Aspetti della fisica oltre il Modello Standard all LHC

Similar documents
Leptogenesis with type II see-saw in SO(10)

Lecture 18 - Beyond the Standard Model

Supersymmetry Breaking

Implications of a Heavy Z Gauge Boson

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Supersymmetric Origin of Matter (both the bright and the dark)

The Physics of Heavy Z-prime Gauge Bosons

Lepton Flavor Violation

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Introduction to Supersymmetry

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

Revisiting gravitino dark matter in thermal leptogenesis

The Standard Model of particle physics and beyond

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Beyond the Standard Model

The Matter-Antimatter Asymmetry and New Interactions

Matter vs Anti-matter

Neutrino Mass Models

Flavor violating Z from

Split Supersymmetry A Model Building Approach

Baryogenesis and Particle Antiparticle Oscillations

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Leptogenesis with Composite Neutrinos

Supersymmetry, Dark Matter, and Neutrinos

Hidden two-higgs doublet model

Phenomenology of the flavour messenger sector

RG evolution of neutrino parameters

Neutrino masses respecting string constraints

(Extra)Ordinary Gauge Mediation

Low Energy Precision Tests of Supersymmetry

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

Dynamical supersymmetry breaking, with Flavor

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Implications of an extra U(1) gauge symmetry

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

Astroparticle Physics and the LC

Phenomenology of low-energy flavour models: rare processes and dark matter

Unitary Triangle Analysis: Past, Present, Future

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

The Standard Model and beyond

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Beyond Standard Model Effects in Flavour Physics: p.1

Supersymmetry Basics. J. Hewett SSI J. Hewett

EDMs and flavor violation in SUSY models

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

SYMMETRY BEHIND FLAVOR PHYSICS: THE STRUCTURE OF MIXING MATRIX. Min-Seok Seo (Seoul National University)

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Electroweak Baryogenesis in the LHC era

SU(3)-Flavons and Pati-Salam-GUTs

Supersymmetry V. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

SUPERSYMETRY FOR ASTROPHYSICISTS

Electroweak Baryogenesis and the triple Higgs boson coupling

Parul Rastogi Doctor of Philosophy, Professor J. C. Pati Department of Physics

Electroweak Theory: 5

Andreas Crivellin ITP Bern. Rare decays and MSSM phenomenology

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Flavour and CP Violation Phenomenology in SUSY with an SU(3) Flavour Symmetry

The Flavour Portal to Dark Matter

THE DREAM OF GRAND UNIFIED THEORIES AND THE LHC. Latsis symposium, Zurich, Graham Ross

Models of Neutrino Masses

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

SUSY Phenomenology & Experimental searches

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Probing the Majorana nature in radiative seesaw models at collider experiments

Federico Mescia. Review of Flavour Physics. ECM & ICC, Universitat de Barcelona. FFP14, July 17 th 2014 Marseille. - Outline

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Status Report on Electroweak Baryogenesis

Recent progress in leptogenesis

Lepton-flavor violation in tau-lepton decay and the related topics

arxiv: v2 [hep-ph] 9 Jul 2013

12 Best Reasons to Like CP Violation

SUSY Phenomenology a

Overview of mass hierarchy, CP violation and leptogenesis.

arxiv:hep-ph/ v3 7 May 1998

Two-Higgs-Doublet Model

Flavour Opportunities at the Intensity Frontier

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Gauge-Higgs Unification on Flat Space Revised

Split SUSY and the LHC

Where is SUSY? Institut für Experimentelle Kernphysik

Status and Phenomenology of the Standard Model

Universal Extra Dimensions

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Astroparticle Physics at Colliders

Dark matter and IceCube neutrinos

E 6 Spectra at the TeV Scale

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Transcription:

Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09

The Standard Model (at the ren level) Ψ i iγ µ D µ Ψ i 1 4 F a µνf aµν gauge few L ren SM = +λ ijψ i Ψ j H + h.c. flavor few % + D µ H 2 V (H) symmetry breaking? (indirect) An extremely successful synthesis of particle physics + neutrinos mass operator: LLHH in compact notations i = 1,2,3: family index

Many reasons to go beyond the SM Experimental problems of the SM Gravity Dark matter Baryon asymmetry Experimental hints of physics beyond the SM Neutrino masses Quantum number unification Theoretical puzzles of the SM <H> «M Pl Family replication Small Yukawa couplings, pattern of masses and mixings Gauge group, no anomaly, charge quantization, quantum numbers Theoretical problems of the SM Naturalness/unitarity problem Cosmological constant problem Strong CP problem

3 (related) highlights A solution of the supersymmetric flavour problem with specific implication on new physics effects in Kaon and B-physics: hierarchical sfermion masses A new class of supersymmetric models leading to a peculiar sfermion spectrum: tree level gauge mediation A predictive leptogenesis scenario with Calibbi, Frigerio, Giudice, Hosteins, Lavignac, Nardecchia, Ziegler

Hierarchical sfermion masses and flavour physics Giudice Nardecchia R, arxiv:0812.3610

Supersymmetry breaking and the flavour problem The supersymmetrization of the SM is straightforward and essentially unique

u c t γ ~ ~ ~ u c t ~ γ d s b g ~ ~ d s ~ b ~ g e μ τ W e μ τ ~ ~ ~ ~ W ν 1 ν 2 ν 3 Z ~ ν 1 ~ ν 2 ~ ν 3 ~ Z H 1 H 2 ~ ~ H 1 H 2

Supersymmetry breaking and the flavour problem The supersymmetrization of the SM is straightforward and essentially unique The origin of supersymmetry breaking is unknown

SUSY breaking? MSSM Hidden sector Observable sector

Supersymmetry breaking and the flavour problem The supersymmetrization of the SM is straightforward and essentially unique The origin of supersymmetry breaking is highly unknown Effective description of supersymmetry breaking (MSSM): about 100 additional physical parameters Large FCNC (and CPV) processes in most of the parameter space (SUSY flavour problem) γ γ W µ R ẽ R µ L ẽ R γ µ B e µ ν µ ν e e µ B e

A possible solution to the flavour problem Hierarchy: [Cohen Kaplan Lepeintre Nelson 97] q L m2 q L q L + d R m2 d R dr +ũ R m2 u R ũ R +... m 2 q L = ( heavy m 2 ) Expand in small off-diagonal elements of squark mass matrix M 2 = M 2 0 + M 2 1 A( F = 1) ij = f(x) ˆδ ij A( F = 2) ij = g (1) (x) ˆδ 2 ij ˆδ a3 = M2 a3 m 2 a (a =1, 2) δˆ ij : source of flavour violation, process independent f, g: loop functions (process dependent, flavour conserving)

Theoretical considerations on the hierarchical case Complementary to degeneracy The naturalness bound on m~ 1,2 is milder than the one on m~ 3 [Dimopoulos Giudice 95] 30 No FY Δ < 100 Effective supersymmetry [Cohen Kaplan Lepeintre Nelson 97] Alleviates the SUSY flavour problem: ˆδ m/ m 1,2 m 1,2 TeV 25 20 15 10 5 Related to physical quantities: squark masses, CKM angles 10 4 10 8 10 12 10 16 M susy GeV

Degeneracy vs Hierarchy Different correlation between ΔF = 1 and ΔF = 2 wrt to the complementary degenerate limit A( F = 2) [A( F = 1)] 2 = 1 degeneracy 6 g (3) g (1) ( f f (1) ) 2 A( F = 2) [A( F = 1)] 2. hierarchy E.g.: A(Δm Bs ) vs A(b sγ) LL insertion g (3) g (1) ( f f (1) ) 2 x=1 25 27

Bounds on δ s Hierarchy ˆδ LL ut ˆδ LL ct D 0 D 0 mixing < 8.0 10 3 ( ) m t δuc LL < 3.4 10 2 ( m q ) Degeneracy δ ^ sb 4 10-2 δ ^ db 0.8 10-2 Re (ˆδLL ) sb < 2.2 10 2 ( m b (ˆδLL ) Im sb < 6.7 10 2 ( m b B X s γ ) ( ) 2 10 Re ( ) δ LL < 3.8 10 2 ( m q tan β ) 2 ( 10 tan β (ˆδLL ) Re sb < 9.4 10 2 ( m b Im (ˆδLL ) sb < 7.2 10 2 ( m b sb ) Im ( δ LL sb m Bs ) < 1.1 10 1 ( m q ) ( ) Re δ LL < 4.0 10 1 ( m q sb ) Im ( δ LL sb ) < 3.1 10 1 ( m q Bd 0 B d 0 mixing Re (ˆδLL ) db < 4.3 10 3 ( ) m b Re ( ) δdb LL < 1.8 10 2 ( ) m q Im (ˆδLL ) db < 7.3 10 3 ( ) m b Im ( ) δdb LL < 3.1 10 2 ( ) m q ) 2 ( 10 tan β ) 2 ( 10 tan β ) ) ) ) ~ m = M 3 = μ A = 0 δ ^ ds 3 10-4 Re (ˆδLL db Im (ˆδLL db m K ) ˆδ LL 2 sb < 1.0 10 2 ( m b ɛ K ) ˆδ LL 2 sb < 4.4 10 4 ( m b ) Re ( δ LL ds ) Im ( δ LL ds ) 2 < 4.2 10 2 ( ) m q ) 2 < 1.8 10 3 ( ) m q

u c transitions (D 0 - -D 0 ) 0.06 0.04 0.010 0.02 LL Im uc 0.00 0.02 0.005 Im LL uc 0.000 0.005 0.04 0.010 0.06 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.010 0.005 0.000 0.005 0.010 Re LL uc Re LL uc Degeneracy Hierarchy 68%, 95% C.L. ~ m = M 3 =

b d transitions (Δm Bd, sin2β eff ) 0.02 0.05 0.01 LL Im db 0.00 LL Im db 0.00 0.05 0.01 Degeneracy 0.05 0.00 0.05 Re LL db 0.02 0.02 0.01 0.00 0.01 0.02 Re LL db Hierarchy 68%, 95% C.L. ~ m = M 3 =

b s transitions (Δm Bs, b sγ, ϕ Bs ) 1.0 50 70 90 70 50 0.2 50 70 90 70 50 0.5 30 30 0.1 30 30 10 10 10 10 LL Im sb 0.0 0.5 1.0 0 0 10 30 50 70 90 70 50 10 30 1.0 0.5 0.0 0.5 1.0 Im LL sb 0.0 0.1 0.2 0 0 10 30 50 70 90 70 50 0.2 0.1 0.0 0.1 0.2 10 30 Degeneracy Re LL sb Re LL sb Hierarchy 95% C.L. m ~ = M 3 = μ =, tanβ = 10, A = 0

ϕ Bs B s H full eff B s = C Bs e 2iφ Bs Bs H SM eff B s B s H SM eff B s = A SM s e 2iβ s β s = arg( (V ts V tb)/(v cs V cb)) = 0.018 ± 0.001 [Pierini for UTfit, ICHEP08] 8 Degeneracy Hierarchy 6 4 2 0 30 20 10 0 10 20 30 Φ Bs

Tree level gauge mediation Nardecchia R Ziegler, to appear

SUSY breaking GUT heavy vectors MSSM Hidden sector Observable sector

Unification SU(3) SU(2) U(1) SO(10) L i 1 2-1/2 70 60 1 Α 1 e c i 1 1 1 50 40 Q i 3 2 1/6 16 30 20 1 Α 2 u c i d c i 3 * 1-2/3 3 * 1 1/3 10 0 1 Α 3 MSSM SM 10 3 10 6 10 99 10 10 12 10 10 15 Q GeV Y + M GUT prediction: Λ B < M GUT < M Pl

SUSY breaking GUT heavy vectors MSSM Hidden sector Observable sector Need: Heavy vectors from (at least) SO(10) (X) Hidden sector non-trivial under SO(10): 16 = F θ 2 16 =0 16 = M 16 = M

Sfermion masses Prediction: m 2 f = X(f) 2X(N) F 2 M 2 Standard embedding of SM fermions in SO(10): 16 SO(10) = (l + d c ) + (q + u c + e c ) + (N) - but note also 10 SO(10) = (l + d c ) + (l + d c ) f N q u c e c (l) 16 (d c ) 16 (l) 10 (d c ) 10 (l) 10 (d c ) 10 X 5 1 1 1-3 -3 2 2-2 -2 Positive sfermion masses with the following embedding: 16 SO(10) = (heavy) + (q + u c + e c ) + (..) 10 SO(10) = (l + d c ) + (heavy)

Sfermion masses Then m 2 q = m 2 u c = m 2 e c = m 2 10 = 1 10 m2, m 2 l = m 2 d c = m 2 5 = 1 5 m2 m 2 h u = 2 5 m2, m 2 h d = 2c2 d 3s2 d 5 m 2 In particular: all sfermion masses are positive sfermion masses are flavour universal, thus solving the supersymmetric flavour problem m 2 q,u c,e c = 1 2 m2 l,d c

Gaugino masses Are universal but the overall scale is model dependent M a = α 4π Tr(h h 1 ) F M, a =1, 2, 3, M 2 m t = 3 10 MGUT (4π) 2 λ, λ = g2 Tr(h h 1 ) 3 W = y ij 2 16 i16 j 10 + h ij 16 i 10 j 16 + h ij16 i 10 j 16 + W vev + W NR,

Against common wisdom This model shows that it is possible to communicate supersymmetry breaking to the MSSM at the tree, renormalizable level Weinberg, in The quantum theory of fields III: It would be simplest to suppose that supersymmetry is broken by effects occurring in the tree approximation of the supersymmetric standard model. This possibility may be definitely ruled out The two obstacles: The supertrace formula: in particular ( 1) 2J (2J + 1)MJ 2 =0 (but heavy fields compensate the RHS) J 2(m 2 d + m 2 s + m 2 b) = m 2 d + m 2 s + m 2 b Gaugino masses at loop level: m t... (4π) 2 M 2... 10 TeV (but... small)

Un modello predittivo di leptogenesi Frigerio Hosteins Lavignac R, arxiv:0804.0801 Calibbi Frigerio Lavignac R, to appear

The baryon asymmetry η B n B n B n γ = n B n γ Generated dynamically if = (6.15 ± 0.25) 10 10 (1 number) B is violated C and CP are violated out of equilibrium evolution Models of Baryogenesis Planck GUT Through leptogenesis Electroweak Affleck-Dine...

See-saw induced neutrino masses L eff E Λ = L ren SM + a ij 2Λ (hl i)(hl j ) +... N (1,1,0) l i h h M X l j N h N k See-saw type I h h See-saw type II Δ h Δ (1,3,1) l i l j T (1,3,0) l i h h M X l j T h T k See-saw type III (Any number of N h, T h, Δ h ) (SU(3) c,su(2) L,Y)

Model dependence in see-saw type-i Relevant interactions: λ E ije c il j h d + λ N ij N i l j h u + M ij 2 N in j [ m ν = v 2 u λ T N ] 1 M λ N Overall size of neutrino Yukawa couplings λ N k λ N M k 2 M m ν m ν BR(e i e j γ) k 4 log k BR(e i e j γ) Unknown flavour structure v d λ E, v u λ N, M m e m µ m τ, m ν1 m ν2 m ν3, U e.g. v u λ N = v u λ diag N V N or M diag, R = 1/ M diag v u λ N U / M diag 21 physical parameters 12 known or measurable parameters 9 unknowns = 3 masses + 3 angles + 3 phases Type-II: LFV more predictive [Rossi 02], leptogenesis as well in SO(10)

Type-II see-saw in SO(10) Standard embedding of SM fermions in SO(10): 16 SO(10) = (l + d c ) + (q + u c + e c ) + (N) Note also: 10 SO(10) = (l + d c ) + (l + d c ) Simplest embedding of type-ii see-saw in SO(10) implies: 16 SO(10) = (heavy) + (q + u c + e c ) + (..) 10 SO(10) = (l + d c ) + (heavy)

CP asymmetry l j Type II L l f lj l j h Type I l j λ N kj h f ij l i L k ( ) fij 2 10 i10 j 54 f kl S, T f ki 24 SU(5) l i N 1 λ N 1i l i N 1 λ N 1j h λ N ki N k l i f ij, M L ij from m ν, m E (up to overall factors, W NR ) L 1 lighter than M Δ /2? M L1 < M Δ < M L2, M 24 : (in the diagonal m E basis) M L1 ɛ 1 10π h 1 V 16 0.5 1011 GeV cos β M M 24 λ 4 l λ 2 l + λ2 h λ 2 l ij ( Im[m 11(mm m) 11 ] ( i m2 i )2 ) V 16 2 10 16 GeV f ij 2, λ 2 h σ 2 ɛ 2 Γ( l l ) Γ( ll) Γ + Γ

Maximal CP asymmetry Need: ηɛ 10 8 ε max /λ 2 L Normal Hierarchy 2 10 4 Inverted Hierarchy 10 4 10 4 10 2 5 10 5 sin 2 Θ 13 10 2 5 10 5 sin 2 Θ 13 10 5 10 5 10 3 10 2 10 1 m lightest ev 10 3 10 3 10 2 10 1 m lightest ev

O(1) efficiency region m 1 «m 2 «m 3, M Δ /M 24 = 0.1, sin2σ = 1, sin 2 θ 13 = 0.05, tanβ = 10 0.30 K L 1 0.25 Ε 10 10 Ε 10 8 Ε 10 7 0.20 Λ H 0.15 M 10 13 GeV 0.10 0.05 M 10 12 GeV K L1 c 1 K H 1 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 (K = Γ/H) Λ L

By implementing type-ii see-saw in SO(10) we improve on dependence on unknown parameters dependence on initial conditions perturbativity D=5 proton decay Baryogenesis closer to be testable