Qualitative Analysis of Perfluoroalkyl Substances (PFASs) in Wildlife Samples Using the Xevo G2-XS Q-Tof GOAL

Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States

Release of Per- and polyfluoroalkyl Substances (PFASs) from Carpet and Clothing in Model Anaerobic Landfill Reactors. Supporting Information

Analysis of Serum 17-Hydroxyprogesterone, Androstenedione, and Cortisol by UPLC-MS/MS for Clinical Research

Fast Screening and Quantitation of Perfluorinated Sources from Textiles using Chemical Ionization GC-MS

Supplementary Data. Supplementary Table S1.

Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry

Determination of Pesticide Residues in Oats by Automated. QuEChERS and LC/QQQ. Application Note. Abstract. Introduction

The certification of the mass concentration of perfluoroalkyl substances (PFASs) in water: IRMM-428

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the environment: terminology, classification and origins

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS

Supporting Information. Sweetened Swimming Pools and Hot Tubs

A comparative assessment of octanol-water partitioning and. distribution constant estimation methods for perfluoroalkyl

Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free) System

DEVELOPMENT OF HPLC METHOD FOR ANALYSIS OF NITRITE AND NITRATE IN VEGETABLE

PFAS TREATMENT AND REMEDIATION WEBINAR: TREATMENT OPTIONS FOR SOIL & GROUNDWATER

Determination of trace anions in concentrated hydrofluoric acid

DEVELOPMENT OF PFCs HIGH SENSITIVITY ANALYSIS METHOD APPLIED RETENTION GAP TECHNIQUE WITH UPLC/MS/MS Tatsuya Ezaki 1, Nobutake Sato 1, Jun Yonekubo 1,

Closing the Mass Balance on Fluorine on Papers and Textiles

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

Analysis of Synthetic Cannabinoids and Metabolites: Adding New Compounds to an Existing LC-MS/MS Method

Fractionation of Acidic, Basic, and Neutral Drugs from Plasma with an SPE Mixed Mode Strong Cation Exchange Polymeric Resin (Agilent SampliQ SCX)

Supporting Information. Detection and Occurrence of Chlorinated By-products of Bisphenol A, Nonylphenol and

Figure 1. The supported liquid extraction process using the ISOLUTE SLE plate (single well shown)

The Use of the ACQUITY QDa Detector for a Selective, Sensitive, and Robust Quantitative Method for a Potential Genotoxic Impurity

Determination of Trace Cations in Power Plant Waters Containing Morpholine

Low-level Determination of 4-Hydrazino Benzoic Acid in Drug Substance by High Performance Liquid Chromatography/Mass Spectrometry

High Speed Separation of PFCs in Human Serum by C18-Monolithic Column Liquid Chromatography-Tandem Mass Spectrometry

Environmental Mass Spectrometry DR. RALPH N. MEAD

ENVIRONMENTAL analysis

A modelling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances.

Fast and Accurate Quantitation of Perfluorinated Sources from Textiles using Gas Chromatography-Triple Quadrupole Mass Spectrometry

Unit Two Worksheet WS DC U2

Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development

Optimization of the sample preparation and extraction methodology

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

Determination of Hormones in Drinking Water by LC/MS/MS Using an Agilent InfinityLab Poroshell HPH Column (EPA 539)

Detection of 9-tetrahydrocannabinol ( 9-THC) in human urine by Solid Phase Extraction and HPLC.

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

Accreditation against multiple quality standards for legacy and emerging concern contaminants, including PFASs

Fate of Pharmaceuticals and Their Transformation Products in Four Small European Rivers Receiving Treated Wastewater

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

Liquid Chromatography

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors

8. Methods in Developing Mobile Phase Condition for C18 Column

Overview. Introduction. André Schreiber AB SCIEX Concord, Ontario (Canada)

Ion Chromatography (IC)

Identification of Novel Hydrogen-Substituted Polyfluoroalkyl Ether. Sulfonates in Environmental Matrices near Metal-Plating Facilities

Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer

Cyanide and sulfide analysis using amperometric detection and Metrosep A Supp /4.0

Quantification of growth promoters olaquindox and carbadox in animal feedstuff with the Agilent 1260 Infinity Binary LC system with UV detection

INDIGOTINE. Disodium 3,3'-dioxo-[delta 2,2' -biindoline]-5,5'-disulfonate (principal component) (principal component)

Quantitative analysis of small molecules in biological samples. Jeevan Prasain, Ph.D. Department of Pharmacology & Toxicology, UAB.

General Chemistry Multiple Choice Questions Chapter 8

Unit 1 - Foundations of Chemistry

LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production

Perfluoroalkylated compounds in whole blood and plasma from the Swedish population

Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System

Packings for HPLC. Packings for HPLC

Tyler Trent, Applications Sales Specialist, Teledyne Tekmar P a g e 1

Extraction of Cocaine and Metabolites From Urine Using ISOLUTE SLE+ prior to LC-MS/MS Analysis

Section EXAM II Total Points = 150. October 15, Each student is responsible for following directions. Read this page carefully.

Naming Conventions and Physical and Chemical Properties of Per- and Polyfluoroalkyl Substances (PFAS)

A S ENSIT IV E M E T HO D FO R T H E D E T E RM INAT IO N O F ENDO C RIN E- D IS RU P T ING COM P OUNDS IN RIV E R WAT E R BY L C / MS/MS

Chem A Ch. 9 Practice Test

Extraction of Methylmalonic Acid from Serum Using ISOLUTE. SAX Prior to LC-MS/MS Analysis

Funsheet 9.1 [VSEPR] Gu 2015

Trace analysis of mesityl oxide and diacetone alcohol in pharmaceuticals by capillary gas chromatography with flame ionization detection

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography

LC/MS/MS Analysis of Pesticide Residues in Apples Using Agilent Chem Elut Cartridges

Transcription:

Supporting Information for ROOT UPTAKE AND TRANSLOCATION OF PERFLUORINATED ALKYL ACIDS BY THREE HYDROPONICALLY GROWN CROPS Felizeter S 1, McLachlan MS 2 De Voogt P 1,3 1 Universiteit van Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Amsterdam, The Netherlands 2 Department of Applied Environmental Science, Stockholm University, Sweden 3 KWR Watercycle Research Institute, Nieuwegein, The Netherlands

Contents Table S1: List of chemicals used, their purity and suppliers.... 2 Table S2: Chemical composition of the Hoaglands nutrient solution and the composition of the stock solutions used to achieve the final concentrations.... 3 Table S3: Dates of the seed sowing, the start and the end of the experiments, as well as dates when the nutrient solutions were exchanged.... 4 Description of the instrumental method.... 5 Table S4: List of the analytes, their abbreviations and molecular formula, the 13Clabelled internal standards used, and the mass transitions used in the MS/MS analysis of the analytes..... 6 Table S5: Concentrations of a repeated extraction of a cabbage leaf sample from the 500 ng L -1 nominal spiking concentration.... 7 Table S6: Recoveries (in %) of internal mass-labeled standards.... 8 Table S7: Ionization enhancement and/or suppression for the internal standards added to purified extracts.... 9 Figure S1: Stem/root concentration factor... 11 Figure S2: Twig concentration factor (TCF)... 11 Figure S3: Twig/stem concentration factor... 12 Figure S4: Leaf/twig concentration factor... 12 Table S9: Mass distribution of PFAAs in different tissues of cabbage plants... 13 Table S10: Mass distribution of PFAAs in different tissues of zucchini plants... 13 Table S11: PFAA concentrations (mean ± standard deviation) in samples from the cabbage experiment... 14 Table S12: PFAA concentrations (mean ± standard deviation) in samples from the zucchini experiment... 16 Table S13: PFAA concentrations (mean ± standard deviation) in samples from the tomato experiment... 18 Figure S5: Edible part/leaf concentration factor... 20 Table S14: Overview of various hydrophobicity parameters.... 20 References... 21 S1

Table S1: List of chemicals used, their purity and suppliers. Chemical Purity Supplier Wellington Laboratories, Ontario, MPFAC-Mix (internal standard) Canada Wellington Laboratories, Ontario, MPFAS-Mix (internal standard) Canada Wellington Laboratories, Ontario, M5PFPeA (internal standard) Canada Wellington Laboratories, Ontario, M4PFHpA (internal standard) Canada Wellington Laboratories, Ontario, PFAC-Mix (calibration standard) Canada Wellington Laboratories, Ontario, PFAS/FOSA-Mix (calibration standard) Canada PFBA 98% Sigma Aldrich, Zwijndrecht, Netherlands PFPeA 97% Sigma Aldrich, Zwijndrecht, Netherlands PFHxA 97% Sigma Aldrich, Zwijndrecht, Netherlands PFHpA 99% Sigma Aldrich, Zwijndrecht, Netherlands PFOA 96% Sigma Aldrich, Zwijndrecht, Netherlands PFNA 97% Sigma Aldrich, Zwijndrecht, Netherlands PFDA 98% Sigma Aldrich, Zwijndrecht, Netherlands PFUnA 95% Sigma Aldrich, Zwijndrecht, Netherlands PFDoA 95% Sigma Aldrich, Zwijndrecht, Netherlands PFTrA 97% Sigma Aldrich, Zwijndrecht, Netherlands PFTeA 97% Sigma Aldrich, Zwijndrecht, Netherlands K-PFBS 98% Sigma Aldrich, Zwijndrecht, Netherlands K-PFHxS 98% Sigma Aldrich, Zwijndrecht, Netherlands K-PFOS 98% Sigma Aldrich, Zwijndrecht, Netherlands Sodium carbonate 99% Sigma Aldrich, Zwijndrecht, Netherlands J.T. Baker Chemicals, deventer, Sodium hydroxide 98,8% Netherlands Sodium hydrogencarbonate 99,5% Merck, Darmstadt, Germany Sodium sulfate 99% Merck, Darmstadt, Germany Tetrabutylammoniumhydrogensulfate (TBA) 99% Merck, Darmstadt, Germany Ammonium hydroxide Sigma Aldrich, Zwijndrecht, Netherlands Ammonium acetate 99,999% Sigma Aldrich, Zwijndrecht, Netherlands Methanol ULC/MSgrade Biosolve, Valkenswaard, Netherlands Water ULC/MSgrade Biosolve, Valkenswaard, Netherlands tert-butyl methyl ether (MTBE) HPLC-grade Biosolve, Valkenswaard, Netherlands S2

Table S2: Chemical composition of the Hoaglands nutrient solution and the composition of the stock solutions used to achieve the final concentrations. Conc. Stock final conc. in nutrient ml Stock Component Solution solution Solution per 1 L g/l ppm KNO 3 202 2.5 N 210 Ca(NO 3 ) 2 x 4H 2 O 472 2.5 K 235 NH 4 NO 3 32 2.5 Ca 200 MgSO 4 x 7H 2 O 493 1 Mg 48 KH 2 PO 4 136 0.5 S 64 (ph to 6.0 with 3M KOH) P 31 Iron (Fe-EDTA sodium salt) 7.342 1 Fe 1,12 Minors: 1 H 3 BO 3 2.86 B 0.5 MnCl 2 x 4H 2 O 1.81 Mn 0.5 ZnSO 4 x 7H 2 O 0.22 Zn 0.05 CuSO 4 0.051 Cu 0.02 H 3 MoO 4 x H 2 O 0.09 Mo 0.01 S3

Table S3: Dates of the seed sowing, the start and the end of the experiments, as well as dates when the nutrient solutions were exchanged. Date of sowing Start of exposure Dates of exchange of spiked nutrient solution Harvest End of experiment Tomato 13.07.2010 27.07.2010 05.08.2010* 18.10.2010 30.11.2010 12.08.2010* to to 17.08.2010* 12.11.2010 17.12.2010 24.08.2010* 31.08.2010 09.09.2010 17.09.2010 28.09.2010 08.10.2010 20.10.2010 03.11.2010 22.11.2010 Cabbage 11.02.2011 25.02.2011 07.04.2011 07.06.2011 07.06.2011 13.04.2011* to to 20.04.2011 27.06.2011 27.06.2011 06.05.2011* 12.05.2011* 23.05.2011 08.06.2011* Zucchini 22.03.2011 30.03.2011 27.04.2011 23.05.2011 09.06.2011 05.05.2011 to 13.05.2011 07.06.2011 20.05.2011 27.05.2011 * at this date not all the plants received new nutrient solution Not all the plants grew equally fast or had ripe fruits at the same time. For tomato the fruits from the lowest branch were used for the paper. However, the experiment continued until all tomato plants had ripe fruits from all branches (low, medium and high). Cabbage plants were harvested when the cabbage heads started to crack open and no further growth could be expected. Zucchini fruits were harvested when they reached supermarket sizes. The experiment continued until at least 1 zucchini fruit of supermarket size was harvested from all plants. S4

Description of the instrumental method. The analytical methodology was according to the methods described by Eschauzier et al. (2010) [1]. The measurements were conducted in the scheduled MRM-mode (see Table S4). Briefly, instrumental settings included: Ion Transfer Voltage: -2000 V Interface Temperature: 450 C Curtain gas: 10 L min -1 Collision gas: 6 L min -1 Collision Energy: -10 V for PFPeA to PFOA, -15 V for PFBA, -25 V for PFNA to PFTeA and -70 V for the PFSAs The concentrations of calibration standards ranged from 0.005 ng ml -1 (Calibration level 1) to 200 ng ml -1 (Calibration level 12). Peaks consisted of at least 24 scans and the smoothing width was 9 points. For separation on the column a gradient elution with two mobile phases, A (40:60 methanol:water) and B (95:5 methanol:water; both with 2 mm ammonium acetate) was used. The system was equilibrated for 8 minutes with the initial mobile phase composition of 60 %A at a flow of 0.2 ml/min prior to sample injection. After injection the mobile phase composition changed linearly to 100% B at 10 minutes. This was held isocratic until 20 minutes. Afterwards the solvent composition was returned to initial condition within 2 minutes. S5

Table S4: List of the analytes, their abbreviations and molecular formula, the 13C-labelled internal standards used, and the mass transitions used in the MS/MS analysis of the analytes. Due to the lack of available mass-labelled standards for PFTrA, PFTeA and PFBS, these chemicals were corrected with the closest available standard, which could lead to under- or overestimated results due to different responses or extraction efficiencies. Abbreviation Compound Transition 1 Transition 2 PFBA Perfluoro-n-butanoic acid 213 169 - PFPeA Perfluoro-n-pentanoic acid 263 219 - PFHxA Perfluoro-n-hexanoic acid 313 269 313 119 PFHpA Perfluoro-n-heptanoic acid 363 319 363 169 PFOA Perfluoro-n-octanoic acid 413 369 413 169 PFNA Perfluoro-n-nonanoic acid 463 419 463 219 PFDA Perfluoro-n-decanoic acid 513 469 513 269 PFUnA Perfluoro-n-undecanoic acid 563 519 563 269 PFDoA Perfluoro-n-dodecanoic acid 613 569 613 319 PFTrA Perfluoro-n-tridecanoic acid 663 619 663 369 PFTeA Perfluoro-n-tetradecanoic acid 713 669 713 369 PFBS Perfluorobutane sulfonate 299 80 299 99 PFHxS Perlfuorohexane sulfonate 399 80 399 99 PFOS Perfluorooctane sulfonate 499 80 499 99 13 C 4 PFBA Perfluoro-n-[1,2,3,4-13 C 4 ]butanoic acid 217 172-13 C 5 PFPeA Perfluoro-n-[1,2,3,4,5-13 C 5 ]pentanoic acid 268 223-13 C 2 PFHxA Perfluoro-n-[1,2-13 C 2 ]hexanoic acid 315 270 315 119 13 C 4 PFHpA Perfluoro-n-[1,2,3,4-13 C 4 ]heptanoic acid 367 323 367 169 13 C 8 PFOA Perfluoro-n-[1,2,3,4,5,6,7,8-13 C 8 ]octanoic acid 421 376 421 172 13 C 9 PFNA Perfluoro-n-[1,2,3,4,5,6,7,8,9-13 C 9 ]nonanoic acid 472 427 472 223 13 C 6 PFDA Perfluoro-n-[1,2,3,4,5,6-13 C 6 ]decanoic acid 519 474 519 219 13 C 7 PFUnA Perfluoro-n-[1,2,3,4,5,6,7-13 C 7 ]undecanoic acid 570 525 570 270 13 C 2 PFDoA Perfluoro-n-[1,2-13 C 2 ]dodecanoic acid 615 570 615 369 18 O 2 PFHxS Perfluoro-1-hexane[ 18 O 2 ]sulfonate 403 84 403 103 13 C 8 PFOS Perfluoro-1-[1,2,3,4,5,6,7,8-13 C 8 ]octanesulfonate 507 80 507 99 Quantification by internal Molecular Formula Standard 13 C 4 PFBA CF 3 (CF 2 ) 2 COOH 13 C 5 PFPeA CF 3 (CF 2 ) 3 COOH 13 C 2 PFHxA CF 3 (CF 2 ) 4 COOH 13 C 4 PFHpA CF 3 (CF 2 ) 5 COOH 13 C 8 PFOA CF 3 (CF 2 ) 6 COOH 13 C 9 PFNA CF 3 (CF 2 ) 7 COOH 13 C 6 PFDA CF 3 (CF 2 ) 8 COOH 13 C 7 PFUnA CF 3 (CF 2 ) 9 COOH 13 C 2 PFDoA CF 3 (CF 2 ) 10 COOH 13 C 2 PFDoA CF 3 (CF 2 ) 11 COOH 13 C 2 PFDoA CF 3 (CF 2 ) 12 COOH 18 O 2 PFHxS CF 3 (CF 2 ) 3 SO 3 18 O 2 PFHxS CF 3 (CF 2 ) 5 SO 3 13 C 8 PFOS CF 3 (CF 2 ) 7 SO 3 S6

Table S5: Concentrations of a repeated extraction of a cabbage leaf sample from the 500 ng L -1 nominal spiking concentration. All values in ng g -1 fresh weight. PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnA PFDoA PFTrA PFTeA PFBS PFHxS Br-PFOS L-PFOS Sample 1 3.93 2.55 2.94 4.54 6.16 5.90 3.52 1.16 0.082 0.021 0.017 10.2 7.99 1.32 3.41 Sample 2 4.36 2.52 3.58 4.31 5.50 5.42 3.11 1.06 0.091 0.024 0.020 10.8 6.89 1.17 3.18 Sample 3 4.53 2.43 3.59 4.15 5.79 4.81 3.16 0.93 0.089 0.025 0.015 10.9 7.16 1.09 2.94 Sample 4 4.37 2.35 3.28 4.31 5.58 5.76 3.71 1.07 0.091 0.019 0.015 10.7 6.99 1.19 3.00 Sample 5 4.51 2.41 2.98 4.89 6.13 4.59 2.82 0.99 0.076 0.020 0.017 10.6 6.89 1.09 3.16 Average 4.34 2.45 3.27 4.44 5.83 5.29 3.26 1.04 0.086 0.022 0.017 10.6 7.18 1.17 3.14 Standard deviation 0.22 0.07 0.28 0.26 0.27 0.52 0.32 0.08 0.006 0.002 0.002 0.23 0.41 0.08 0.16 % StDev 5% 3% 9% 6% 5% 10% 10% 7% 7% 10% 9% 2% 6% 7% 5% S7

Table S6: Recoveries (in %) of internal mass-labeled standards. They were determined by comparing the standard signal in the sample to the signal in matrix solutions which had been spiked with the same quantity of internal standard immediately prior to analysis. Mass labeled standards for PFPeA and PFHpA were not available at the time tomato roots and fruits were extracted. The bold entries are the mean recoveries (in %), while the non-bold entries are the respective standard deviations (in % of the mean). 13 C 4 PFBA 13 C 5 PFPeA 13 C 2 PFHxA 13 C 4 PFHpA 13 C 8 PFOA 13 C 9 PFNA 13 C 6 PFDA 13 C 7 PFUnA 13 C 2 PFDoA 18 O 2 PFHxS Cabbage Roots 50 95 107 94 100 92 110 111 123 101 87 10 19 10 10 10 17 21 20 20 7 16 Stem 43 88 93 92 94 108 127 126 133 112 103 11 19 13 11 14 17 19 17 18 8 16 Leaf 34 106 96 103 103 107 99 93 90 70 76 4 19 15 16 13 17 17 16 17 11 11 Head 134 101 96 90 104 97 102 98 106 96 89 23 14 10 10 15 10 17 30 19 10 12 Zucchini Roots 43 92 136 102 102 86 101 85 140 93 101 17 20 14 19 18 13 29 22 22 14 21 Stem 30 72 83 83 80 58 79 62 59 69 61 6 8 8 10 10 13 15 10 13 5 4 Twig 32 73 81 90 75 61 74 56 62 79 67 8 12 14 12 12 14 11 7 10 4 6 Leaf 41 84 93 100 96 67 99 72 67 78 75 5 13 9 13 14 15 24 9 15 8 12 Fruit 31 64 78 85 79 65 78 71 73 60 54 8 11 16 16 17 15 19 15 19 19 17 Tomato Roots 77 n.a. 105 n.a. 91 86 85 91 89 95 106 12 12 6 14 8 8 6 18 8 Fruit 50 n.a. 102 n.a. 96 111 123 150 155 91 129 6 14 4 5 10 11 9 9 11 Stem 46 74 79 72 69 64 86 64 73 68 62 5 10 7 13 14 13 18 16 11 11 17 Twig 41 72 79 76 70 59 70 72 91 65 67 7 18 16 19 18 12 11 15 17 11 15 Leaf 38 94 109 112 95 83 98 116 106 88 94 7 17 12 11 9 15 8 17 18 11 12 13 C 8 PFOS S8

Table S7: Ionization enhancement and/or suppression for the internal standards added to purified extracts. Matrix effects are expressed as a percentage in relation to the signal area response of a solvent-based, matrix free, internal standard solution (100% = no matrix effect). Cabbage 13 C 4 PFBA 13 C 5 PFPeA 13 C 2 PFHxA 13 C 4 PFHpA 13 C 8 PFOA 13 C 9 PFNA 13 C 6 PFDA 13 C 7 PFUnA 13 C 2 PFDoA 18 O 2 PFHxS Root 49 83 102 104 111 93 88 76 70 112 91 Stem 49 87 101 102 111 97 86 78 74 106 88 Leaf 73 57 87 89 94 82 74 72 66 100 79 Head 19 56 83 94 97 90 77 61 56 105 80 Zucchini Root 19 33 60 77 78 61 42 49 39 96 60 Stem 107 84 97 99 104 101 90 102 107 111 91 Twig 103 94 102 102 108 102 96 107 98 109 101 Leaf 84 65 89 86 87 83 71 71 59 102 81 Fruit 106 92 93 93 102 95 87 94 91 105 93 Tomato Root 34 81 94 77 65 62 55 104 76 Stem 65 89 95 101 104 100 78 84 74 109 80 Twig 68 94 97 99 106 95 81 86 70 112 83 Leaf 84 72 87 85 89 68 56 47 42 100 63 Fruit 73 99 105 92 77 65 64 108 81 13 C 8 PFOS S9

Table S8: Limits of Quantification (LoQ) in ng g -1 fresh weight. PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnA PFDoA PFTrA PFTeA PFBS PFHxS Br-PFOS L-PFOS Cabbage Root 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.002 0.002 0.005 0.018 Stem 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.002 0.002 0.005 0.018 Leaf 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.001 0.001 0.004 0.014 Head 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.001 0.001 0.004 0.014 Zucchini Root 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.001 0.001 0.004 0.014 Stem 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.001 0.001 0.004 0.014 Twig 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.001 0.001 0.004 0.013 Leaf 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.002 0.002 0.006 0.021 Fruit 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.001 0.001 0.002 0.009 Tomato Root 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.001 0.001 0.004 0.014 Stem 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.002 0.002 0.006 0.023 Twig 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.003 0.003 0.010 0.036 Leaf 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.003 0.003 0.010 0.036 Fruit 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.001 0.001 0.002 0.009 S10

10 1 Cabbage Zucchini Tomato 0.1 0.01 0.001 0.0001 Figure S1: Stem/root concentration factor, calculated by dividing the PFAA concentration in the stem by the PFAA concentration in the root (both on a fresh weight basis). Logarithmic scale. The factor shown is the average of all plants with quantifiable concentrations (see tables S11-13). Error bars denote standard error. 18 16 14 12 10 8 6 4 2 0 Zucchini Tomato Figure S2: Twig concentration factor (TCF), calculated by dividing the fresh weight based PFAA concentration in the twig by the PFAA concentration in the nutrient solution. The factor shown is the average of all plants with quantifiable concentrations (see tables S11-13). Error bars denote standard error. S11

5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Zucchini Tomato Figure S3: Twig/stem concentration factor, calculated by dividing the PFAA concentration in the twig by the PFAA concentration in the stem (both on a fresh weight basis). The factor shown is the average of all plants with quantifiable concentrations (see tables S11-13). Error bars denote standard error. 35 30 25 Cabbage Zucchini Tomato 20 15 10 5 0 Figure S4: Leaf/twig concentration factor (for cabbage leaf/stem), calculated by dividing the PFAA concentration in the leaves by the PFAA concentration in the twig (stem) (all on a fresh weight basis). The factor shown is the average of all plants with quantifiable concentrations (see tables S11-13). Error bars denote standard error. S12

Table S9: Mass distribution of PFAAs in different tissues of cabbage plants, expressed as a percent of the total amount of PFAA found in the plant. Percent distributions were calculated for each plant. Values shown are the averages. Roots Stem Head Leaf PFBA 6% 4% 22% 67% PFPeA 10% 3% 33% 53% PFHxA 19% 3% 17% 62% PFHpA 24% 1% 1% 74% PFOA 39% 1% 1% 59% PFNA 63% 1% 0% 35% PFDA 79% 2% 0% 19% PFUnA 91% 2% 0% 6% PFDoA 97% 2% 0% 2% PFTrA 99% 0% 0% 0% PFTeA 100% 0% 0% 0% PFBS 20% 1% 1% 78% PFHxS 38% 1% 1% 61% Br-PFOS 64% 2% 0% 34% L-PFOS 82% 1% 0% 16% Table S10: Mass distribution of PFAAs in different tissues of zucchini plants, expressed as percent of the total amount of PFAA found in the plant. Percent distributions were calculated for each plant. Values shown are the averages. Roots Stem Twig Leaf Fruit PFBA 7% 2% 8% 72% 11% PFPeA 11% 4% 6% 57% 22% PFHxA 17% 24% 6% 38% 15% PFHpA 33% 24% 4% 32% 7% PFOA 50% 19% 6% 24% 2% PFNA 66% 13% 4% 16% 2% PFDA 81% 7% 3% 8% 1% PFUnA 93% 3% 2% 2% 0% PFDoA 98% 1% 1% 0% 0% PFTrA 100% 0% 0% 0% 0% PFTeA 100% 0% 0% 0% 0% PFBS 32% 4% 3% 56% 5% PFHxS 53% 11% 3% 32% 2% Br-PFOS 77% 7% 2% 14% 1% L-PFOS 85% 4% 2% 9% 0% S13

Table S11: PFAA concentrations (mean ± standard deviation) in samples from the cabbage experiment expressed in ng/l (water) and ng/g fresh weight (plant tissues). The nominal concentrations in the nutrient solution are given in the left hand column. The concentrations in the plant tissues were corrected for the concentrations in the control plants (data not shown). PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnA Water 10 10.4 ± 0.31 12.9 ± 0.57 16.0 ± 1.01 12.8 ± 0.67 10.2 ± 0.43 9.04 ± 0.30 7.15 ± 0.23 6.79 ± 0.24 100 143 ± 11.1 147 ± 10.7 180 ± 15.4 134 ± 9.56 110 ± 6.62 105 ± 5.85 83.8 ± 3.51 74.9 ± 2.99 500 726 ± 50.1 752 ± 47.9 930 ± 76.4 678 ± 41.4 551 ± 27.7 536 ± 25.9 440 ± 17.8 374 ± 14.0 1000 1313 ± 65.7 1375 ± 61.0 1671 ± 114 1253 ± 53.3 1038 ± 33.7 1015 ± 30.4 837 ± 18.2 715 ± 14.3 Root 10 <0.026 ± 0.13 ± 0.058 0.28 ± 0.12 0.29 ± 0.10 0.82 ± 0.15 1.68 ± 0.34 2.40 ± 0.36 2.09 ± 0.44 100 0.68 ± 0.35 0.93 ± 0.46 1.91 ± 0.99 1.97 ± 1.02 4.03 ± 1.70 9.88 ± 2.51 17.1 ± 3.44 16.6 ± 2.97 500 3.99 ± 2.81 3.15 ± 0.20 5.23 ± 0.24 5.93 ± 0.37 10.9 ± 0.49 25.3 ± 0.79 52.0 ± 0.13 61.7 ± 16.0 1000 7.38 ± 3.07 7.57 ± 2.69 14.4 ± 5.65 15.0 ± 5.53 25.4 ± 10.4 49.6 ± 14.1 90.4 ± 18.2 124 ± 6.25 Stem 10 <0.026 ± 0.037 ± 0.009 <0.026 ± <0.026 ± 0.027 ± 0.001 <0.026 ± <0.026 ± <0.026 ± 100 0.37 ± 0.15 0.26 ± 0.14 0.32 ± 0.26 0.12 ± 0.092 0.21 ± 0.13 0.24 ± 0.15 0.36 ± 0.028 0.38 ± 0.17 500 1.40 ± 0.27 0.72 ± 0.20 0.55 ± 0.17 0.26 ± 0.13 0.89 ± 0.34 1.42 ± 0.59 2.82 ± 0.73 2.89 ± 1.22 1000 4.14 ± 1.68 2.58 ± 0.76 2.19 ± 1.16 0.76 ± 0.24 1.80 ± 0.45 2.96 ± 0.51 5.33 ± 1.13 8.11 ± 4.02 Leaf 10 0.32 ± 0.11 0.18 ± 0.051 0.14 ± 0.033 0.11 ± 0.031 0.098 ± 0.036 0.073 ± 0.036 0.053 ± 0.016 <0.021 ± 100 1.00 ± 0.18 0.79 ± 0.13 0.89 ± 0.24 0.91 ± 0.29 0.96 ± 0.22 0.63 ± 0.16 0.43 ± 0.21 0.18 ± 0.016 500 4.39 ± 0.81 3.27 ± 1.16 3.78 ± 1.30 4.14 ± 0.62 4.85 ± 1.18 4.65 ± 1.24 3.46 ± 1.06 0.91 ± 0.11 1000 10.8 ± 2.84 8.23 ± 2.84 9.38 ± 3.16 9.81 ± 3.75 10.92 ± 3.40 9.65 ± 2.00 7.91 ± 3.14 2.49 ± 1.40 Head 10 0.087 ± 0.010 0.12 ± 0.017 0.057 ± 0.007 <0.021 ± <0.021 ± <0.021 ± <0.021 ± <0.021 ± 100 0.63 ± 0.31 0.73 ± 0.20 0.32 ± 0.023 0.047 ± 0.003 0.042 ± 0.011 <0.021 ± <0.021 ± <0.021 ± 500 2.33 ± 0.60 2.37 ± 0.42 0.97 ± 0.34 0.14 ± 0.064 0.21 ± 0.035 0.077 ± 0.006 0.055 ± 0.005 0.024 ± 0.002 1000 7.21 ± 3.09 7.65 ± 3.42 3.04 ± 1.20 0.33 ± 0.10 0.34 ± 0.10 0.19 ± 0.051 0.15 ± 0.072 0.067 ± 0.031 S14

Table S11: Continued PFDoA PFTrA PFTeA PFBS PFHxS Br-PFOS L-PFOS Water 10 6.26 ± 0.26 4.57 ± 0.19 4.07 ± 0.18 19.9 ± 1.23 12.7 ± 0.70 1.90 ± 0.070 6.68 ± 0.23 100 65.8 ± 2.74 48.6 ± 1.84 41.0 ± 1.40 193 ± 13.7 124 ± 8.23 20.4 ± 1.04 72.8 ± 3.40 500 339 ± 13.9 242 ± 9.52 210 ± 8.24 967 ± 58.6 620 ± 34.4 106 ± 4.81 378 ± 16.3 1000 668 ± 20.5 481 ± 14.6 418 ± 13.0 1793 ± 75.6 1171 ± 44.4 206 ± 6.32 725 ± 18.2 Root 10 1.26 ± 0.19 1.10 ± 0.39 0.92 ± 0.17 0.30 ± 0.16 0.59 ± 0.13 0.32 ± 0.065 1.56 ± 0.32 100 11.2 ± 2.36 8.96 ± 3.62 10.8 ± 3.56 3.84 ± 1.96 4.71 ± 2.03 2.35 ± 0.54 12.6 ± 1.91 500 34.8 ± 4.82 40.6 ± 5.20 35.4 ± 5.34 11.6 ± 1.56 13.1 ± 2.16 5.32 ± 0.61 38.4 ± 2.87 1000 52.2 ± 12.0 55.5 ± 13.8 49.8 ± 13.9 31.5 ± 10.3 31.2 ± 9.28 10.3 ± 3.85 79.3 ± 33.3 Stem 10 <0.026 ± <0.026 ± <0.026 ± <0.002 ± <0.002 ± <0.005 ± <0.018 ± 100 0.21 ± 0.088 <0.026 ± <0.026 ± 0.087 ± 0.042 0.15 ± 0.10 0.061 ± 0.024 0.15 ± 0.041 500 0.98 ± 0.68 0.14 ± 0.12 <0.026 ± 0.31 ± 0.063 0.58 ± 0.20 0.42 ± 0.11 1.32 ± 0.38 1000 2.26 ± 1.60 0.28 ± 0.12 <0.026 ± 0.90 ± 0.18 1.43 ± 0.65 0.71 ± 0.24 2.64 ± 0.84 Leaf 10 <0.021 ± <0.021 ± <0.021 ± 0.21 ± 0.047 0.096 ± 0.032 0.011 ± 0.005 <0.014 ± 100 <0.021 ± <0.021 ± <0.021 ± 1.96 ± 0.67 1.03 ± 0.24 0.14 ± 0.041 0.24 ± 0.019 500 0.20 ± 0.17 <0.021 ± <0.021 ± 10.1 ± 2.67 5.84 ± 1.31 0.99 ± 0.23 2.62 ± 0.74 1000 0.40 ± 0.27 <0.021 ± <0.021 ± 21.4 ± 7.67 11.9 ± 3.90 1.72 ± 0.37 6.02 ± 2.18 Head 10 <0.021 ± <0.021 ± <0.021 ± <0.001 ± <0.001 ± <0.004 ± <0.014 ± 100 <0.021 ± <0.021 ± <0.021 ± 0.078 ± 0.029 0.034 ± 0.007 <0.004 ± <0.014 ± 500 <0.021 ± <0.021 ± <0.021 ± 0.30 ± 0.10 0.14 ± 0.049 0.015 ± 0.006 0.052 ± 0.011 1000 <0.021 ± <0.021 ± <0.021 ± 0.88 ± 0.28 0.27 ± 0.11 0.041 ± 0.005 0.10 ± 0.041 S15

Table S12: PFAA concentrations (mean ± standard deviation) in samples from the zucchini experiment expressed in ng/l (water) and ng/g fresh weight (plant tissues). The nominal concentrations in the nutrient solution are given in the left hand column. The concentrations in the plant tissues were corrected for the concentrations in the control plants (data not shown). PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnA Water 10 16.1 ± 1.43 16.8 ± 1.30 19.6 ± 2.03 15.1 ± 1.08 12.2 ± 0.61 10.9 ± 0.39 7.99 ± 0.06 6.60 ± 0.03 100 174 ± 6.58 173 ± 5.37 209 ± 8.81 152 ± 4.18 124 ± 2.54 119 ± 2.23 93.0 ± 0.93 76.9 ± 0.40 500 857 ± 40.3 847 ± 31.5 1022 ± 54.4 743 ± 24.4 600 ± 13.9 603 ± 14.4 493 ± 7.63 371 ± 1.53 1000 1553 ± 45.0 1595 ± 43.5 1891 ± 58.7 1417 ± 36.2 1159 ± 23.6 1107 ± 20.1 935 ± 12.3 714 ± 1.75 Root 10 <0.021 ± 0.10 ± 0.14 ± 0.16 ± 0.14 0.37 ± 0.16 0.89 ± 0.34 1.89 ± 0.77 2.28 ± 0.50 100 0.38 ± 0.22 0.64 ± 0.32 1.31 ± 0.24 1.69 ± 0.58 3.66 ± 1.24 6.74 ± 1.99 11.7 ± 3.26 18.2 ± 4.21 500 1.71 ± 0.35 4.58 ± 2.03 8.00 ± 4.19 8.09 ± 6.39 16.6 ± 12.3 36.9 ± 13.60 54.6 ± 8.94 112 ± 30.45 1000 2.58 ± 1.03 4.60 ± 2.38 8.41 ± 3.40 13.3 ± 1.95 28.9 ± 2.72 51.2 ± 13.18 86.6 ± 5.16 166 ± 35.46 Stem 10 <0.021 ± <0.021 ± 0.14 ± 0.04 0.11 ± 0.13 ± 0.05 0.18 ± 0.06 0.10 ± 0.022 0.05 ± 0.01 100 <0.021 ± <0.021 ± 1.19 ± 0.25 1.16 ± 0.29 1.24 ± 0.27 1.25 ± 0.32 0.76 ± 0.15 0.49 ± 0.14 500 0.50 ± 0.37 1.33 ± 0.67 4.64 ± 1.13 6.22 ± 0.99 5.95 ± 1.23 6.04 ± 1.07 4.25 ± 1.03 2.63 ± 0.78 1000 1.45 ± 1.02 3.65 ± 1.68 9.59 ± 2.64 11.42 ± 1.25 11.90 ± 1.93 11.76 ± 2.99 9.45 ± 2.28 5.43 ± 2.03 Twig 10 <0.019 ± <0.019 ± <0.019 ± <0.019 ± <0.019 ± <0.019 ± <0.019 ± <0.019 ± 100 0.27 ± 0.10 0.19 ± 0.12 0.26 ± 0.07 0.19 ± 0.03 0.32 ± 0.04 0.38 ± 0.08 0.43 ± 0.11 0.28 ± 0.12 500 1.20 ± 0.49 1.17 ± 0.30 1.73 ± 0.45 1.52 ± 0.25 1.97 ± 0.18 2.41 ± 0.15 2.80 ± 0.16 2.04 ± 0.12 1000 3.24 ± 1.85 3.47 ± 1.84 3.95 ± 1.65 3.22 ± 0.42 3.69 ± 0.46 4.89 ± 0.77 5.36 ± 0.26 3.57 ± 0.89 Leaf 10 0.54 ± 0.24 0.33 ± 0.27 0.18 ± 0.09 0.12 ± 0.12 0.19 ± 0.13 0.20 ± 0.10 0.18 ± 0.05 ± 100 2.62 ± 0.18 2.16 ± 0.25 1.86 ± 0.34 1.65 ± 0.37 2.06 ± 0.71 1.94 ± 0.66 1.44 ± 0.41 0.50 ± 0.21 500 13.9 ± 4.97 10.10 ± 2.25 11.2 ± 5.88 8.20 ± 3.97 10.6 ± 2.49 10.4 ± 2.27 6.74 ± 2.36 2.21 ± 0.84 1000 31.9 ± 6.29 22.11 ± 4.12 19.7 ± 4.06 16.0 ± 5.08 25.3 ± 11.12 22.0 ± 10.2 16.3 ± 7.03 4.18 ± 3.57 Fruit 10 <0.013 ± <0.013 ± <0.013 ± <0.013 ± <0.013 ± <0.013 ± <0.013 ± <0.013 ± 100 0.12 ± 0.07 0.16 ± 0.03 0.15 ± 0.04 0.07 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 <0.013 ± <0.013 ± 500 0.61 ± 0.29 0.76 ± 0.27 0.82 ± 0.23 0.38 ± 0.14 0.17 ± 0.04 0.21 ± 0.04 0.17 ± 0.10 0.066 ± 0.019 1000 1.24 ± 0.11 1.37 ± 0.01 1.61 ± 0.38 0.72 ± 0.26 0.29 ± 0.06 0.44 ± 0.19 0.27 ± 0.064 0.080 ± 0.004 S16

Table S12: Continued PFDoA PFTrA PFTeA PFBS PFHxS Br-PFOS L-PFOS Water 10 5.67 ± 0.02 5.09 ± 0.05 3.40 ± 0.05 22.1 ± 1.70 14.6 ± 1.03 2.15 ± 0.07 8.15 ± 0.27 100 63.6 ± 0.19 49.7 ± 0.17 32.4 ± 0.27 228 ± 7.13 143 ± 3.76 22.0 ± 0.30 82.6 ± 1.15 500 354 ± 3.21 261 ± 1.63 189 ± 0.58 1110 ± 41.3 694 ± 21.3 116 ± 2.23 415 ± 7.15 1000 698 ± 6.78 514 ± 3.47 407 ± 0.23 2139 ± 58.8 1354 ± 33.7 234 ± 4.67 805 ± 12.7 Root 10 1.81 ± 0.77 0.89 ± 0.17 2.09 ± 0.48 0.21 ± 0.13 0.32 ± 0.07 0.28 ± 0.02 0.95 ± 0.20 100 16.4 ± 4.08 7.71 ± 5.27 24.2 ± 8.16 2.59 ± 1.18 4.00 ± 1.88 2.23 ± 0.63 8.20 ± 2.36 500 51.4 ± 13.3 36.9 ± 6.31 81.4 ± 44.4 13.91 ± 11.0 20.1 ± 13.4 8.97 ± 3.52 47.9 ± 12.2 1000 69.8 ± 11.7 58.6 ± 8.31 79.9 ± 51.3 19.04 ± 5.95 19.8 ± 9.41 9.70 ± 3.01 70.8 ± 7.50 Stem 10 <0.021 ± <0.021 ± <0.021 ± <0.001 ± 0.081 ± 0.007 0.007 ± 0.004 0.056 ± 0.029 100 0.17 ± 0.061 <0.021 ± <0.021 ± 0.34 ± 0.16 0.69 ± 0.076 0.20 ± 0.066 0.44 ± 0.11 500 0.75 ± 0.11 0.071 ± 0.013 0.031 ± 1.38 ± 0.69 2.75 ± 0.71 0.73 ± 0.14 1.94 ± 0.39 1000 1.62 ± 0.61 0.21 ± 0.11 0.057 ± 2.69 ± 0.92 4.62 ± 0.18 1.15 ± 0.20 3.51 ± 0.94 Twig 10 <0.019 ± <0.019 ± <0.019 ± <0.001 ± <0.001 ± <0.004 ± <0.014 ± 100 0.080 ± 0.025 <0.019 ± <0.019 ± 0.15 ± 0.035 0.17 ± 0.010 0.030 ± 0.015 0.15 ± 0.039 500 0.43 ± 0.085 0.045 ± 0.03 <0.019 ± 0.93 ± 0.41 0.99 ± 0.10 0.25 ± 0.043 0.92 ± 0.081 1000 0.74 ± 0.21 0.056 ± 0.04 <0.019 ± 1.48 ± 0.62 1.83 ± 0.12 0.35 ± 0.12 1.33 ± 0.18 Leaf 10 <0.030 ± <0.030 ± <0.030 ± 0.47 ± 0.02 0.24 ± 0.09 0.04 ± 0.10 ± 0.06 100 0.057 ± 0.012 <0.030 ± <0.030 ± 4.81 ± 0.80 2.56 ± 0.65 0.46 ± 0.14 0.99 ± 0.36 500 0.20 ± 0.07 0.031 ± <0.030 ± 22.8 ± 11.9 12.4 ± 7.24 2.09 ± 0.81 4.81 ± 2.71 1000 0.39 ± 0.33 0.081 ± <0.030 ± 41.1 ± 1.60 25.9 ± 4.98 3.45 ± 1.50 11.1 ± 6.51 Fruit 10 <0.013 ± <0.013 ± <0.013 ± <0.001 ± <0.001 ± <0.002 ± <0.009 ± 100 <0.013 ± <0.013 ± <0.013 ± 0.07 ± 0.04 <0.001 ± 0.007 ± 0.002 <0.009 ± 500 <0.013 ± <0.013 ± <0.013 ± 0.36 ± 0.11 0.19 ± 0.022 0.031 ± 0.007 0.07 ± 0.014 1000 <0.013 ± <0.013 ± <0.013 ± 0.74 ± 0.11 0.31 ± 0.093 0.049 ± 0.003 0.12 ± 0.023 S17

Table S13: PFAA concentrations (mean ± standard deviation) in samples from the tomato experiment expressed in ng/l (water) and ng/g fresh weight (plant tissues). The nominal concentrations in the nutrient solution are given in the left hand column. The concentrations in the plant tissues were corrected for the concentrations in the control plants (data not shown). PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA Water 10 12.2 ± 0.59 13.4 ± 0.65 15.2 ± 1.00 12.0 ± 0.51 9.88 ± 0.25 9.30 ± 0.17 6.66 ± 0.09 100 137 ± 9.28 143 ± 7.91 165 ± 13.7 129 ± 6.43 106 ± 3.45 94.1 ± 1.61 79.8 ± 0.54 1000 1332 ± 29.0 1394 ± 24.2 1593 ± 44.6 1220 ± 16.7 1024 ± 8.99 986 ± 7.26 831 ± 2.98 10000 13518 ± 1218 14144 ± 1102 16445 ± 1811 11932 ± 676 10334 ± 455 9669 ± 304 8155 ± 114 Root 10 <0.021 ± <0.021 ± 0.061 ± 0.019 0.048 ± 0.026 0.066 ± 0.023 0.42 ± 0.15 0.98 ± 0.18 100 0.14 ± 0.042 0.18 ± 0.006 0.64 ± 0.034 0.50 ± 0.032 1.73 ± 0.85 5.69 ± 1.11 9.81 ± 2.92 1000 1.43 ± 0.98 1.93 ± 1.40 3.82 ± 3.60 3.67 ± 3.09 10.8 ± 6.46 49.0 ± 20.9 87.4 ± 23.1 10000 7.32 ± 4.31 14.2 ± 8.27 18.9 ± 14.6 26.8 ± 21.5 63.8 ± 36.5 309 ± 123 675 ± 69.9 Stem 10 0.035 ± <0.033 ± 0.042 ± 0.013 0.054 ± 0.017 0.092 ± 0.043 0.084 ± 0.014 0.11 ± 0.015 100 0.21 ± 0.18 0.31 ± 0.16 0.47 ± 0.20 0.75 ± 0.094 0.90 ± 0.18 0.79 ± 0.21 0.87 ± 0.37 1000 2.39 ± 1.01 1.90 ± 1.55 2.58 ± 2.27 4.77 ± 1.44 6.97 ± 1.67 9.25 ± 3.23 10.4 ± 3.22 10000 15.2 ± 6.58 20.2 ± 16.3 33.1 ± 21.2 51.0 ± 27.2 82.1 ± 37.6 111 ± 33.3 125 ± 11.3 Twig 10 <0.053 ± <0.053 ± 0.083 ± 0.026 0.058 ± 0.005 0.084 ± 0.11 ± 0.021 0.058 ± 0.004 100 0.93 ± 0.45 0.43 ± 0.28 0.72 ± 0.42 0.74 ± 0.32 0.93 ± 0.47 0.82 ± 0.14 0.77 ± 0.088 1000 13.4 ± 3.99 7.04 ± 2.46 10.9 ± 5.01 11.8 ± 6.20 11.5 ± 1.48 11.9 ± 2.84 11.7 ± 5.06 10000 99.1 ± 39.0 52.9 ± 16.4 72.0 ± 30.1 81.4 ± 23.6 101 ± 27.7 116 ± 34.7 144 ± 76.1 Leaf 10 0.43 ± 0.15 0.10 ± 0.014 0.27 ± 0.18 0.53 ± 0.25 0.47 ± 0.21 0.23 ± 0.067 0.14 ± 0.026 100 2.18 ± 0.87 0.88 ± 0.45 2.50 ± 0.82 3.71 ± 0.84 3.55 ± 0.85 2.76 ± 0.72 1.61 ± 0.46 1000 42.6 ± 16.4 11.8 ± 3.37 49.2 ± 18.0 75.5 ± 21.2 85.8 ± 20.6 65.8 ± 15.2 39.3 ± 12.1 10000 332 ± 184 137 ± 74.8 233 ± 92.9 641 ± 261 575 ± 89.3 559 ± 161 372 ± 151 Fruit 10 <0.013 ± <0.013 ± <0.013 ± <0.013 ± <0.013 ± <0.013 ± <0.013 ± 100 0.58 ± 0.10 0.68 ± 0.071 0.43 ± 0.067 0.051 ± 0.010 0.029 ± 0.009 <0.013 ± <0.013 ± 1000 5.56 ± 1.12 6.49 ± 1.18 3.40 ± 0.90 0.54 ± 0.10 0.28 ± 0.035 0.071 ± 0.011 0.025 ± 0.0004 10000 48.0 ± 39.1 65.7 ± 31.2 39.3 ± 27.2 10.3 ± 2.61 3.41 ± 0.74 0.97 ± 0.17 0.39 ± 0.066 S18

Table S13: Continued PFUnA PFDoA PFTrA PFTeA PFBS PFHxS Br-PFOS L-PFOS Water 10 7.13 ± 0.037 5.98 ± 0.011 4.63 ± 0.009 4.02 ± 0.002 18.4 ± 0.99 11.7 ± 0.51 1.84 ± 0.024 6.38 ± 0.028 100 62.4 ± 0.57 59.5 ± 0.065 44.9 ± 0.074 38.2 ± 0.18 180 ± 8.59 113 ± 3.91 19.2 ± 0.33 67.8 ± 0.71 1000 674 ± 0.26 658 ± 2.20 495 ± 1.19 432 ± 0.88 1801 ± 29.2 1208 ± 18.1 213 ± 2.01 728 ± 4.39 10000 6569 ± 50.3 7175 ± 231 5283 ± 123 4556 ± 88.0 18799 ± 1487 12324 ± 871 2094 ± 88.8 7394 ± 240 Root 10 1.26 ± 0.79 1.34 ± 0.56 0.69 ± 0.31 0.83 ± 0.44 <0.001 ± 0.15 ± 0.013 0.11 ± 0.029 0.63 ± 0.20 100 18.5 ± 8.38 13.0 ± 5.94 8.58 ± 2.28 8.48 ± 1.75 1.34 ± 0.88 2.66 ± 1.56 1.25 ± 0.23 6.99 ± 1.60 1000 150 ± 30.6 74.0 ± 10.6 60.0 ± 4.92 54.6 ± 7.79 9.21 ± 9.12 13.6 ± 8.52 6.45 ± 1.34 54.1 ± 12.7 10000 1752 ± 548 99.8 ± 40.1 102 ± 46.1 112 ± 48.0 78.7 ± 67.4 84.4 ± 48.7 114 ± 30.8 376 ± 65.7 Stem 10 0.10 ± 0.044 0.046 ± <0.033 ± <0.033 ± 0.057 ± 0.055 0.046 ± 0.043 0.016 ± 0.014 0.068 ± 0.016 100 0.49 ± 0.13 0.23 ± 0.13 0.082 ± 0.059 <0.033 ± 0.56 ± 0.11 0.55 ± 0.18 0.26 ± 0.083 0.56 ± 0.44 1000 9.04 ± 2.86 4.00 ± 1.18 0.92 ± 0.30 0.18 ± 0.086 2.05 ± 1.41 5.50 ± 3.32 1.61 ± 0.45 4.69 ± 3.69 10000 104 ± 27.1 23.0 ± 4.54 5.39 ± 0.97 1.33 ± 0.45 36.7 ± 23.9 39.6 ± 20.9 10.6 ± 3.07 61.3 ± 43.9 Twig 10 0.12 ± 0.038 <0.053 ± <0.053 ± <0.053 ± 0.17 ± 0.018 0.042 ± 0.025 0.013 ± 0.003 0.042 ± 100 0.38 ± 0.083 0.11 ± 0.027 0.082 ± <0.053 ± 1.68 ± 0.41 0.70 ± 0.33 0.13 ± 0.024 0.38 ± 0.088 1000 7.83 ± 5.13 2.06 ± 1.21 0.34 ± 0.16 0.10 ± 0.035 18.3 ± 5.30 6.50 ± 1.21 1.30 ± 0.23 5.49 ± 1.42 10000 69.1 ± 36.6 20.2 ± 11.41 3.92 ± 2.93 0.89 ± 0.75 102 ± 62.6 45.0 ± 13.5 11.1 ± 3.27 69.6 ± 29.1 Leaf 10 <0.053 ± <0.053 ± <0.053 ± <0.053 ± 0.65 ± 0.37 0.27 ± 0.134 0.045 ± 0.005 0.090 ± 0.003 100 0.40 ± 0.20 0.15 ± 0.083 <0.053 ± <0.053 ± 6.96 ± 1.84 3.37 ± 0.76 0.54 ± 0.16 1.43 ± 0.38 1000 11.3 ± 4.86 1.54 ± 0.69 0.25 ± 0.12 0.14 ± 0.072 126 ± 42.0 55.0 ± 10.8 6.39 ± 1.37 29.3 ± 6.97 10000 82.8 ± 25.3 10.1 ± 6.05 1.48 ± 0.91 0.60 ± 0.33 522 ± 192 322 ± 114 27.7 ± 9.69 303 ± 130 Fruit 10 <0.013 ± <0.013 ± <0.013 ± <0.013 ± <0.001 ± <0.001 ± <0.002 ± <0.009 ± 100 <0.013 ± <0.013 ± <0.013 ± <0.013 ± 0.040 ± 0.011 <0.001 ± <0.002 ± <0.009 ± 1000 <0.013 ± <0.013 ± <0.013 ± <0.013 ± 0.27 ± 0.11 0.056 ± 0.013 <0.002 ± <0.009 ± 10000 0.037 ± 0.014 <0.013 ± <0.013 ± <0.013 ± 2.73 ± 1.71 0.80 ± 0.15 0.064 ± 0.039 0.22 ± 0.12 S19

1 0.1 Cabbage Zucchini Tomato 0.01 0.001 0.0001 Figure S5: Edible part/leaf concentration factor, calculated by dividing the PFAA concentration in the edible part by the PFAA concentration in the leaves. Logarithmic scale. The factor shown is the average of all plants with quantifiable concentrations (see tables S11-13). Error bars denote standard error. Table S14: Overview of various hydrophobicity parameters. Log k0 by de Voogt et al. [2], modelled log KOW by Arp et al. [3], Wang et al. [4] and Kelly et al. [5], log P 0 by Jing et al. [6] and log DOW values modelled with ACD/PhysChem Suite, taken from www.chemspider.com. log k 0 Calculated log K OW log P 0' log D OW method HPLC COSMO-therm Sparc Voltammetry ph 5.5 ph7.4 ref de Voogt Arp Wang Arp Kelly Jing ACD/PhysChem Suite PFBA 1.83-2.82 - - -0.68 0.20 0.18 PFHxA 2.88 3.26 3.42 3.12-0.54 1.25 1.24 PFHpA 3.44 3.82 4.06 3.83 2.80 1.15 3.13 3.11 PFOA 4.22 4.30 4.67 4.59 3.60 1.76 4.02 4.00 PFNA 4.93 4.84 5.30 5.45 4.50 2.37 4.91 4.89 PFDA 5.73 5.30 6.50 6.38 5.40 2.98 5.80 5.78 PFUnA 6.22 5.76 7.15 7.40 6.40 3.59 - - PFDoA 7.02-7.77-7.10 4.20 7.58 7.56 PFBS 2.32-3.90 - - - 0.18 0.18 PFHxS 3.63-5.17 - - - 1.75 1.75 PFOS 5.02 5.25 6.43 5.26 4.30 2.57 3.53 3.53 S20

References 1. Eschauzier, C.; Haftka, J.; Stuyfzand, P. J.; De Voogt, P., Perfluorinated compounds in infiltrated river Rhine water and infiltrated rainwater in coastal dunes. Environmental Science and Technology 2010, 44, (19), 7450-7455. 2. de Voogt, P.; Zurano, L.; Serné, P.; Haftka, J. J. H., Experimental hydrophobicity parameters of perfluorinated alkylated substances from reversed-phase high-performance liquid chromatography. Environmental Chemistry 2012, 9, (6), 564-570. 3. Arp, H. P. H.; Niederer, C.; Goss, K. U., Predicting the partitioning behavior of various highly fluorinated compounds. Environmental Science & Technology 2006, 40, (23), 7298-7304. 4. Kelly, B. C.; Ikonomou, M. G.; Blair, J. D.; Surridge, B.; Hoover, D.; Grace, R.; Gobas, F., Perfluoroalkyl Contaminants in an Arctic Marine Food Web: Trophic Magnification and Wildlife Exposure. Environmental Science & Technology 2009, 43, (11), 4037-4043. 5. Wang, Z.; MacLeod, M.; Cousins, I. T.; Sheringer, M.; Hungerbuhler, K., Using COSMOtherm to Predict Physicochemical Properties of Poly-and Perfluorinated Alkyl Substances (PFAS). Environ. Chem. 2011, 8, 389-398. 6. Jing, P.; Rodgers, P. J.; Amemiya, S., High Lipophilicity of Perfluoroalkyl Carboxylate and Sulfonate: Implications for Their Membrane Permeability. J. Am.Chem. Soc. 2009, 131, (6), 2290-2296. S21