Constraints on Multi-Higgs-Doublet Models: Flavour Alignment

Similar documents
Hidden two-higgs doublet model

The electron EDM and EDMs in Two-Higgs-Doublet Models

Theoretical Review on Lepton Universality and LFV

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

Two models with extra Higgs doublets and Axions

Two-Higgs-Doublet Model

Electroweak Theory: 5

A robust limit on the EDM of the electron

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

Constraining CP violation in neutral meson mixing with theory input

Antonio Pich. IFIC, CSIC Univ. Valencia.

LHCb New B physics ideas

Inclusive radiative electroweak penguin decays:

Probing the charged Higgs boson at the LHC in the CP-violating type-ii 2HDM

Lepton Flavor Violation

Flavor Physics Part 2

Recent CP violation measurements

Review of prospects for H + in non-susy multi Higgs models in view of ATLAS and CMS results

Neutrino Mass Models

B-meson anomalies & Higgs physics in flavored U(1) model

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Pseudoscalar Higgs boson signatures at the LHC

BSM Higgs Searches at ATLAS

Recent topics in heavy-quark flavour physics

Light Higgs Production in Two Higgs Doublets Models type III

Lepton non-universality at LEP and charged Higgs

Search for Physics Beyond the Standard Model at B Factories

Updated S 3 Model of Quarks

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Dipole operator constraints on composite Higgs models

SUSY-related Lepton and Hadron Flavor Results from Belle Yutaro Sato

Lecture 12 Weak Decays of Hadrons

B the Tevatron

RESULTS FROM B-FACTORIES

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

CP violation in charged Higgs production and decays in the Complex 2HDM

Standard Model updates and new physics analysis with the Unitarity Triangle fit

arxiv:hep-ph/ v4 18 Nov 1999

Beyond Standard Model Effects in Flavour Physics: p.1

Standard Model of Particle Physics

La Fisica dei Sapori Pesanti

Search for Higgs in the Two Doublet Models

Matter, antimatter, colour and flavour in particle physics

LHCb results relevant to SUSY and BSM physics

Results from B-Physics (LHCb, BELLE)

Electric Dipole moments of charged leptons and lepton flavor violating interactions in the general two Higgs Doublet model

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

PoS(Kruger 2010)048. B X s/d γ and B X s/d l + l. Martino Margoni SLAC-PUB Universita di Padova and INFN

Measurements of the phase φ s at LHCb

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University

Probing Two Higgs Doublet Models with LHC and EDMs

Heavy Quarks and τ. CVC test Michel parameters. Charm Mixing f D s

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

arxiv: v1 [hep-ex] 10 Aug 2011

B Physics: Theoretical Aspects Anirban Kundu

Probing New Physics Through B s Mixing

Flavor physics. Yuval Grossman. Cornell. Y. Grossman Flavor physics APS2009, Denver, 5/2/2009 p. 1

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Superb prospects: Physics at Belle II/SuperKEKB

Flavour physics beyond the Standard Model

Hints of New Physics in b s transitions

Perspectives in B Physics: Results from LHCb

Probing the Majorana nature in radiative seesaw models at collider experiments

Two-Higgs-doublet models with Higgs symmetry

A Two Higgs Doublet Model for the Top Quark

arxiv: v1 [hep-ph] 30 Jun 2014

Unitary Triangle Analysis: Past, Present, Future

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

R(D) and R(D ) anomalies and their phenomenological implications. Xin-Qiang Li

arxiv:hep-ph/ v2 9 May 2007

Recent results on CKM/CPV from Belle

Andreas Crivellin ITP Bern. Rare decays and MSSM phenomenology

S = 2 decay in Warped Extra Dimensions

arxiv: v1 [hep-ex] 21 Jan 2012

Phenomenology of sequestered mass generation

Electroweak Baryogenesis after LHC8

Measuring γ. γ is the phase of V ub. Can be determined using B ± decays. These diagrams result in the same final state for D 0 K + K -, K S π + π.

LHCb results and prospects

SUSY Phenomenology a

A. Pich. IFIC, U. València - CSIC. TAE 2018, Centro de Física de Benasque Pedro Pascual, Benasque, Spain, 2-15 September,

General scan in flavor parameter space in the models with vector quark doublets and an enhancement in B X s γ process

Bounds on new physics from EDMs. Martin Jung

Baryon and Lepton Number Violation at the TeV Scale

S 3 Symmetry as the Origin of CKM Matrix

Phenomenology of models with more than two Higgs doublets

A complex 2HDM at the LHC. Rui Santos

arxiv: v1 [hep-ph] 16 Mar 2017

Experimental prospects for B physics and discrete symmetries at LHC and future projects

Scalar leptoquarks from GUT to accommodate the B-physics anomalies

CP VIOLATION. Thomas Mannel. Theoretical Physics I, Siegen University. Les nabis School 2011

Long distance weak annihilation contribution to

Theory of CP Violation

Constraints on new physics from rare (semi-)leptonic B decays

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Recent Results from BABAR

Recent results from rare decays

Rencontres de Moriond - EW Interactions and Unified Theories La Thuile, March 14-21, 2015

CKM Matrix and CP Violation in Standard Model

arxiv: v1 [hep-ph] 22 Apr 2015

Transcription:

Constraints on Multi-Higgs-Doublet Models: Flavour Alignment Antonio Pich IFIC, Univ. Valencia - CSIC A. Pich, P. Tuzón, Phys. Rev. D80 (009) 09170 M. Jung, A. Pich, P. Tuzón, JHEP 1011 (010) 003 M. Jung, A. Pich, P. Tuzón, Phys. Rev. D83 (011) 074011 A. Pich, arxiv:1010.517 [hep-ph]

Lepton-Photon, Mumbai, August 011: Excluded: M H (GeV) [145, 88] [96, 466] A-HDM A. Pich Paris 011

H. Bachacou, Lepton-Photon 011 A-HDM A. Pich Paris 011 3

A-HDM A. Pich Paris 011 4

Possible Scenarios: 1 Light SM Higgs. Favoured by EW precision tests Alternative perturbative EW SSB. Scalar Doublets and singlets (ρ) 3 Heavy Higgs. Non-perturbative EW SSB 4 No Higgs. Dynamical EW SSB A-HDM A. Pich Paris 011 5

Standard Model ( ) φ (+) One Higgs Doublet Φ = φ (0) Q L (ū L, d L ), Φ iτ Φ, 0 Φ 0 = ( 0 v ) L Y = Q il Γ ij Φd jr Q il ij Φu jr L il Π ijφl jr + h.c. SSB M d = v Γ, M u = v, M l = v Π Diagonalization { GIM Mechanism (Unitarity) Yukawas proportional to masses No Flavour-Changing Neutral Currents A-HDM A. Pich Paris 011 6

Two Higgs Doublets: φ a (a = 1,) 0 φ T a (x) 0 = 1 (0,v a e iθa ), θ 1 = 0, θ θ θ 1 Higgs basis: v v 1 +v, tanβ v /v 1 ( Φ1 Φ ) [ cosβ sinβ sinβ cosβ ] ( φ1 e iθ φ ) Φ 1 = [ ] ( G + 1 v +S1 +ig 0), Φ = [ 1 H + (S +is 3 ) ] Mass eigenstates: H ±, ϕ 0 i (x) {h(x),h(x),a(x)} = R ij S j (x) A-HDM A. Pich Paris 011 7

Yukawa Interactions in HDMs L Y = Q L (Γ 1φ 1 +Γ φ )d R Q L ( 1 φ 1 + φ )u R L L (Π 1φ 1 +Π φ )l R + h.c. L Y = v SSB { Q L (M d Φ 1 +Y d Φ )d R + Q L (M u Φ 1 +Y u Φ )u R + L L (M l Φ 1 +Y l Φ )l R + h.c. } M f and Y f unrelated M d = v 1 Γ 1 +v Γ e iθ, FCNCs M u = v 1 1 +v e iθ Y d = v 1 Γ e iθ v Γ 1, Y u = v 1 e iθ v 1 A-HDM A. Pich Paris 011 8

Avoiding FCNCs Very large scalar masses THDM irrelevant at low energies Very small scalar couplings Type III model: (Y f ) ij m i m j Yukawa textures (Cheng - Sher 87) Discrete Z symmetries: only one φ a (x) couples to a given f R (x) (Glashow - Weinberg 77) Z : φ 1 φ 1, φ φ, Q L Q L, L L L L, f R ±f R CP conserved in the scalar sector A-HDM A. Pich Paris 011 9

Aligned HDM (Pich - Tuzón 09) Require alignment in Flavour Space of Yukawa couplings: Γ = ξ d e iθ Γ 1, = ξ u eiθ 1, Π = ξ l e iθ Π 1 Y d,l = ς d,l M d,l, Y u = ς u M u, ς f ξ f tanβ 1+ξ f tanβ L Y = 1 v v H+{ ū [ ς d V CKM M d P R ς u M u V P ] CKM L d + ςl ( νm l P R l)} y ϕ 0 i f ϕ 0 i ϕ 0 i,f ( f Mf P R f ) + h.c. A-HDM A. Pich Paris 011 10

Fermionic couplings proportional to fermion masses. Neutral Yukawas are diagonal in flavour y ϕ0 i d,l = R i1 +(R i +i R i3 )ς d,l, y ϕ0 i u = R i1 +(R i i R i3 )ς u V CKM is the only source of flavour-changing phenomena All leptonic couplings are diagonal in flavour Only three new (universal) couplings ς f. The usual Z models are recovered in the limits ξ f 0, The inert doublet model corresponds to ς f = 0 (ξ f = tanβ) ς f are arbitrary complex numbers New sources of CP violation without tree-level FCNCs A-HDM A. Pich Paris 011 11

AHDM: General phenomenological setting without tree-level FCNCs L Y = 1 v v H+{ ū [ ς d V CKM M d P R ς u M u V P ] CKM L d + ςl ( νm l P R l)} y ϕ 0 i f ϕ 0 i ϕ 0 i,f ( f Mf P R f ) + h.c. Z models: Model ς d ς u ς l Type I cotβ cotβ cotβ Type II tanβ cotβ tanβ Type X cotβ cotβ tanβ Type Y tanβ cotβ cotβ Inert 0 0 0 A-HDM A. Pich Paris 011 1

Quantum Corrections L AHDM invariant under the phase transformation: [α ν i = α l i ] fl i (x) eiαf,l i fl i(x), f R i (x) eiαf,r i f i R (x) V ij CKM eiαu,l i V ij e iαd,l j, M CKM f,ij e iαf,l i M f,ij e iαf,r j Leptonic FCNCs absent to all orders in perturbation theory Loop-induced FCNCs local terms take the form: ū L V CKM (M d M d )n V CKM (M um u) m M u u R d L V CKM (M um u) n V CKM (M d M d )m M d d R MFV structure (D Ambrosio et al, Chivukula-Georgi, Hall-Randall, Buras et al, Cirigliano et al) A-HDM A. Pich Paris 011 13

Minimal Flavour Violation in HDMs SU(N G ) 5 Flavour Symmetry in the Gauge Sector (Q L, u R, d R, L L, l R ) Spurion Formalism: (D Ambrosio et al 0, Buras et al 10) Γ 1 ( N G,1,N G,1,1 ) 1 ( N G,N G,1,1,1 ) Π 1 ( 1,1,1,N G,N G ) Aligned Yukawas are also invariant Allowed Operators: Q L (Γ 1 Γ 1 )n ( 1 1 )m 1 u R Q L ( 1 1 )n (Γ 1 Γ 1 )m Γ 1 d R A-HDM A. Pich Paris 011 14

FCNCs at one Loop General HDM 1-loop Renormalization Group Eqs. known (Cvetic et al, Ferreira et al) (Jung-Pich-Tuzón) L FCNC = C(µ) 4π v 3 (1+ς uς d ) ϕ 0 i (x) i { ] (R i +i R i3 ) (ς d ς u ) [ d L V M CKM u M u V M CKM d d R ]} (R i i R i3 ) (ςd ς u) [ū L V CKM M d M d V CKM M uu R + h.c. C(µ) = C(µ 0 ) log(µ/µ 0 ) Vanish in all Z models as it should Suppressed by m q m q /(4π v 3 ) and V qq CKM s L b R, c L t R A-HDM A. Pich Paris 011 15

Phenomenological Constraints Jung-Pich-Tuzón τ µ/e: g µ /g e = 1.0036±0.009 ς l /M H ± < 0.40 GeV 1 (95% CL) Γ(P l ν l ) = m P 8π ( ) 1 m l mp G F m l f P V ij CKM 1 ij ij = m P M H ± ς l ς u m ui +ς d m dj m ui +m dj Γ(P P l ν l ) Scalar form factor: f0 (t) = f 0 (t) (1+δ ij t) δ ij ς l M H ± m i ς u m j ς d m i m j A-HDM A. Pich Paris 011 16

Global fit to P lν l, τ Pν τ, P P lν l (95% CL) Jung-Pich-Tuzón 0.15 0.1 Γ(K µν)/γ(π µν)+ Γ(τ Kν)/Γ(τ πν) M lν+b Dτν+ Z bb+τ µν 0.4 0.3 D µν M lν+b Dτν 0. Im(ζ d ζ * l/m H) 0.05 0-0.05 B τν Im(ζ u ζ * l/m H) 0.1 0-0.1 D s µ/τν(+b τν) -0. -0.1-0.15-0.1 0.0 0.1 0. Re(ζ d ζ * l/m H) C K M f i t t e r package -0.3 C K M f i t t e r R(B Dlν)(+B τν) package -0.4-0.1 0.0 0.1 0. 0.3 0.4 0.5 0.6 0.7 Re(ζ u ζ * l/m H) (GeV units) A-HDM A. Pich Paris 011 17

Real Couplings: Jung-Pich-Tuzón 0.7 D s τν τ (B τν τ ) 0.7 D s µν µ (B τν τ ) 0.6 0.6 0.5 0.5 Re Ζ l Ζ u M H 0.4 0.3 0. 0.1 Re Ζ l Ζ u M H 0.4 0.3 0. 0.1 0.0 0.0 0.1 0.0 0. 0.4 0.6 Re Ζ l Ζ d M H 0.1 0.0 0. 0.4 0.6 Re Ζ l Ζ d M H 0.7 B Dτν τ Re Ζ l Ζ u M H 0.6 0.5 0.4 0.3 0. 0.1 0.0 (95% CL, GeV units) Type I/X: Dashed Line Types II/Y: Lighter grey area, tanβ [0.1,60] 0.1 0.0 0. 0.4 0.6 Re Ζ l Ζ d M H A-HDM A. Pich Paris 011 18

1-Loop Constraints on H ± Couplings q u, c, t b q W b B 0 B 0 Mixing W W u, c, t u, c, t b u, c, t q b W q Z b b b W t Z b b W t Z b Virtual H ± /W ±. Top-dominated contributions A-HDM A. Pich Paris 011 19

Constraints from Z b b and M Bs (95% CL) Jung-Pich-Tuzón 3 Z b b ( ς d < 50) 1 3.0 M Bs ( ς d < 50).5 0.9 0.8.5 0.7.0 0.6 ζ u 1.5 0.5 Ζu 1.5 1 0.5 0.4 0.3 0. 1.0 0.5 ς d = 0 0 C K M f i t t e r package 100 00 300 400 500 0 M H /GeV 0.1 0.0 100 00 300 400 500 M H GeV ς u /M H ± < 0.011 GeV 1 ς u ς l /M H ± < 0.005 GeV τ A-HDM A. Pich Paris 011 0

Constraints from ǫ K (95% CL) Jung-Pich-Tuzón A-HDM A. Pich Paris 011 1

Constraints from b sγ (95% CL) Jung-Pich-Tuzón Complex couplings Real couplings ς u = 0.5 ς u = 0.5 Ci eff (µ W ) = C i,sm + ς u C i,uu (ςu ς d ) C i,ud A-HDM A. Pich Paris 011

Global Constraints on Z Models (95% CL) Jung-Pich-Tuzón 3 Type I 3 Type X.8 b sγ.8 Log(M H /GeV).6.4. M/τ lν + B Dτν Log(M H /GeV).6.4. τ lν C K M f i t t e r package Z bb -1.0-0.5 0.0 0.5 1.0 1.5.0 Log(tan(β) ς u = ς d = ς l = cotβ C K M f i t t e r package Z bb b sγ -1.0-0.5 0.0 0.5 1.0 1.5.0 Log(tan(β) ς u = ς d = ς 1 l = cotβ A-HDM A. Pich Paris 011 3

Global Constraints on Z Models (95% CL) Jung-Pich-Tuzón 3 Type II 3 Type Y.8 b sγ.8 b sγ Log(M H /GeV).6.4. M/τ lν + B Dτν Z bb Log(M H /GeV).6.4. M/τ lν + B Dτν Z bb C K M f i t t e r package C K M f i t t e r package -1.0-0.5 0.0 0.5 1.0 1.5.0 Log(tan(β) -1.0-0.5 0.0 0.5 1.0 1.5.0 Log(tan(β) ς u = ς 1 d = ς 1 l = cotβ ς u = ς 1 d = ς l = cotβ M H ± > 77 GeV In agreement with previous analyses (Aoki et al, Wahab et al, Deschamps et al, Flacher at al, Bona et al, Mahmoudi-Stal, Misiak et al...) A-HDM A. Pich Paris 011 4

Constraints from b sγ (95% CL) Jung-Pich-Tuzón Important Correlations: C eff i (µ W ) = C i,sm + ς u C i,uu (ς uς d ) C i,ud 5 ς uς d vs. M H ± ς u ς d vs. arg(ς u ς d ) 0 Ζ u Ζd 15 10 5 0 100 00 300 400 500 MH Stronger constraint for small Scalar Masses For ϕ arg(ςu ς d ) = π (0) constructive (destructive) interference Important restriction on CP asymmetries A-HDM A. Pich Paris 011 5

Direct CP Asymmetry in b sγ Jung-Pich-Tuzón Small in the SM (Ali et al 98, Kagan-Neubert 98, Hurth et al 05) Potentially large in general HDMs (Borzumati-Greub 98) However, strongly constrained by Br(b sγ) a CP Γ Γ Γ+ Γ Compatible with measurement, but it could be sizeable A-HDM A. Pich Paris 011 6

D0: µ ± µ ± Asymmetry B 0 Mixing a s sl 0.0 0 SM A b sl N++ b N ++ b N b +N b -0.0-0.04 Standard Model B Factory W.A. DØ B s µd s X DØ Asl b DØ Asl b 95% C.L. DØ, 9.0 fb -1-0.04-0.0 0 0.0 a d sl a q sl Γ( B 0 q µ + X) Γ(B 0 q µ X) Γ( B 0 q µ+ X)+Γ(B 0 q µ X) = Γ q M q tanφ q LHCb does not confirm a large φ s in B s J/Ψφ (D0/CDF) D0 data seems to require new-physics contribution in Γ s A-HDM A. Pich Paris 011 7

LHCb-CONF-011-056 Average of Bs J/ψϕ and Bs J/ψf0 Simultaneous fit to both samples: LHCb Preliminary ϕs = 0.03 ± 0.16 ± 0.07 rad With present statistics, no evidence for deviation from the SM. Next steps: 1) Increase statistics (luminosity) ) Add same-side Kaon tagging 3) Break ambiguity by looking at relative S-wave phase vs. M(KK) in J/ψϕ G. Raven, Lepton-Photon 011 ] -1 [ps Γ s LL 0 18 16 14 1 10 8 6 4 0 0.5 0. 0.15 0.1 0.05 0-0.05-0.1-0.15-0. -0.5 LHCb Preliminary ΔΓs<0-4 -3 - -1 0 1 (rad) s LHCb Preliminary -1 s = 7 TeV, L 337 pb Bs J/ψ f0-4 - 0 68% C.L. 90% C.L. 95% C.L. ΔΓs>0 Bs J/ψϕ φ [rad] s A-HDM A. Pich Paris 011 8 33

B 0 s B 0 s Mixing Phase within the AHDM Jung-Pich-Tuzón Maximum possible enhancement from H ± exchanges: Sin Φs s Sin Φ s SM 6 4 a sl a sl SM = sinφ sinφ SM 4 1 3 4 5 6 Arg Ζ u Ζ d rad φ arg( M 1 /Γ 1 ) M 1 /M SM 1 H ± contributions to M are too small to explain the D0 asymmetry A-HDM A. Pich Paris 011 9

Electric Dipole Moments Highly sensitive to flavour-blind CP-violating phases Stringent experimental bounds: neutron, Thallium, Mercury... 1-loop H ± contributions very suppressed by light-quark masses Contributions from 4-fermion operators are small (also induced by φ 0 i exchange with 1-loop FCNC vertices) (Buras et al) Two-loop contributions dominate (Weinberg 89, Dicus 90, Barr-Zee 90) A-HDM A. Pich Paris 011 30

Neutron EDM dominated by H ± contribution to L W L W = C W 6 f abc ǫ µναβ G a µρg bρ ν G c αβ, C W Im(ς u ς d ) Jung-Pich-Tuzón, preliminary b sγ b sγ + d γ n d γ n M H ± = 80 GeV M H ± = 500 GeV M H ± = 500 GeV Im(ς u ςd ) strongly constrained, but not tiny A-HDM A. Pich Paris 011 31

Higgs Production (CP assumed) y h0 t = cos α+ς u sin α λ h0 W,Z = cos α y H0 t = sin α+ς u cos α λ H0 W,Z = sin α Charged Higgs: Z H + H, t H + b, W + H + h 0 (H 0 ) CP-odd A 0 : t t A 0, W + H + A 0, Z 0 A 0 h 0 (H 0 ) CP-violation: ϕ 0 i mixing (h 0, H 0, A 0 ), ς f A-HDM A. Pich Paris 011 3

Higgs Decay (CP assumed) λ h0 W,Z = cos α λ H0 W,Z = sin α y h0 t = cos α+ς u sin α y H0 t = sin α+ς u cos α h 0 (H 0 ) W ± H, h 0 (H 0 ) Z A 0, H 0 h 0 A 0 H + t b, H + W + h 0 (H 0 ) A 0 t t, A 0 W ± H, A 0 Z 0 h 0 (H 0 ), A 0 h 0 H 0 A-HDM A. Pich Paris 011 33

SUMMARY The Aligned THDM provides a general phenomenological setting Includes all Z models Tree-level FCNCs absent by construction Leptonic FCNCs forbidden to all orders Loop-induced quark FCNCs very constrained (MFV like) New sources of CP violation through ς f Satisfies flavour constraints with ς f O(1) Sizeable flavour-blind phases allowed by EDMs Interesting collider phenomenology A-HDM A. Pich Paris 011 34

Backup Slides A-HDM A. Pich Paris 011 35

CKM Fit within the AHDM Only the constraints from V ub /V cb and m s / m d survive γ from tree-level decays excludes the nd solution m s / m d = ( m s / m d ) SM + O[(m s m d )ς d /M W ] A-HDM A. Pich Paris 011 36

Parameter Value Comment f Bs (0.4±0.003±0.0) GeV f Bs /f Bd 1.3±0.016±0.033 f Ds (0.417±0.001±0.0053) GeV f Ds /f Dd 1.171±0.005±0.0 f K /f π 1.19±0.00±0.013 f Bs ˆB B 0 s (0.66±0.007±0.03) GeV f Bd ˆBB 0 s /(f Bs ˆBB 0 s ) 1.58±0.05±0.043 ˆB K 0.73±0.006±0.043 V ud 0.9745±0.000 ( λ 0.55 ± 0.0010 1 Vud ) 1/ V ub (3.8±0.1±0.4) 10 3 b ulν (excl. + incl.) A 0.80±0.01±0.01 b clν (excl. + incl.) ρ 0.15±0.0±0.05 Our fit η 0.38±0.01±0.06 Our fit ρ B Dlν 1.18±0.04±0.04 B Dlν 0.46±0.0 (0) 0.965±0.010 f Kπ + A-HDM A. Pich Paris 011 37

Φ 1 = [ ] ( G + 1 v +S1 +ig 0), Φ = [ 1 H + (S +is 3 ) ] Goldstones: G ±, G 0 Mass eigenstates: H ±, ϕ 0 i ϕ 0 i (x) = {h(x),h(x),a(x)} = R ij S j (x) (x) = {h(x),h(x),a(x)} CP-conserving scalar potential: ( H h ) = [ cos α sin α sin α cos α ] ( S1 A(x) = S 3 (x) S ) A-HDM A. Pich Paris 011 38