General tensors. Three definitions of the term V V. q times. A j 1...j p. k 1...k q

Similar documents
CS 468 (Spring 2013) Discrete Differential Geometry

NOTES ON DIFFERENTIAL FORMS. PART 3: TENSORS

1.13 The Levi-Civita Tensor and Hodge Dualisation

Vectors. January 13, 2013

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

Tensor Analysis in Euclidean Space

A Brief Introduction to Tensors

The Algebra of Tensors; Tensors on a Vector Space Definition. Suppose V 1,,V k and W are vector spaces. A map. F : V 1 V k

CS 468. Differential Geometry for Computer Science. Lecture 13 Tensors and Exterior Calculus

Math 52H: Multilinear algebra, differential forms and Stokes theorem. Yakov Eliashberg

Multilinear (tensor) algebra

Tensors, and differential forms - Lecture 2

The Matrix Representation of a Three-Dimensional Rotation Revisited

Survey on exterior algebra and differential forms

Vector spaces, duals and endomorphisms

W if p = 0; ; W ) if p 1. p times

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

TENSORS AND DIFFERENTIAL FORMS

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

HOMOGENEOUS AND INHOMOGENEOUS MAXWELL S EQUATIONS IN TERMS OF HODGE STAR OPERATOR

Chapter 2. Linear Algebra. rather simple and learning them will eventually allow us to explain the strange results of

An OpenMath Content Dictionary for Tensor Concepts

As always, the story begins with Riemann surfaces or just (real) surfaces. (As we have already noted, these are nearly the same thing).

1.4 LECTURE 4. Tensors and Vector Identities

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

2.14 Basis vectors for covariant components - 2

PHYS 4390: GENERAL RELATIVITY NON-COORDINATE BASIS APPROACH

Contravariant and Covariant as Transforms

Vector and Tensor Calculus

NOTES ON VECTORS, PLANES, AND LINES

LECTURE 16: TENSOR PRODUCTS

MULTILINEAR ALGEBRA MCKENZIE LAMB

Note 1: Some Fundamental Mathematical Properties of the Tetrad.

Vectors. September 2, 2015

Exterior Algebra Differential Forms

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

From point cloud data to the continuum model of geometry

Mathematics Department Stanford University Math 61CM/DM Inner products

Section 2. Basic formulas and identities in Riemannian geometry

1 Dirac Notation for Vector Spaces

Elements of linear algebra

Kähler manifolds and variations of Hodge structures

Week 6: Differential geometry I

October 25, 2013 INNER PRODUCT SPACES

Linear Algebra Notes. Lecture Notes, University of Toronto, Fall 2016

Clifford Algebras and Spin Groups

Mathematics that Every Physicist should Know: Scalar, Vector, and Tensor Fields in the Space of Real n- Dimensional Independent Variable with Metric

THE HODGE DECOMPOSITION

A GENERALLY COVARIANT FIELD EQUATION FOR GRAVITATION AND ELECTROMAGNETISM. Institute for Advanced Study Alpha Foundation

WOMP 2001: LINEAR ALGEBRA. 1. Vector spaces

Tensor Calculus, Part 2

Physics 209 Fall 2002 Notes 5 Thomas Precession

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

A Generally Covariant Field Equation For Gravitation And Electromagnetism

,, rectilinear,, spherical,, cylindrical. (6.1)

Multilinear Algebra For the Undergraduate Algebra Student

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

Tensor Calculus. arxiv: v1 [math.ho] 14 Oct Taha Sochi. October 17, 2016

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis.

Relativity Discussion

Chapter Two Elements of Linear Algebra

Differential Geometry MTG 6257 Spring 2018 Problem Set 4 Due-date: Wednesday, 4/25/18

Caltech Ph106 Fall 2001

Gravitation: Tensor Calculus

Covarient Formulation Lecture 8

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

Ruminations on exterior algebra

VECTOR AND TENSOR ALGEBRA

Chapter 2. Bundles. 2.1 Vector bundles: definitions and examples

Gravitation: Special Relativity

The following definition is fundamental.

Systems of Linear Equations

Complex manifolds, Kahler metrics, differential and harmonic forms

1 Curvature of submanifolds of Euclidean space

Chapter 2: Vector Geometry

dr bob s elementary differential geometry

Lecture 9: RR-sector and D-branes

Lecture 13. Differential forms

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Lecture I: Vectors, tensors, and forms in flat spacetime

V (v i + W i ) (v i + W i ) is path-connected and hence is connected.

Comprehensive Introduction to Linear Algebra

Physics 6303 Lecture 2 August 22, 2018

LINES IN P 3. Date: December 12,

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

Physics 6303 Lecture 5 September 5, 2018

Gravity theory on Poisson manifold with R-flux

Page 52. Lecture 3: Inner Product Spaces Dual Spaces, Dirac Notation, and Adjoints Date Revised: 2008/10/03 Date Given: 2008/10/03

1 Vectors and Tensors

Klaus Janich. Vector Analysis. Translated by Leslie Kay. With 108 Illustrations. Springer

Riemannian Curvature Functionals: Lecture I

Elements of differential geometry

Lecture Notes Introduction to Vector Analysis MATH 332

1. Geometry of the unit tangent bundle

Two simple ideas from calculus applied to Riemannian geometry

Citation for published version (APA): Halbersma, R. S. (2002). Geometry of strings and branes. Groningen: s.n.

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

Vectors, metric and the connection

Tensorama. John Kerl. Department of Mathematics, University of Arizona Graduate Student Colloquium. February 10, 2010

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Transcription:

General tensors Three definitions of the term Definition 1: A tensor of order (p,q) [hence of rank p+q] is a multilinear function A:V V }{{ V V R. }}{{} p times q times (Multilinear means linear in each variable when the other p+q 1 variables are fixed.) One calls p the contravariant rank of A and q the covariant rank. The space of tensors of order (p,q) is Tq p (V) V V } {{ } p times (The migration of the asterisk is deliberate!) V V }{{. } q times Definition 2: [The matrix of] a tensor of order (p,q) is a table of (dim V) p+q numbers, {A j 1...j p k 1...k q }, such that, under a change of basis which causes the coordinates of a ( contravariant ) vector in V to transform as v j S j lv l new v j [hence the coordinates of a covector in V to transform as U k (S 1 ) m ku m ], the components of the tensor transform according to the law A j 1...j p k 1...k q S j 1 l1 S j 2 l2 S j p lp (S 1 ) m 1 k1 (S 1 ) m q kq A l 1...l p m 1...m q. The indices {j 1,...,j p } are called contravariant indices, and {k 1,...,k q } are called covariant indices. [The mnemonic Co Low can be used to remember which is which.] Leibnitz would write new A j 1...j p k 1...k q = ξj 1 ξj p x l 1 x l p x m 1 ξ k 1 xm q ξ k q Al 1...l p m 1...m q, which is easier to remember. Here A are the components in the x coordinate system, new and A are the components in the ξ coordinate system. Definition 3: Start with the Cartesian product V V V V }{{} V ; }{{} p q 1

form the (huge, infinite-dimensional) vector space W of all formal linear combinations of elements of this set; consider the subspace X W spanned by elements of the form (α v 1 + u 1,...) α( v 1,...) ( u 1,...) (α R) and similar elements associated with the other p+q 1 slots ; then T p q (V) W/X, and the equivalence class containing ( v 1, v 2,..., v p,ṽ 1,...,Ṽ q ) is called v 1 v 2 Ṽ q. Familiar examples of tensor spaces T0 0 = R T1 0 = V T0 1 = V = V T1 1 = V V = L(V;V) T2 0 = V V = space of bilinear forms on V (V V R) T 2 0 = V V = space of bilinear forms on V Relations among the definitions (indicated briefly) (3) (1): v 1 Ṽq defines a multilinear functional on V V by ( v 1 Ṽq )(Ũ1,...,Ũp, u 1,..., u q ) Ũ1 ( v 1 ) Ũp ( v p )Ṽ 1 ( u 1 ) Ṽ q ( u q ). (1) (2): The matrix of a multilinear functional A with respect to a basis { d j } for V and the dual basis { D j } for V is { A ( Dj 1,..., D j p, d k1,..., d )} kq (Each index j α or k α ranges from 1 to dimv.) (3) (2): The matrix of an element v 1 Ṽq T p q is { } v j 1 1 vj 2 2 vj p p V k 1 1 V q k q. 2

Warning: Elements of the form v 1 Ṽq span Tq p, but they do not constitute all of it. The most general element is a linear combination of such products; it can t be factored as a single product. Example: We ve noted that T1 1 is isomorphic to L(V;V), but the elements of T1 1 of the form v Ṽ are operators of rank 1 (or 0), in the old sense of rank. (The range of such an operator is {α v}.) Further example: An example of a nonfactorable element of V V (provided that dimv 4) is d 1 d 2 + d 3 d 4 when the four vectors are linearly independent. There is no way to write this as v 1 v 2. Even when a tensor factors (is simple), that representation is not unique; for example, v 1 (α v 2 ) = (α v 1 ) v 2 α R. is A basis for T p q { dj1 d jp D k 1 D k q}. (Note that co indices are now up and contra indices down. This makes the summation convention work out right when an element of the space is expanded as the sum of its matrix elements times the corresponding basis elements.) Since each index independently ranges up to dim V, it follows that For contrast, note that dim ( Tq p ) = (dim V) p+q. dim[v V V }{{} V ] = (p+q)dim V. }{{} p q Recall that is effectively the same thing as (the Cartesian product) with addition and scalar multiplication defined. (1,2,3) (0,4) (1,2,3,0,4); Remarks (1,2,3) (0,4) ( ) 0 0 0 4 8 12 (A) All this can be generalized to tensor products of arbitrary vector spaces: V 1 V 2 V r consists of multilinear functions on V 1 V 2 V r. 3

(The analogues of definitions 2 and 3 are left to the reader.) As an application of such a construction, consider a system of partial differential equations ( a PDE for a vector-valued unknown) with independent variable x {x µ } R 3 and dependent variable φ {φ j } V, where V might be C q, say. [An example of the application is the spinor-valued wave functions of particles in quantum physics. In general, we have this situation whenever the value of the unknown function at a point is neither a scalar, nor a vector whose possible directions can be identified with the directions of physical space R 3 (or whatever the domain space is).] The PDE could be of the form 3 2 φ 3 x + M µ φ µ2 x = 0. µ µ=1 µ=1 Here { φ } x µ { φ j } V (R 3 ), etc. (B) Generalization of the isomorphism {M µ } { M µj k} V V R 3, (operators) (bilinear functions) : Any element of V 1 V r can be thought of as a multilinear operator on V j V j+1 V r into V 1 V j 1, for any j between 2 and r 1. (In fact, since V U is isomorphic to U V, the same remark applies to any breakup of the list of factors into two parts.) (C) A multilinear function on V 1 V r is equivalent to a linear functional on V 1 V r (andtotallydifferentfromalinearfunctionalonv 1 V r ). (Seehomework.) (D) For A T p q and B T r s, we can define A B T p+q q+s by (A B)( v 1,...,Ṽ s ) A( v 1,...)B( v p+1,...) (cf. Definition 1 of tensors); or by multiplying coefficients: (cf. Definition 2 of tensors). (A B) j 1...j p+r k 1...k q+s A j 1...j p k 1...k q B j p+1...j r k q+1...k s (E) If V is an inner-product space, we can raise and lower indices by G: A k j = g kl A lj, A lj = g lk A k j. If we stick to ON bases, there is no need to distinguish contravariant from covariant indices. (See Sec. 35 and Simmonds). Note that g k m g kl g lm = δ k m, and attaching a second g raises the other index, completing the conversion of g into g. This vindicates the notational convention G 1 {g }. 4

Contractions (Sec. 34) Given the matrix representation of a (p,q)-tensor, we can obtain a (p 1,q 1)-tensor by setting any up down pair of indices equal and summing: for example, B jk A j l kl ( N l=1 understood This operation is called contracting indices. B jk has the right transformation property because S l i(s 1 ) m l = δ m i. In other words, the contracted index pair is invariant under basis change for the same reason that the scalar quantity Ũ( v) = U jv j is invariant. Alternatively, consider a basis element Ṽ 1 v 2 Ṽ3 Ṽ4. The corresponding contracted ( B ) tensor is Ṽ 4 ( v 2 )Ṽ 1 Ṽ3, which is obviously intrinsically defined. Since each of the basis elements is arbitrary, this defines the contraction operation on all tensors in T 1 3. Special case: A T 1 1 B = A j j = tra R. Note in contrast that A jj is not invariant under (nonorthogonal) basis changes; thus it has no intrinsic meaning. The same is true for any sum over indices which are both covariant or both contravariant. Another example: In Riemannian geometry and general relativity one studies something called the Riemann curvature tensor, R j klm. From this are defined the Ricci tensor, R km R j kjm, and the curvature scalar, R R k k g kl R lk. One can also construct higher-order scalar objects such as ). R jk lmr lm pqr pq jk. 5

Totally antisymmetric tensors (Chap. 8) We have run out of time, but I want to indicate briefly the relationships among antisymmetric tensors, determinants, volume, and integration. ( Totally antisymmetric means antisymmetric under interchange of any pair of indices (or argument vectors). The indices or arguments must therefore be either all covariant or all contravariant.) Certain integrals over hypersurfaces of dimension p are naturally described in terms of rank-p antisymmetric tensors, without reference to a metric (inner product). Such integrals generalize the notion of flux through a surface in classical vector analysis. The classical formulation of the magnetic flux through a surface is Φ S = S ( B ˆn)dS, whereds istheelementofsurfacearea. Intermsoftwocoordinates, uandv, parametrizing S, the unit normal vector is ˆn = x u x v x u x v but the denominator just cancels a factor in the definition of ds, so that the integral in fact doesn t depend on the inner product used to define length and orthogonality. The upshot is that Φ S = [B x dydz +B y dzdx+b z dxdy], which can be written as S S 1 2 ; Ω jk dx j dx k whre Ω is the antisymmetric tensor associated to B via the cross product. j,k To see how antisymmetric tensors relate to determinants, consider the elementary antisymmetrized monomial ({Êj } dual basis to the natural basis of R N ) Ê 1 Ê2 Ê1 Ê2 Ê2 Ê1, [Ê1 Ê2 ]( v, u) v 1 u 2 v 2 u 1. 6

If dimv = 2, thisisthedeterminant ofthematrixwhosecolumnsare v and u; furthermore, this number is, up to sign, the area of the parallelogram spanned by those two vectors. In R 3, the area of the parallelogram determined by two vectors is v u, which is still the norm of an antisymmetric combination of the vectors. For three vectors in R 3, the volume of the parallelepiped they span is v 1 v 2 v 3 v ( u w) = ± u 1 u 2 u 3 w 1 w 2 w 3 [Ê1 Ê2 Ê3 ]( v, u, w). This pattern continues to higher dimensions and provides the key to defining integration on hypersurfaces (p-dimensional curved sets in N-dimensional space) or manifolds (abstract p-dimensional spaces). The wedge operation,, incidentally, is defined for any list of covectors as arguments (and also for any list of vectors), although here we ve used it only on the elements of an ON basis for V. The definition of the wedge often differs by a factor of p! from the one I ve given here. Remark: A general tensor of rank greater than 2 is not a sum of a totally symmetric and a totally antisymmetric part. More complicated intermediate symmetry types exist, symbolized by Young diagrams. Duality The connection between vectors and antisymmetric 2-tensors in R 3 extends in R N to an isomorphism (antisymmetric p-tensors) (antisymmetric (N p)-tensors). The cross product corresponds to the case N = 3, p = 2, N p = 1. (An object with only one index counts as antisymmetric by default.) The classical notation for this duality isomorphism is B j 1...j N p = ǫ j 1...j N p k 1...k p A k1...k p, where the tensor components are those with respect to an ON basis, and the object ǫ is defined by ǫ 12...N 1, ǫ j 1...j N 0 if any two indices are equal, ǫ is antisymmetric under permutations. Nowadays it is more fashionable to give the definition by describing the action of the isomorphism on the ON basis elements rather than on the components of an arbitrary tensor: ( ê k1 ê kp ) = ±êj1 ê jn p. 7

This mapping, called the dual or the Hodge star, requires 1) an inner product (metric), to define ON basis ; 2) an orientation, to fix the signs. References on tensors, exterior algebra, and applications to differential geometry B. Schutz, Geometrical Methods of Mathematical Physics, Cambridge U. P., 1980, Chaps. 2 and 4. R. L. Bishop and S. I. Goldberg, Tensor Analysis on Manifolds, Dover, 1980, Chaps. 2 and 4. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1978, Chap. 7. W. L. Burke, Applied Differential Geometry, Cambridge U. P., 1985, relevant chapters. C. T. J. Dodson and T. Poston, Tensor Geometry, Pitman, 1977, relevant chapters. I especially recommend the first half of Chapter 4 of Schutz. 8