Prime and Semi Prime Subbi-Semi Modules of (R, R) Partial Bi-Semi Modules 1

Similar documents
Non-uniform Turán-type problems

Maps on Triangular Matrix Algebras

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

On L- Fuzzy Sets. T. Rama Rao, Ch. Prabhakara Rao, Dawit Solomon And Derso Abeje.

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

The Mathematical Appendix

PROJECTION PROBLEM FOR REGULAR POLYGONS

The Lie Algebra of Smooth Sections of a T-bundle

On Pure PO-Ternary Γ-Ideals in Ordered Ternary Γ-Semirings

The Primitive Idempotents in

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

On Monotone Eigenvectors of a Max-T Fuzzy Matrix

Q-analogue of a Linear Transformation Preserving Log-concavity

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

Entropy ISSN by MDPI

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

A Note on Ratio Estimators in two Stage Sampling

CHARACTERIZATION OF SOFT COMPACT SPACES BASED ON SOFT FILTER

A New Method for Decision Making Based on Soft Matrix Theory

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

ON THE LOGARITHMIC INTEGRAL

18.413: Error Correcting Codes Lab March 2, Lecture 8

Lebesgue Measure of Generalized Cantor Set

E be a set of parameters. A pair FE, is called a soft. A and GB, over X is the soft set HC,, and GB, over X is the soft set HC,, where.

A Characterization of Jacobson Radical in Γ-Banach Algebras

Abstract. 1. Introduction

On Eccentricity Sum Eigenvalue and Eccentricity Sum Energy of a Graph

A Remark on the Uniform Convergence of Some Sequences of Functions

Solution of General Dual Fuzzy Linear Systems. Using ABS Algorithm

A BASIS OF THE GROUP OF PRIMITIVE ALMOST PYTHAGOREAN TRIPLES

INTEGRATION THEORY AND FUNCTIONAL ANALYSIS MM-501

Packing of graphs with small product of sizes

Exercises for Square-Congruence Modulo n ver 11

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

Double Dominating Energy of Some Graphs

1 Onto functions and bijections Applications to Counting

On Face Bimagic Labeling of Graphs

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

International Journal of Advancements in Research & Technology, Volume 3, Issue 9, September ISSN

Factorization of Finite Abelian Groups

Chapter 9 Jordan Block Matrices

GENERATE FUZZY CONCEPTS BASED ON JOIN-IRREDUCIBLE ELEMENTS

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Unit 9. The Tangent Bundle

SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE. Sayali S. Joshi

MA 524 Homework 6 Solutions

CHAPTER 4 RADICAL EXPRESSIONS

A Penalty Function Algorithm with Objective Parameters and Constraint Penalty Parameter for Multi-Objective Programming

On the construction of symmetric nonnegative matrix with prescribed Ritz values

Square Difference Labeling Of Some Path, Fan and Gear Graphs

1 Edge Magic Labeling for Special Class of Graphs

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

A New Measure of Probabilistic Entropy. and its Properties

Analysis of Lagrange Interpolation Formula

MATH 247/Winter Notes on the adjoint and on normal operators.

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. Research on scheme evaluation method of automation mechatronic systems

The Alexandrov-Urysohn Compactness On Single

On the Primitive Classes of K * KHALED S. FELALI Department of Mathematical Sciences, Umm Al-Qura University, Makkah Al-Mukarramah, Saudi Arabia

13. Dedekind Domains. 13. Dedekind Domains 117

MAX-MIN AND MIN-MAX VALUES OF VARIOUS MEASURES OF FUZZY DIVERGENCE

LINEAR RECURRENT SEQUENCES AND POWERS OF A SQUARE MATRIX

Sufficiency in Blackwell s theorem

Almost Sure Convergence of Pair-wise NQD Random Sequence

Some properties of symmetry classes of tensors

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Unique Common Fixed Point of Sequences of Mappings in G-Metric Space M. Akram *, Nosheen

A New Method for Solving Fuzzy Linear. Programming by Solving Linear Programming

Mahmud Masri. When X is a Banach algebra we show that the multipliers M ( L (,

Aitken delta-squared generalized Juncgk-type iterative procedure

EQUIENERGETIC COMPLEMENT GRAPHS

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS

Solving Interval and Fuzzy Multi Objective. Linear Programming Problem. by Necessarily Efficiency Points

#A27 INTEGERS 13 (2013) SOME WEIGHTED SUMS OF PRODUCTS OF LUCAS SEQUENCES

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

Ideal multigrades with trigonometric coefficients

Further Results on Pair Sum Labeling of Trees

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

STK4011 and STK9011 Autumn 2016

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

On Signed Product Cordial Labeling

Dr. Shalabh. Indian Institute of Technology Kanpur

Some identities involving the partial sum of q-binomial coefficients

Lecture 3 Probability review (cont d)

X ε ) = 0, or equivalently, lim

Research Article Gauss-Lobatto Formulae and Extremal Problems

Available online through

MULTIDIMENSIONAL HETEROGENEOUS VARIABLE PREDICTION BASED ON EXPERTS STATEMENTS. Gennadiy Lbov, Maxim Gerasimov

On the Rational Valued Characters Table of the

Extreme Value Theory: An Introduction

Lecture 1. (Part II) The number of ways of partitioning n distinct objects into k distinct groups containing n 1,

TESTS BASED ON MAXIMUM LIKELIHOOD

A tighter lower bound on the circuit size of the hardest Boolean functions

On Complementary Edge Magic Labeling of Certain Graphs

Union, Intersection, Product and Direct Product of Prime Ideals

Galois and Post Algebras of Compositions (Superpositions)

Transcription:

Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved http://wwwcsouralorg Prme ad Sem Prme Subb-Sem Modules of (R, R) Partal B-Sem Modules M Srvasa Reddy, V Amaredra Babu (Assstat Professor, Departmet of S & H, D V R & Dr H S MIC College of Techology, Kachacherla- 580, Krsha(Dstrct), Adhra Pradesh, Ida (Assstat Professor, Departmet of Mathematcs, Acharya agarua Uversty, agarua agar-550, Gutur (Dt), Adhra Pradesh, Ida ABSTRACT A partal semrg s a structure possessg a ftary partal addto ad a bary multplcato, subect to a set of axoms The partal fuctos uder dsot-doma sums ad fuctoal composto s a partal semrg I ths paper we troduce, the otos of prme ad sem prme subb-semmodules of (R, R) - partal b-sem modules, obta prme avodace theorem for subb-semmodules of (R, R) - partal b-sem modules ad exted the results o prme ad sem prme sub sem modules over partal sem rgs by P V Srvasa Rao [8] to (R, R) - partal b-sem modules Keywords: Prme subb-semmodule, sem prme subb-semmodule, multplcato (R, R) - partal b-sem module, closed subset, sem closed subset, -closure, -subb-semmodule ITRODUCTIO The study of pf ( D, (the set of all partal fuctos of a set D to tself), Mf ( D, (the set of all mult fuctos of a set D to tself) ad Mset ( D, (the set of all total fuctos of a set D to the set of all fte mult sets of D ) play a mportat role the theory of computer scece, ad to abstract these structures Maes ad Beso[6] troduced the oto of sum ordered partal sem rgs (so-rgs) Motvated by the wor doe partally-addtve sematcs by Arbb, Maes[4] ad the developmet of matrx theory of so-rgs by Martha E Streestrup[7], G V S Acharyulu[] 99 studed the codtos uder whch a arbtrary so-rg becomes a pf ( D,, Mf( D, ad Mset ( D, Cotug ths study, P V Srvasa Rao [9] developed the deal theory for sorgs ad partal sem modules over partal sem rgs I [], [3], [0], we obtaed the b-deal theory of so-rgs ad troduced the oto of partal bsem module over the partal sem rgs R, S I ths paper we troduce the otos of prme ad sem prme subbsemmrodules of (R, R) - partal b-sem modules, characterze them terms of prme ad sem prme partal b-deals of partal semrg R ad obtaed the prme avodace theorem for subb-semmodules of (R, R) - partal b-sem modules PRELIMIARIES I ths secto, we dscuss mportat deftos, results ad examples for our use the ext sectos Defto : [6] A partal mood s a par ( M, ) where M s a o empty set ad s a partal addto defed o some, but ot ecessarly all famles ( x : I) M subect to the followg axoms: a Uary Sum Axom: If ( x : I) s a oe elemet famly M ad I = { }, the ( x : I) s defed ad equals x b Partto - Assocatvely Axom: If ( x : I) s a famly M ad If ( I : J ) s a partto of I, the ( x : I) s summable f ad oly f ( x : I ) s summable for every J ad ( ( x : I ) : J ) s summable, ad ( x : I) = ( ( x : I ) : J ) Defto : [6] The sum orderg o a partal mood ( M, ) s the bary relato such that x y f ad oly f there exsts a h M such that y = x + h, for x, y M Defto 3: [6] A partal semrg s a quadruple ( R,,, ), Where ( R, ) a partal mood wth partal addto s, ( R,,) s a mood wth multplcatve operato ad ut, ad the addtve ad multplcatve structures obey the followg dstrbutve laws: If ( x : I) s defed R, the for all y R, ( y x : I) ad ( x y : I ) are defed ad y [ x ] ( y x ),[ x ] y ( x y) 690

Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved http://wwwcsouralorg I addto to ths, f (R, ) s a commutatve mood the the partal semrg ( R,,, ) s called a commutatve partal semrg Throughout ths paper R stads for a commutatve partal semrg Defto 4: [6] A sum-ordered partal semrg (or so-rg, short), s a partal semrg whch the sum orderg s a partal orderg Defto 5: [] Let R be a so-rg A subset of R s sad to be a deal of R f the followg are satsfed: (I ) f ( x : I) s a summable famly R ad x for every I the x, (I ) f x y ad y the x, ad (I 3 ) f x ad rr the xr, rx Defto 6: [] A subset of a so-rg R s sad to be a b-deal of R f the followg are satsfed: (B ) f ( x : I) s a summable famly R ad x for every I the x, (B ) f x y ad y the x, ad (B 3 ) f x, y ad rr the xry Defto 7: [] A subset of a so-rg R s sad to be a partal bdeal of R f the followg are satsfed: f ( x : I) s a summable famly R ad x for every I the x, ad If x, y ad rr the xry Example 8: [] Cosder the partal semrg R = {0, u, v, x, y, } wth defed o R by x f x 0, for some x udefed, otherwse Ad defed by the followg table: 0 u v x y 0 0 0 0 0 0 0 u 0 u 0 0 0 u v 0 0 v 0 0 v x 0 0 0 0 0 x y 0 0 0 0 0 y 0 u v x y Defto 9: [0] A proper b-deal of a so-rg R s sad to be prme f ad oly f for ay b-deals A, B of R, ARB P mples A P or B P Defto 0: [0] A proper b-deal I of a so-rg R s sad to be sem prme f ad oly f for ay b-deal H of R, HRH I mples H I Defto : [7] Let ( R,,, ) be a partal semrg ad ( M, ) be a partal mood The M s sad to be a left partal sem module over R f there exsts a fucto : R M M : ( r, x) r x whch satsfes the followg axoms for x, ( x : I) M ad r, r,( r : ) R J f x exsts the r ( x ) ( r x ), f r exsts the ( r ) x ( r x), r ( r x) ( r r ) x, ad v x x R Aalogously, oe ca defe rght partal sem modules over R Defto : [3] Let R, S be partal sem rgs ad ( M, ) be a partal mood The M s sad to be a ( R, S) - partal b-sem module f t satsfes the followg axoms: M s a left partal sem module over R, M s a rght partal sem module over S, ad () for ay r R, x M, s S, r x s M Defto 3: [3], Let ( M, ) be a ( R, S) - partal b-sem module The a o empty subset of M s sad to be a subb-semmodule of M f s closed uder ad Defto 4: [3] Let be a subb-semmodule of a ( R, R) - partal b-sem module M The we defe ( : M ) as ( : M ) { r R rmr } 69

Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved 3 PRIME AD SEMIPRIME SUBBI- SEMIMODULES I ths secto we characterze the prme ad sem prme subb-semmodules of (R, R) - partal b-sem modules Defto 3: Let M be a (R, R) - partal b-sem module ad be a proper subb-semmodule of M The s sad to be a prme subb-semmodule of M f for ay r R ad M, rr mples r ( : M ) or http://wwwcsouralorg Remar 36: If M s a multplcato (R, R) - partal b-sem module ad s a partal subb-semmodule of M the = (:M)MR Sce M s a multplcato (R, R) - partal bsem module, a partal b-deal I of R such that = IMR I ( : M ) IMR ( : M ) MR Hece = (: M) MR ote 3: If A s a b-deal of R ad K s a subbsemmodule of a (R, R) - partal b-sem module M the s prme subb-semmodule of M f ad oly f AKR mples A ( : M ) or K Theorem 33: Let M be a (R, R) - partal b-sem module ad K be a proper subb-semmodule of M If K s prme subbsemmodule of M the ts assocated partal b-deal ( K : M ) s a prme partal b-deal of R Suppose K s a prme subb-semmodule of M Let A, B be ay two b-deals of R such that ARB ( K : M ) The ( ARB) MR K A( RBM ) R K A ( K : M ) or RBM K If RBM K the BM K BMR KR BMR K B ( K : M ) or M K Sce K s proper, M K Therefore A ( K : M ) or B ( K : M ) Hece ( K:M ) s a prme partal b-deal of R The followg s a example of a (R, R) - partal bsem module M whch the coverse of the above theorem s ot true Example 34: Let R be the partal semrg wth fte support addto ad usual multplcato The M = s a (R, R) - partal b-sem module by the scalar multplcato : ( x,( a, b), x) ( xax, xbx) ad K = 0 4 s a subb-semmodule of M Here (K: M) = { r R rmr K } = { 0 } whch s a prme partal bdeal of R Sce{ } (0,) R K, ( K : M ) ad ( 0,) K Hece K s ot a prme subb-semmodule of M Defto 35: Let M be a (R, R) - partal b-sem module The M s sad to be a multplcato (R, R) - partal b-sem module f for all subb-semmodules of M there exsts a partal b-deal I of R such that = IMR ow we show that the coverse of the theorem 33 s true for the multplcato (R, R) - partal b-sem modules Theorem 37: Let M be a multplcato (R, R) - partal b-sem module ad be a subb-semmodule of M The s a prme subb-semmodule of M f ad oly f (: M) s a prme partal b-deal of R By the theorem 33, we get the ecessary part For the suffcet part, suppose (: M) s a prme partal bdeal of R Let I be a partal b-deal of R ad K be a subbsemmodule of M IKR Sce M s a multplcato (R, R) - partal b-sem module, a partal b-deal J of R K JMR ow IKR I ( RKR) R I ( RJMRR) R ( IRJ ) MR IRJ ( : M ) I ( : M ) or J ( : M ) I ( : M ) or JMR I ( : M ) or K Hece s a prme subbsemmodule of M ote that M cosdered the example 34 s ot a multplcato (R, R) - partal b-sem module Theorem 38: A (R, R) - partal b-sem module M s a multplcato (R, R ) - partal b-sem module f ad oly f there exsts a partal b-deal I of R such that RmR = IMR for each m M Suppose M s a multplcato (R, R) - partal bsem module Let m M The RmR s a subbsemmodule of M a partal b-deal I of R RmR IMR Coversely suppose that a partal b-deal I of R RmR = IMR m M Let be a subb-semmodule of M The for ay, a partal b-deal I of R RR = I MR I s a partal I b-deal of R such that RR I MR ( I ) MR IMR 69

Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved Hece M s a multplcato (R, R) - partal bsem module Defto 39: Let M be a multplcato (R, R) - partal b-sem module ad be a subb-semmodule of M The we say that I s a presetato partal b-deal of f =IMR for some partal b-deal I of R, for short, a presetato of We deote the set of all presetato partal b-deals of by Pr ( ) Defto 30: For partal b-deals I ad J of R, we defe the relato ~ as follows: I ~ J f ad oly f IMR = JMR Remar 3: ~ s a equvalece relato o the set of all partal b-deals of R http://wwwcsouralorg for ay subb-semmodules U, V of M, UMV U or V, for ay m, m M, m Mm or m m () : Suppose s a prme subb-semmodule of M ad let U, V be subb-semmodules of M UMV Sce M s a multplcato (R, R) - partal b-sem module, partal bdeals I, J of R U IMR adv JMR UMV ( IRJ ) MR IRJ ( : M ) By the theorem 37, (: M) s a prme partal b-deal of R I ( : M ) or J ( : M ) U IMR or V JMR Defto 3: Let M be a multplcato (R, R ) - partal b-sem module ad, K be subb-semmodules of M such that = IMR ad K = JMR for some partal b-deals I, J of R The the multplcato of ad K s defed as K = (IMR)M (JMR) = (IRJ)MR Theorem 33: The product of two subb-semmodules s depedet of ts presetatos Let M be a multplcato (R, R ) - partal b-sem module ad, K be subb-semmodules of M Suppose I, I ad J, J are two presetatos of ad K respectvely The IMR I MR ad K JMR J MR ow K = ( I MRM ) ( JMR) ( IMRM ) ( JMR) ( IRJ ) MR= (J RI )MR= J RMM ) ( I RM) ( J RMM ) ( I RM) ( J RI ) MR ( I RJ) MR= ( ( I MR) M ( J MR) Hece the theorem Defto 34: Let M be a multplcato (R, R) - partal b-sem module ad m, m M such that RmR IMR ad RmR I MR for some partal b-deals I, I of R The the multplcato of m ad m s defed as m I MR M I MR I RI MR m ) ( ) ( ) ( Theorem 35: Let M be a multplcato (R, R ) - partal b-sem module ad be a subb-semmodule of M The the followg codtos are equvalet: s a prme subb-semmodule of M, () ( ): Suppose for ay subb-semmodules U, V of M, UMV U or V Let m, m M m Mm Sce M s a multplcato (R, R ) - partal b-sem module, partal b-deals I, J of R Rm R =IMR ad Rm R =JMR mmm ( RmR) M ( RmR) = ( IMR ) M ( JMR) = ( IRJ )MR Rm R or Rm R or m m Hece () (): Suppose for ay m, m M, m Mm m or m ow we prove ( : M ) s a prme partal b-deal of R Let I, J be partal b-deals of R IRJ ( : M ) The ( IRJ ) MR Suppose I ( : M ) ad J ( : M ) IMR ad JMR I, J, m, m M, a, br m aimr\ ad m b JMR \ m a) M( m b) ( IMRM ) ( JMR) ( IRJ) MR ( m a or m b whch s a cotradcto Hece ( : M ) s a prme partal b-deal of R Hece by the theorem 37, s a prme subbsemmodule of M Defto 36: Let M be a multplcato (R, R) - partal b-sem module A subset S of M s sad to be multplcato closed subset ( short closed subset) f for ay m, S, ( mm) S 693

Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved Remar 37: Let be a subb-semmodule of a multplcato (R, R) - partal b-sem module M The s prme f ad oly f M \ s a closed subset of M Suppose s prme for ay m, m M, m Mm mples m or m m ad m mples m Mm m, m M \,( mmm ) ( M \ ) M \ s a closed subset of M Theorem 38: Let M be a multplcato (R, R ) - partal b-sem module Let A be a subb-semmodule of M ad S be a closed subset of M such that A S The there s a subb-semmodule of M whch s maxmal wth respect to the property that A ad S Furthermore, s a prme subb-semmodule of M http://wwwcsouralorg let H I H The H s a subb-semmodule of M ad H ow we prove H s prme Let m, m M, m Mm H ad m H The m H for some I m H For ay, H H ad hece m H For ay >, H H m H ad hece m H Hece m H H C The by Zor s lemma, C has a maxmal elemet Hece the theorem Defto 30: Let M be a (R, R) - partal b-sem module ad be a subb-semmodule of M The s sad to be sem prme f ad oly f ts assocated partal b-deal ( : M ) s sem prme Clearly every prme subb-semmodule s sem prme The followg s a example of a partal b-sem module M whch a sem prme subb-semmodule s ot prme Tae C = { B B s a subb-semmodule of M, A B ad B S } Clearly A C Moreover (C, ) s a partally ordered set whch every smply ordered famly has a upper boud By Zor s lemma, C has a maxmal elemet Let t be e, s a subbsemmodule of M whch s maxmal wth respect to the property that A ad S To prove s prme, let a, bm amb Suppose a adb The ara ad brb ( ara) S ad ( brb) S s, t S s ara ad t brb Sce S s closed subset of M, ( smt) S Moreover smt ( ara) M ( brb) = M + (ara )M + M (brb) + (ara)m(brb) Sce s a subb-semmodule of M, M, (ara)m, M (brb) are subsets of Sce amb, (ara)m(brb) Hece sm t Thus S, a cotradcto Hece s a prme subb-semmodule of M Theorem 39: Every prme subb-semmodule of a multplcato (R, R) - partal b-sem module M cotas a mmal prme subb-semmodule Tae C = { H H s a prme subb-semmodule of M, H } Sce C, (C, ) s a oempty partally ordered set Let { H I } be a decreasg cha of subb-semmodules of M H I ad Example 3: Let M be the (R, R ) - partal b-sem module as the example 34 Tae K = 0 4 The ( K : M ) = {0} s a sem prme partal b-deal of R ad hece K s a sem prme subb-semmodule of M But K s ot a prme subb-semmodule of M Theorem 3: Let M be a multplcato (R, R ) - partal b-sem module ad be a subb-semmodule of M The the followg codtos are equvalet: () s a sem prme subb-semmodule of M, () for ay subb-semmodule U of M, UMU mples U, ( ) for ay m M, mmm mples m Suppose s a sem prme subb-semmodule of M The (: M) s a sem prme partal b-deal of R Let U be a subb-semmodule of M UMU Sce M s a multplcato (R, R ) - partal b-sem module, a partal b-deal I of R U = IMR UMU = ( IMR)M(IMR) = (IRI )MR IRI ( : M ) U = IMR () ( ): Suppose for ay subb-semmodule U of M, UMU mples U Let m M mmm Sce M s a multplcato (R, R ) - partal bsem module, a partal b-deal I of R RmR = IMR mmm = (RmR )M(RmR) RmR Hece m 694

Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved M ( ) ( ): Suppose for ay m, mmm mples m Let I be a partal b-deal of R IRI ( : M ) The (IRI )MR Suppose I ( : M ) The IMR I, m M ad a R m a IMR \ ( ma) M( ma) ( IMRM ) ( IMR) ( IRI) MR m a, a cotradcto Hece s a sem prme subb-semmodule of M http://wwwcsouralorg closed, we have S s sem closed subset of M We deote the set of all prme subb-semmodules of M cotag the subb-semmodule of M by V( ) Theorem 37: Let M be a multplcato (R, R ) - partal b-sem module ad be a subb-semmodule of M The s sem prme f ad oly f V () Defto 33: Let M be a multplcato (R, R) - partal b-sem module A subset S of M s sad to be multplcato sem closed subset ( short, sem closed subset) f for ay m S, ( mmm) S Clearly every closed subset of a multplcato (R, R) - partal b-sem module M s sem closed subset The followg s a example of a multplcato (R, R) - partal b-sem module M whch the sem closed subset s ot a closed subset of M Example 34: Cosder the partal semrg R = {0, u, v, x, y, } as the example 8 The M: = R s a multplcato (R, R) - partal b-sem module ow S = {u, v} s a sem closed subset of M Sce {0, u}, {0, v} are partal bdeals of R such that RuR = {0, u}mr ad RvR = {0,v}MR, we have umv = {0, u}m{0, v}= {0} (umv) S Hece S s ot a closed subset of M Remar 35: Let M be a multplcato (R, R ) - partal b-sem module ad be a subb-semmodule of M The s sem prme f ad oly f S = M \ s a sem closed subset of M Theorem 36: Let M be a multplcato (R, R ) - partal b-sem module ad S be a subset of M The S s sem closed subset f ad oly f t s the uo of closed subsets of M Suppose S s a sem closed subset of M ad let m 0 S Sce S s sem closed, ( m0 Mm0 ) S m S m m0mm0 Sce S s sem closed ad m S, ( m Mm ) S Cotug le ths we get a set B 0 { m0, m,, m,} of elemets of S such that m mmm m0mm0 The t ca be proved that B 0 s closed subset of M cotag m 0 Hece S B, the uo of closed m0s subsets of M Coversely suppose that S 0 B I, the uo of closed subsets B of M Sce every closed subset s sem closed ad uo of sem closed subsets s aga sem Suppose s a sem prme subb-semmodule of M The S = M \ s a sem closed subset of M S where each S s a closed subset of M Sce S I S, we have S I Tae C = {H H s a subb-semmodule of M, H ad H S }, I Clearly C ad hece C The by Zor s lemma, C has a maxmal elemet Let t be K, I The by the theorem 38, K s a prme subb-semmodule maxmal wth respect to the property that K ad K S, I ow I K ( M \ S ) M \ S Hece I V () Coversely suppose that V () The M \ M \ ( V ( )) = { M \ H H s prme subb-semmodule of M ad H} M \ s a uo of closed subsets of M M \ s the sem closed subset of M by the theorem36 Hece s sem prme subbsemmodule of M by the remar 35 4 PRIME AVOIDACE THEOREM I ths secto we obta the prme avodace theorem for subb-semmodules of (R, R) partal b-sem module Defto 4: Let L, L,, L, L be subb-semmodules of a (R, R ) - partal b-sem module M The () we say that a coverg L L L cotag L s effcet f there exsts o {,, 3,, } such that L L L L L L () we say that L = L L L s a effcet uo f there exsts o {,, 3,, } such that L L L L L L 695

Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved Ay coverg of L cosstg of subbsemmodules of M ca be reduced to a effcet oe by deletg all uecessary terms Defto 4: The -closure of a subb-semmodule of a (R, R ) - partal b-sem module M s defed by { a a a a for some a, a } Remar 43: Let M be a complete (R, R ) - partal b-sem module ad be a subb-semmodule of M The s a subb-semmodule of M whch cotas ad Frst we prove s a subb-semmodule of M: Let ( x : I) be ay famly M x I The x x x for some x, x I x x x for some x x ad hece r R The x x x http://wwwcsouralorg ad x Let x ad for some x, x ad r R r x r r x r r x r for some r x r r x r, r x r ad hece Hece s a subb-semmodule of M For ay x, x + 0 = x Therefore To prove, let x The x x x where x x x ad x x x for some x x x x,,, x ( x x ) x x for some x x x x, ad hece x Hece the remar Defto 44: A subb-semmodule of a (R, R ) - partal bsem module M s sad to be -subb-semmodule f = Theorem 45: Let L, L be subb-semmodules ad L be a subb-semmodule of a complete (R, R ) - partal b-sem module M If L L L the L L or L L or L L Suppose L L L ad L L ad L L l L \ L ad l L \ L Sce, L L L, we have l L ad l L ow l l l l Sce L, L are subbsemmodules, ether cotradcto Hece the theorem l L or l L whch s a Theorem 46: Let L, L,, L be subb-semmodules ad L be a subb-semmodule of a complete (R, R ) - partal b-sem module M If L = L L L s a effcet uo the for ay {,, 3,, }, L L, Let {,, 3,, } ad let x L Sce L = L L L s a effcet uo, L L y L y L y L ow x + yl= L L L Suppose x + yl for some {,, 3,, -, +,, } The x + y = z for some x, zl where {,, 3,, -, +,, } y L for {,, 3,, -, +,, }, a cotradcto Hece x + yl Sce L s a subb-semmodule, x L Hece x L Hece the theorem Theorem 47: Let L L L L be a effcet coverg cosstg of subb-semmodules of a complete (R, R ) - partal b-sem module M, where > If ( L : M ) ( L : M ) for ay {,, 3,, }, the L s ot a prme subb-semmodule of M Sce L effcet coverg, L L L s a L ( L L ) ( L L ) ( L L ) s a effcet uo The by above theorem 46, ( L L ) ( L L ) L L Sce L L, l L \ L Suppose L s a prme subbsemmodule of M (L : M ) s a prme partal b-deal of R Sce ( L : M ) ( L : M ), s ( L : M ) \ ( L : M ) s s ( L : M ) \ ( L : M ) s l s L L ad 696

Vol 5, o 9 September 04 ISS 079-8407 Joural of Emergg Treds Computg ad Iformato Sceces 009-04 CIS Joural All rghts reserved s l s L L cotradcto Hece the theorem ( L L ) L, a L Theorem 48 (Prme avodace theorem): Let M be a complete (R, R ) - partal b-sem module, L, L,, L be a fte umber of subb-semmodules of M ad L be a subb-semmodule of M such that L L L L Assume that almost two of L s are ot prme, ad that for ay, ( L : M ) ( L : M ) The L L for some Let L L L L be a effcet coverg of the gve coverg, where,,, m {,, 3,, } m Suppose m = The L L L s the effcet coverg L L L or L by the theorem 46 L L or L L, a cotradcto Suppose m > The at least oe L, whch s prme By the theorem 47, ( L : M ) ( L : M ) for some {,, 3,, m}, a cotradcto ad hece m = Therefore L L for some {,, 3,, } Theorem 49: Let P be a prme subb-semmodule ad,,, be subb-semmodules of the multplcato (R, R) - partal b-sem module M The t P f ad oly f P for some wth t If Coversely suppose t t ( : P for some the t http://wwwcsouralorg P P t ( : M ) ( P : M ) : M ) ( P : M ) ( M ) ( P : M ) for some Hece P for some wth t Corollary 40: Let M a complete multplcato (R, R ) - partal b-sem module, be a subb-semmodule ad at least ( ) of P, P, P are prme - subb-semmodules such that P P P the P for some wth 5 COCLUSIO I ths paper we troduced the otos of prme ad sem prme subb-semmodules of ( R, R ) - partal bsem modules ad characterzed them terms of prme ad sem prme partal b-deals of R We studed the equvalet codtos of prme ad sem prme subbsemmodules of ( R, R ) - partal b-sem modules ad obtaed the prme avodace theorem for subbsemmodules of ( R, R ) - partal b-sem modules REFERECES [] Acharyulu, GVS: A Study of Sum-Ordered Partal Sem rgs, Doctoral thess, Adhra Uversty,99 [] Amaredra Babu, V, ad Srvasa Reddy, M: Bdeals of Sum-Ordered Partal Sem rgs, Iteratoal Joural of Mathematcs ad Computer Applcatos Research(IJMCAR), Vol3, ssue, pp 57-64, Jue 03 [3] Amaredra Babu, V, Srvasa Reddy, M, ad Srvasa Rao, P V: Partal b-sem modules over partal sem rgs, Mathematcs ad Statstcs (3), pp 0-9,04 [4] Arbb, MAad Maes, EG: Partally Addtve Categores ad Flow-dagram Sematcs, Joural of Algebra, vol 6, pp 03-7, 980 [5] Le Roux, HJ: A ote o Prme ad Sem prme Bdeals, Kyugpoo Math J, Vol 35, pp 43-47, 995 [6] Maes, EG, ad Beso, DB: The Iverse Sem group of a Sum-Ordered Semrg, Sem group Forum, vol 3, pp 9-5, 985 [7] Streestrup, ME: Sum-Ordered Partal Sem rgs, Doctoral thess, Graduate school of the Uversty of Massachusetts, Feb 985 (Departmet of computer ad Iformato Scece) [8] Srvasa Rao, PV: Partal sem modules over Partal Sem rgs, Iteratoal Joural of Computatoal Cogto (IJCC), Vol 8, o 4, pp 80-84, Dec 00 [9] Srvasa Rao, PV: Ideal Theory Of Sum-Ordered Partal Sem rgs, Doctoral thess, Acharya agarua Uversty, 0 [0] Srvasa Reddy, M, Amaredra Babu, V, ad Srvasa Rao, P V: Prme ad Sem prme bdeals of so- rgs, Iteratoal Joural of Scetfc ad Iovatve Mathematcal Research (IJSIMR), Vol-, ssue-, Octomber-03, pp34-43 697