Alternatives to conventional Monte Carlo

Similar documents
Applicability of Quasi-Monte Carlo for lattice systems

The Fermion Bag Approach

Analytic continuation from an imaginary chemical potential

arxiv: v1 [hep-lat] 19 Nov 2013

Introduction to Lattice Supersymmetry

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

The Hardy-Ramanujan-Rademacher Expansion of p(n)

1 Introduction. Lera Sapozhnikova a,c. James Beacham b,c. September 17, 2007

Infinite Series. 1 Introduction. 2 General discussion on convergence

Dual quark condensate and dressed Polyakov loops

MCRG Flow for the Nonlinear Sigma Model

Bayesian Inference in Astronomy & Astrophysics A Short Course

Effective theories for QCD at finite temperature and density from strong coupling

Integration of Rational Functions by Partial Fractions

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004

Integration of Rational Functions by Partial Fractions

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

QCD Phases with Functional Methods

Unitary Fermi Gas: Quarky Methods

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Anomalies, gauge field topology, and the lattice

Monte Carlo simulations of harmonic and anharmonic oscillators in discrete Euclidean time

Lefschetz-thimble path integral and its physical application

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Thermal Casimir Effect for Colloids at a Fluid Interface

The QCD phase diagram at low baryon density from lattice simulations

The Effect of the Low Energy Constants on the Spectral Properties of the Wilson Dirac Operator

Anomalies and discrete chiral symmetries

Canonical partition functions in lattice QCD

Non-perturbative Study of Chiral Phase Transition

Phase Transitions in High Density QCD. Ariel Zhitnitsky University of British Columbia Vancouver

Localization properties of the topological charge density and the low lying eigenmodes of overlap fermions

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

3. Riley 12.9: The equation sin x dy +2ycos x 1 dx can be reduced to a quadrature by the standard integrating factor,» Z x f(x) exp 2 dt cos t exp (2

Ginsparg-Wilson Fermions and the Chiral Gross-Neveu Model

Elementary ODE Review

Effects of low-lying eigenmodes in the epsilon regime of QCD

Physics 486 Midterm Exam #1 Spring 2018 Thursday February 22, 9:30 am 10:50 am

Angular Momentum Properties

MAT 211 Final Exam. Spring Jennings. Show your work!

More On Carbon Monoxide

The QCD phase diagram at real and imaginary chemical potential

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

Lattice studies of the conformal window

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

The phase diagram of polar condensates

Gaussian integrals and Feynman diagrams. February 28

Physics 2400 Midterm I Sample March 2017

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

Bessel Functions Michael Taylor. Lecture Notes for Math 524

Introduction to Instantons. T. Daniel Brennan. Quantum Mechanics. Quantum Field Theory. Effects of Instanton- Matter Interactions.

Critical behaviour of Four-Fermi-Theories in 3 dimensions

The nature of superfluidity in the cold atomic unitary Fermi gas

Geometry and Physics. Amer Iqbal. March 4, 2010

Lefschetz-thimble path integral for solving the mean-field sign problem

QCD on the lattice - an introduction

Quantum Simulation of Geometry (and Arithmetics)

Classical and Quantum Spin Systems with Continuous Symmetries in One and Two Spatial Dimensions

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

QCD in an external magnetic field

condensates and topology fixing action

Properties of canonical fermion determinants with a fixed quark number

Christoffel Symbols. 1 In General Topologies. Joshua Albert. September 28, W. First we say W : λ n = x µ (λ) so that the world

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

REPRESENTATION THEORY WEEK 7

Tackling the Sign Problem of Ultracold Fermi Gases with Mass-Imbalance

Each problem is worth 34 points. 1. Harmonic Oscillator Consider the Hamiltonian for a simple harmonic oscillator. 2ml 2 0. d 2

Wavelets in Scattering Calculations

Figure 25:Differentials of surface.

Computational methods of elementary particle physics

Complex Langevin dynamics for nonabelian gauge theories

Statistical QCD with non-positive measure

Polynomial Filtered Hybrid Monte Carlo

Lattice QCD and transport coefficients

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Mass Components of Mesons from Lattice QCD

Higgs mass bounds from the functional renormalization group

1 Interaction of Quantum Fields with Classical Sources

Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Ensemble Kalman Filter

Exact Solutions of the Einstein Equations

S Leurent, V. Kazakov. 6 July 2010

cauchy s integral theorem: examples

Quantum Monte Carlo calculations of two neutrons in finite volume

Supermatrix Models * Robbert Dijkgraaf Ins$tute for Advanced Study

The θ term. In particle physics and condensed matter physics. Anna Hallin. 601:SSP, Rutgers Anna Hallin The θ term 601:SSP, Rutgers / 18

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Lectures on NRQCD Factorization for Quarkonium Production and Decay

The symmetries of QCD (and consequences)

Examination paper for TMA4215 Numerical Mathematics

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Quantum Simulation & Quantum Primes

arxiv: v1 [hep-lat] 2 Nov 2016

One Frequency Asymptotic Solutions to Differential Equation with Deviated Argument and Slowly Varying Coefficients

Left Invariant CR Structures on S 3

Transcription:

Alternatives to conventional Monte Carlo Recursive umerical Integration & Julia Volmer Andreas Ammon, Alan enz, Tobias Hartung, Karl Jansen, Hernan Leövey DESY Zeuthen 16. September 216 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 1 / 14

Monte Carlo importance sampling O = D d dx O[x] e S[x] D d dx e S[x], prob. density [x] e S[x] p(x) = dx e D S[x] d O = 1 i=1 O p [x] S[x 1, x 2 ] > O[x 1, x 2 ] O 1/ x 2 x 1 x 2 x 1 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 2 / 14

Monte Carlo importance sampling O = D d dx O[x] e S[x] D d dx e S[x], prob. density [x] e S[x] p(x) = dx e D S[x] d O = 1 i=1 O p [x] S[x 1, x 2 ] is complex Re( S[x 1, x 2 ] ) Re( O[x 1, x 2 ] ) O 1.1 x 2 x 1 x 2 x 1 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 2 / 14

Solutions Take specific integration points O S > 1/ Recursive umerical Integration auss quadrature points O S C 1.1 Spherical t-designs Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 3 / 14

Toplogical Oscillator Recursive umerical Integration Topological Oscillator φ i I S(φ) = T I a dt I 2 ( ) φ 2 φ [, 2π) t 3 (1 cos(φ i+1 φ i )) i=1 t i t 1 a t 2 t 3 T = 2π Partition function Z = dφ 1 dφ 2 dφ 3 e S[φ 1,φ 2,φ 3 ] [,2π) 3 3 = dφ 1 dφ 2 dφ 3 e a I (1 cos(φ i+1 φ i )) [,2π) }{{} 3 i=1 f (φ i,φ i+1 ) 2π 2π dφ 1 dφ 2 f (φ 1, φ 2 ) dφ 3 f (φ 2, φ 3 ) f (φ 3, φ 1 ) Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 4 / 14

Toplogical Oscillator Recursive umerical Integration auss quadrature points g auss x 1 x 2 x x 1 1 g(x) P 2 1 dx g(x) = w r g(x r )+O r=1 x r, w r : L (x) Legendre polynoms ( 1 ) (2)! Z = 2π w t t=1 dφ 1 2π 2π dφ 2 f (φ 1, φ 2 ) dφ 3 f (φ 2, φ 3 ) f (φ 3, φ 1 ) w s f (φ s, φ t ) s=1 w r f (φ s, φ r ) f (φ r, φ t ) r=1 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 5 / 14

Toplogical Oscillator Recursive umerical Integration Truncation Error Scaling φ i I t i Topological Charge Q(φ) = 1 2π T dt ( ) φ t Error χ i = χ i χ( = 56) Constants I =.25 a =.4, T = 2 Topological Susceptibility χ = Q2 (φ) T Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 6 / 14

Toplogical Oscillator Recursive umerical Integration RI - Comparison with MCMC Error χ i,auss = χ i χ( = 4) χ i,cluster : 1 runs Constants I =.25 a =.1, T = 2 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 7 / 14

1d-QCD Ψ e µ U 1 e µ U 2 e µ 1 Ψ 2 Ψ 3 U 3 x 1 x 2 x Ψ : mass m 3 S[U, Ψ, Ψ] = mψ i Ψ i + e µ Ψ i U i Ψ i+1 + e µ Ψ i 1 Ui Ψ i i = Ψ D[U] Ψ, U i, e.g. U(), SU() partition function Z[U] = dh (U 1 ) dh (U 2 ) dh (U 3 ) dψ dψ e S[U,Ψ,Ψ], = dh 3 3 (U) det D[U] ( ( ) 3 = dh 3 3 (U) c(m)+ 2 3 e 3µ U j j=1 ( ) 3 ) +( 1) 3 2 3 e 3µ U j j=1 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 8 / 14

1d-QCD Ψ e µ 1 e µ 1 e µ 1 Ψ 2 Ψ 3 U x 1 x 2 x Ψ : mass m 3 S[U, Ψ, Ψ] = mψ i Ψ i + e µ Ψ i U i Ψ i+1 + e µ Ψ i 1 Ui Ψ i i = Ψ D[U] Ψ, U i, e.g. U(), SU() partition function Z[U] = dh (U 1 ) dh (U 2 ) dh (U 3 ) dψ dψ e S[U,Ψ,Ψ], = dh 3 3 (U) det D[U] ( = dh (U) c(m)+ 2 3 e 3µ U ) +( 1) 3 2 3 e 3µ U Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 8 / 14

Why difficult for MC? Z[U] = dh (U) det ( c(m) + 2 3 e 3µ U + ( 1) 3 2 3 e 3µ U ) Z[U] = U(1) du U = 2π dθ e iθ = e i 5 4 π ei 3 5 π e i 1 3 π 1 MC 1 ( 1 + e i 1 3 π + e i 5 3 π + e i 5 π) 4.48 + 1.11i 4 MC = O(1) O() Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 9 / 14

Why difficult for MC? Z[U] = dh (U) det ( c(m) + 2 3 e 3µ U + ( 1) 3 2 3 e 3µ U ) Z[U] = U(1) du U = 2π dθ e iθ = 1 i 1 MC 1 ( 1 + e i 1 3 π + e i 5 3 π + e i 5 π) 4.48 + 1.11i 4 MC = O(1) O() i sym 1 (1 + i + ( i) + ( 1)) = 4 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 9 / 14

Problem of the chemical potential Z[U] = U(1) du ( c(m) + 2 3 e 3µ U + ( 1) 3 2 3 e 3µ U ) imaginary exact MC µ = MC µ >> 1 real U(1) du U = µ > du e 3µ U = U(1) Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 1 / 14

Spherical t-designs = S n, f (U) P t dh (U) f (U) 1 t+1 t + 1 f (U k ) k=1 rules for S 1, S 3 and S 5 [enz 23] use isomorphisms to get rules for U(1), U(2), U(3), SU(2), SU(3) [Ammon 216] Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 11 / 14

Result Partition Function Z[U] = U(1) du ( c(m) + 2 3 e 3µ U + ( 1) 3 2 3 e 3µ U ) Z quadrature Z analytic Z analytic = U(1) double prec µ = 1 1 18 1 8 1-2 2 lattice points 1-12 MCMC poly. exact 1-2 1 1 2 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 12 / 14 m

Result Chiral Condensate ΨΨ = m ln Z = dh m det D dh det D 1 ΨΨ quadrature ΨΨ analytic ΨΨ analytic 1-4 = U(2) double prec µ = 1 1-8 1-12 8 lattice points 1-16 MCMC poly. exact 1-2 1 1 2 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 13 / 14 m

Result Chiral Condensate ΨΨ = m ln Z = dh m det D dh det D ΨΨ quadrature ΨΨ analytic ΨΨ analytic = U(2) 124 bit prec µ = 1 8 lattice points 1 4 1 1-4 1-3 1-31 MCMC poly. exact 1-1 1-7 1-4 1-1 1 2 Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 13 / 14 m

Conclusions O S > 1/ [153.588] topol. osci. O 1 4 S C 1 [167.527] 1d-QCD ΨΨ 1 1-4 1-3.1 1-31 MCMC poly. exact 1-1 1-7 1-4 1-1 1 2 m Julia Volmer (DESY Zeuthen) MC Alternatives 16. September 216 14 / 14