Design of AAC floor slabs according to EN 12602

Similar documents
Design of AAC wall panel according to EN 12602

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Max. thick. of part to be fixed. Min. thick. of base material. anchor depth. Anchor mechanical properties

fib Model Code 2020 Shear and punching provisions, needs for improvements with respect to new and existing structures

Purpose of reinforcement P/2 P/2 P/2 P/2

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Masonry Beams. Ultimate Limit States: Flexure and Shear

Horizontal Distribution of Forces to Individual Shear Walls

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Software Verification

INFORMATION CONCERNING MATERIALS TO BE USED IN THE DESIGN

The Serviceability Considerations of HSC Heavily Steel Reinforced Members under Bending

Bending resistance of high performance concrete elements

STRUCTURAL BEHAVIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS

WRAP-AROUND GUSSET PLATES

TORSION By Prof. Ahmed Amer

BEAMS: SHEARING STRESS

Compression Members Local Buckling and Section Classification

Wood Design. = theoretical allowed buckling stress

OUTLINE. CHAPTER 7: Flexural Members. Types of beams. Types of loads. Concentrated load Distributed load. Moment

Bending stress strain of bar exposed to bending moment

NON-LINEAR BENDING CHARACTERISTICS OF PHC PILES UNDER VARYING AXIAL LOAD

BEHAVIOR OF SQUARE CONCRETE-FILLED TUBULAR COLUMNS UNDER ECCENTRIC COMPRESSION WITH DOUBLE CURVATURE DEFLECTION

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design

Dr. Hazim Dwairi 10/16/2008

Exercise 1: Prestressed cross-section; pretensioned beam with bonded strands

Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames. Virtual Work for Frames

Shear-Friction Strength of RC Walls with 550 MPa Bars

Torsion. Torsion is a moment that twists/deforms a member about its longitudinal axis

Universities of Leeds, Sheffield and York

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

DETERMINATION OF MATERIAL PARAMETERS OF A TEXTILE REINFORCED COMPOSITE USING AN INVERSE METHOD

City, University of London Institutional Repository

Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A )

Strength of Materials

STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS

DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

PREDICTING THE SHEAR STRENGTH OF CONCRETE STRUCTURES

1. INTRODUCTION. l t t r. h t h w. t f t w. h p h s. d b D F. b b d c. L D s

Beams on Elastic Foundation

Uniaxial Concrete Material Behavior

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM

RESULTS OF PSEUDO-STATIC TESTS WITH CYCLIC HORIZONTAL LOAD ON R.C. PANELS MADE WITH WOOD-CONCRETE CAISSON BLOCKS

Software Verification

Software Verification

Moment Curvature Characteristics for Structural Elements of RC Building

MODELLING THE POSTPEAK STRESS DISPLACEMENT RELATIONSHIP OF CONCRETE IN UNIAXIAL COMPRESSION


STRUCTURAL ANALYSIS CHAPTER 2. Introduction

SIMULATION OF BEHAVIOR OF REINFORCED CONCRETE COLUMNS SUBJECTED TO CYCLIC LATERAL LOADS

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13

MECHANICS OF MATERIALS

SERVICEABILITY LIMIT STATE DESIGN

Reinforced Concrete Design

EFFECTS OF STEEL FIBRE REINFORCEMENT ON THE BEHAVIOUR OF HEADED STUD SHEAR CONNECTORS FOR COMPOSITE STEEL-CONCRETE BEAMS

Software Verification

Bridge deck modelling and design process for bridges

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2

Drift Capacity of Lightly Reinforced Concrete Columns

Example 2.2 [Ribbed slab design]

The Design of Fiber Reinforced Polymers for Structural Strengthening An Overview of ACI 440 Guidelines. Sarah Witt Fyfe Company November 7, 2008

Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Evaluation of a Dual-Load Nondestructive Testing System To Better Discriminate Near-Surface Layer Moduli

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO

Strengthening Concrete Slabs for Punching Shear with Carbon Fiber-Reinforced Polymer Laminates

The casing is subjected to the following:

MECHANICS OF MATERIALS

DESIGN OF BEAMS AND SHAFTS

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

Made by SMH Date Aug Checked by NRB Date Dec Revised by MEB Date April 2006

Stress triaxiality to evaluate the effective distance in the volumetric approach in fracture mechanics

Structural Steelwork Eurocodes Development of A Trans-national Approach

4 Puck s action plane fracture criteria

Design of reinforced concrete sections according to EN and EN

Chapter 6. Compression Reinforcement - Flexural Members

Ch. 10 Design of Short Columns Subject to Axial Load and Bending

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

CEN/TC 250/SC 3 N 2634

MECHANICS OF MATERIALS

Assignment 1 - actions

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

MECHANICS OF MATERIALS

SIZE EFFECT ON SHEAR STRENGTH OF RC BEAMS USING HSC WITHOUT SHEAR REINFORCEMENT

Longitudinal strength standard

S TRUCTUR A L PR E- A N A LYSIS TA B LES

Rectangular Filament-Wound GFRP Tubes Filled with Concrete under Flexural. and Axial Loading: Analytical Modeling ABSTRACT

SHEAR TRA SFER ALO G I TERFACES: CO STITUTIVE LAWS

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials)

A Time-Dependent Model For Predicting The Response Of A Horizontally Loaded Pile Embedded In A Layered Transversely Isotropic Saturated Soil

Part G-4: Sample Exams

Time analysis of structural concrete elements using the equivalent displacement method

ARCHIVES OF CIVIL ENGINEERING, LIX, 1, 2013 COMPARISON OF ANALYTICAL METHODS FOR ESTIMATION OF EARLY-AGE THERMAL-SHRINKAGE STRESSES IN RC WALLS

Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement

Serviceability Limit States

EVALUATION OF EXISTING REINFORCED CONCRETE COLUMNS

Bending Stress. Sign convention. Centroid of an area

Transcription:

Design of AAC floor slabs aording to EN 160 Example 1: Floor slab with uniform load 1.1 Issue Design of a floor slab under a living room Materials Component with a ompressive strength lass AAC 4,5, densit lass 550, welded steel reinforement with tensile ield strength 500 MPa and ultimate tensile strength 550 MPa. EN 160, table 1 and EN 10080 1. Material properties Dr Densit Table 1: Densit lasses, dr densities in kg/m³ Densit 400 450 500 550 600 650 700 lass Mean dr densit ρ m > 350 400 > 400 450 > 450 500 > 500 550 > 550 600 > 600 650 > 650 700 Compressive strength Table : Compressive strength lasses for AAC in MPa Strength lass AAC AAC,5 AAC 3 AAC 3,5 AAC 4 AAC 4,5 AAC 5 f k,0,5 3,0 3,5 4,0 4,5 5,0 EN 160, 4...3 EN 160, 4..4 1.3 Tpe of element Profile

Sstem and dimensions.1 Sstem Longitudinal setion 4747 Minimum value for support length AAC omponent beams floor elements roof elements minimum requirement 60 mm 40 mm 35 mm EN 160, A.11 Reommended values AAC omponent support material minimum requirement beams masonr 100 mm floor elements roof elements wall elements masonr steel onrete masonr steel onrete wood steel onrete 70 mm 50 mm 50 mm 70 mm 50 mm 50 mm 50 mm 50 mm 50 mm

L eff l w + 3 1 a1,min + 3 1 a,min 4,70 + 3 0,07 4,747 m The omponent has to be designed for all load ases also for impats resulting from transport. The relevant load ase for that is the transport with a fork lifter and for the weak axis. Figure 1: Transport situation fork lift truk Assumption for distane forks: b s 1,00 m ( L bs ) L antilever (5,00 1,00),0 m. Cross setion h 50 mm b 65 mm.3 Conrete over and effetive depth 1 0 mm 0 mm Assumption for fire resistane lass: REI 60 With a granted diameter of 8 mm the effetive depth is: d 50 mm 0 8 6 mm 3

3 Loads Self-weight of AAC element: with 35 kg/m³ steel and 6 M-% moisture ontent of AAC Load Permanent loads,5 erami tiles (inl. glue) 6 ement sreed AAC (g 6, kn/m 3 ) permanent load, g k Variable loads, q K Transport weight of AAC element: ρ trans 7,75 kn/m³ 0,55 kn/m² 1,3 kn/m² 1,55 kn/m² 3,4 kn/m²,00 kn/m² EN 160, 4...4 (1) Thikness of slab 0,5 m EN 160, 4...4 (3) 4 Internal fores Internal fores are determined for a single omponent with a width of 65 mm. 4.1 Internal fores for harateristi ombinations Load ombinations a. to EN 1990 G d1 γ G b g k 1,35 0,65 3,4,89 kn/m Q d1 γ Q b q k 1,50 0,65,00 1,88 kn/m ( Gd + Qd1) l V Sd1 ( Gd + Qd 1) l M Sd1 8 1 eff 1 eff,89 + 1,88 4,747 11,3 kn 4,77 4,747 8 13,44 knm 4. Internal fores for frequent ombinations G d b g k 0,65 3,4,14 kn/m Q d ψ 1 b q k 0,5 0,65,00 0,63 kn/m Categor A, ψ 1 0,5 V Sd ( G d + Qd ) l eff,14 + 0,63 4,747 6,57 kn 4

( G M Sd d + Qd ) leff 8,77 4,747 7,80 knm 8 4.3 Internal fores for quasi-permanent ombinations G d3 b g k 0,65 3,4,14 kn/m Q d3 ψ b q k 0,3 0,65,00 0,38 kn/m Categor A, ψ 0,3 ( G d 3 + Qd V Sd3 3),14 + 0,38 l eff 4,747 5,98 kn ( Gd 3 + Qd 3) leff,5 4,747 M Sd3 7,10 knm 8 8 4.4 Internal fores for transport situations G T γ G ρ trans b h 1,35 0,65 7,75 0,5 1,64 kn/m V T γ T G L 1,3 1,64,00 4,6 kn T γt GT L M T antilever 1,3 1,6 64,00 4,6 knm where T 1,3 (assumption for dnami oeffiient due to manipulationn of omponents, when indiatedd onsideration of national regulations) 5

5 Design 5.1 Material properties Charateristi ompressive strength, f k 4,5 MPa 4500 kn/m² Basi Shear Strength, 0,5 0,063 f τ Rd k 0,063 4,5 0,5 / 1,73 0,0773 MPa γ Mean modulus of elastiit of AAC slab, E 5 (ρ m 150) 000 N/mm² Charateristi strength of steel, f k 500 MPa 500 N/mm² EN 160, 4..4 EN160, A.4.1. (A.6) EN 160, 4..7 EN 160, 4.3.1 5. Design for bending Finding equilibrium of stress / strain: 1000 MSd1 γ 13,44 1,44 1000 m d 158,5 α f A d 0,85 4,5 0,65 0,6 0,6 k Reading from design table (see Annex A): ε 3,00 ε s 8,41 k x 0,63 1000 ϖ 175, A s A α f γ ϖ k S γ f k 0,65 0,6 175, 0,85 4,5 1,15 1,51 ² 1000 1,44 500 hosen: 7 Ø 8,0 mm (A s1 3,5 ²) Upper reinforement: 1000 MT γ 1000 m d α f A d k 4,6 1,44 0,85 4,5 0,65 0,7 0,7 49,80 6

Reading from design table (see Annex A): ε 1,55 ε s 10,00 k x 0,134 1000 ϖ 5,14 A s A α f γ ϖ k S γ f k 0,65 0,7 5,14 0,85 4,5 1,15 0,45 ² 1000 1,44 500 hosen: 3 Ø 6,0 mm (A s 0,85 ²) 5.3 Minimum reinforement f flm 0,7 4,5 1,15 MPa h A t b 6,5 1,5 781² EN 160, A.3.4 (A.3) A s,min k A t f flm / f k 0,4 781 1,15 / 500 0,76 ² A s,min 0,76 ² < 3,5 ² 5.4 Design for shear fore EN 160, A.4 Determination of reinforement ratio: A ρ l s, exis 3,5 0,0049 < 0,005 b d 6,5,6 Minimum design value of shear fore: tk;0,05 V Rd1 0,5 f b w d 0,5 0,10 4500 / 1,73 0,65 0,6 γ 18,37 kn EN 160, (A.6) Design value of shear fore: V Rd1 τ Rd (1 0,83 d) (1 + 40 ρ l ) b w d 77,3 (1 0,83 0,6) (1 + 40 0,0049) 0,65 0,6 14,17 kn Higher value is determinant (ritial) : V Rd1,04 kn V Rd1 18,37 kn > 11,3 kn V Sd1 Therefore, no shear reinforement is required. 7

5.5 Spaing of Longitudinal Bars EN 160, 5..7.. Centre distane between bars : 50 mm s l1 d Therefore, we onsider the longitudinal bars at a distane of 70 mm entre to entre as per the limits. And the distane of longitudinal bars from the panel surfae is supposed to be 0 mm. 8

6 Anhoring of longitudinal reinforement EN 160, A.10.3 Cross-Setional View Desription reinforement laout: diameter ross bars: Ø t 5,5 mm distane between longitudinal bars: s t 70 mm distane to bottom side of panel: e + Ø sl + Ø t / 0 + 8,0 + 5,5 / 30,75 mm Effetive length of transverse bars: t t 3 t 4 t 5 t 6 s t / 70 mm < 14 Ø t 77 mm > t t 3 t 4 t 5 t 6 70 mm t 1 t 7 t 1 +t 1 t 7 +t 7 35 + 15 mm 50 mm < 14 Ø t 77 mm > t 1 t 7 50 mm t i < 8 Ø t 44 mm t t t 1 + t + t 3 + t 4 + t 5 + t 6 + t 7 450 mm Maximum tensile fore : F ld,max M d1,max / z 13,44 / (0,9 0,6) 66,08 kn F ld,support M d1,support / z,44 / (0,9 0,6) 1,01 kn 9

Assume 9 transverse ross bars with diameter 5,5 mm for half of the panel and the arrangement is shown below: Figure 1: Reinforement laout Design value for bearing strength at support (m 1,3; n p, transverse ompression at support): f ld,support 1,35 m (e / Øt) α fk γ 1/3 1,35 1,3 (30,75 / 5,5) 1,44 1/3, f k γ 0,85 4,5, 4,5 1,44 Bond Class B1 8,7 MPa 6,88 MPa therefore, f ld,support 6,88 MPa Design value for bearing strength at middle of span (m 1,067; n p, transverse ompression at support): 1/3 1,35 m (e / Øt) α fk f f ld,field, k γ γ 10

1,35 1,067 (30,75 / 5,5) 1,73 1/3 0,85 4,5, 4,5 1,73 5,65 MPa < 5,8 MPa therefore, f ld,field 5,65 MPa where, α is a redution oeffiient for long term effet on ompressive strength of AAC (α 0,85) Anhorage fore apait (F RA ): F RA,support 0,83 n t Ø t t t f ld,support 0,6 n l n t F wg / γ s 0,83 5,5 450 6,88 0,6 7 0,5 A sl f k / γ s 8,7 kn < 45,89 kn EN 160, A.3. Welding Strength Class S1 0,60 nl nt F F RA,max min 0,83 φtot tt fld ( nt ); γ S 110,33 kn < 06,53 kn wg As, F RA,support F ld,support and F RA,max F ld,max Figure : Anhorage of tensile fores As we an see from fig. that the anhorage apait fore does exeed the design tensile fore at eah setion of the panel. Therefore, the assumption is satisfied for the required onditions. So, we an use 18 ross bars with Ø 5,5 mm (for whole panel). The suffiient anhorage has to be proven also for the upper reinforement (aording to the method above) whih is not shown here. 11

7 Servieabilit Limit States EN 160, A.9.4 Craking moment, M r (b h / 6) f flm (0,65 0,5 / 6) (0,7 0,8 4,5) 6,33 knm EN 160, A.9.4.3 and 4..5 where, f flm is the flexural strength of AAC ( 0,7 0,8 f k ) As, M f > M r, therefore, the slab is onsidered to behave in a manner intermediate between unraked and raked ondition. 7.1 Defletion under unraked ondition 7.1.1 Short-term defletion Ratio of the modulus of elastiit of reinforing steel and AAC: E 00000 N / mm s n 100 E 000 N / mm EN 160, (A.4) Moment of area of AAC and reinforement: 3 b h l, brutto + n (7 π (ø 1 /) 4 / 4 + 3 π (ø /) 4 / 4) 81396,19 4 1 The upper longitudinal reinforement an be full taken into aount to determine the moment of inertia. The position of the entre of gravit of the reinforement laer is supposed to be,4 from the panel surfae. Parts of moment of inertia from onsideration of the reinforement: A s1 3,5 A s 0,85 Centre of gravit, b h h / + n ( As1 s1 + As s) S b h + n ( A + A ) s1 s 97,05 11,15 1999,5 where, s1 and s are the distanes from the entre of the reinforement steel to the bottom surfae of the slab. h I ST b h ( s ) + n ( As 1 ( s1 s ) + As ( s s ) ) 1563 (1,5 11,15) + 100 (3,5 (,4 11,15) + 0,85 (,7 11,15) ) 4 4094,8 E I E I + I ) i,447mnm ( C; BRUTTO st 000 (81396,19 + 4094,8) 10 1 8

Defletion due to load ombination (frequent ation ombinations): 5 MSd Leff 5 0,00780 4,747 el 0, 00748m 48 E I 48,447 i Leff el 0,00748 m 0,75 < 1,90 50 General note: The limit value for the maximum defletion ma be found in a national appliation doument. The reommended value for the alulated defletion of roof and floor omponents subjeted to quasi-permanent loads is (aording to EN 160) span/50. EN 160, 9.4.1, Note 1 7.1. Long-term defletion For long term defletion an effetive modulus of elastiit, E,eff E / (1 + φ) EN 160, (A.43) is used. Therefore, E,eff 1000 N/mm and n E s 00000 N / mm E, eff 1000 N / mm 00 Moment of area of AAC and reinforement, 3 b h l, brutto + n (7 π (ø 1 /) 4 / 4 + 3 π (ø /) 4 / 4 ) 8141,17 4 1 Centre of gravit, S b h h / + n ( As1 s1 + As s) b h + n ( A + A ) s1 s 5079,85 10,9 436,5 Moment of inertia for reinforement, h I ST b h ( s ) + n ( As1 ( s1 s ) + As ( s s ) ) 1563 (1,5 10,9) + 00 (3,5 (,4 10,9) + 0,85 (,7 10,9) ) 77640,70 4 E I E I + I ) 1000 (8141,17 + 77640,70) 10, eff i, eff ( C; BRUTTO st 1,591 MNm 13 8

Defletion due to load ombination 3 (quasi-permanent ombinations): 5 MSd 3 Leff 5 0,00710 4,747 48 E, eff Ii 48 1,591 Leff 0,01048 m 1,05 < 1,90 50 0,01048 m 7. Defletion under raked ondition 7..1 Short-term defletion The ratio of the modulus of elastiit of reinforing steel and AAC: E 00000 N / mm s n 100 E 000 N / mm EN 160, (A.43) In this ase, we onsider onl ompression zone of AAC and reinforement for the alulation of moment of inertia. Therefore, first we will find the x- equilibrium x 1 + 4 d A 1 A 11,9 where, x is height of ompression zone from top surfae of panel d is effetive height, A b E / ( A s1 E S ) The upper longitudinal reinforement an be full taken into aount to determine the moment of inertia. Moment of area of ompression zone AAC and reinforements, 3 b x l, brutto + n (7 π (ø 1 /) 4 / 4 + 3 π (ø /) 4 / 4) 7511,14 4 1 The position of the entre of gravit of the reinforement laer is supposed to be,4 from the panel surfae. Parts of moment of inertia from onsideration of the reinforement: A s1 3,5 A s 0,85 14

Centre of gravit is: S b x ( h x / ) + n ( As1 s1 + As s) b x + n ( A + A ) s1 s 16431,7 14,38 114,6 where, s1 and s are the distanes from the entre of the reinforement steel to the bottom surfae of the slab I ST b x ( h x / ) + n ( A ( ) + A ( ) ) 73867,74 4 s s1 s1 s s s s E I E I + I ) i I i E 1,63MNm ( C; BRUTTO st 000 (7511,14 + 73867,74 ) 10 8 Defletion due to load ombination (frequent ation ombinations): 5 MSd Leff 5 0,00780 4,747 el 0, 0113m 48 E I 48 1,63 i Leff el 0,0113 m 1,1 < 1,90 50 7.. Long term defletion For long term defletion an effetive modulus of elastiit is used, E,eff E / (1 + φ ) therefore, E,eff 1000 N / mm and n E s 00000 N / mm E, eff 1000 N / mm 00 Moment of area of AAC and reinforement, 3 b x l, brutto + n (7 π (ø 1 /) 4 / 4 + 3 π (ø /) 4 / 4 ) 757,1 4 1 Centre of gravit, S b x ( h x / ) + n ( As1 s1 + As s) b x + n ( A + A ) s1 s 1906,0 1,16 1579,6 15

Moment of inertia for reinforement, x I ST b x 4 1475,74 ( h s ) + n As1 ( s1 s ) + As ( s s E I E I + I ) 1000 (757,1 + 1475,7) 10, eff i, eff ( C; BRUTTO st 1,300 MNm ) 8 Defletion due to load ombination 3 (quasi-permanent ombinations): 5 48 M E Sd 3, eff L eff I i 5 48 0,00710 4,747 1,300 Leff 0,018 m 1,8 < 1,90 50 0,018 m 7.3 Combination of defletion unraked / raked 7.3.1 Short-term defletion The short term defletion for the intermediate situation (raked/unraked) due to frequent loads is: ( 1 k) p 0,473 1,1 + ( 1 0,473) 0,75 0, k p + 93 ΙΙ Ι EN 160 (A.44) sd where k 1 0,8 ( M r / M ) 1 0,8 ( 6,33 / 7,80 ) 0, 473 M r : raking moment M sd : bending moment for frequent ombination of loading p Ⅱ : short-term defletion for raked ondition p Ⅰ : short-term defletion for unraked ondition Leff el 0,93 < 1,90 50 16

7.3. Long-term defletion B onsidering an effetive modulus of elastiit (E,eff ) and quasi-permanent ombination of loading is: ( 1 k ) p 0,473 1,8 + ( 1 0,473) 1,05 1, k p + 16 ΙΙ Ι sd where k 1 0,8 ( M r / M ) 1 0,8 ( 6,33 / 7,80 ) 0, 473 M r : raking moment M sd : bending moment for frequent ombination of loading p Ⅱ : short-term defletion for raked ondition p Ⅰ : short-term defletion for unraked ondition Leff 1,16 < 1,90 50 17

Annex A 1000 M 1000 m d Sd1 γ α fk A d α f γ A s A ϖ k S γ fk M sd1 d A A s f k f k γ,dutile γ S bending moment under harateristi ombination of loading (respeting transport load situations) effetive depth of omponent ross setion of AAC, A b d ross setional area of reinforement harateristi ompressive strength of AAC harateristi ield strength of reinforing steel partial safet fator of AAC for dutile failure partial safet fator for reinforing steel stainless steel, f k 35 MPa steel, f k 500 MPa 18