Analytical Mechanics: Variational Principles

Similar documents
Kinetic energy. Analytical Mechanics: Link Mechanisms. Kinetic energy. Agenda. Kinematics of two link open mechanism.

Analytical Mechanics: MATLAB

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

Classical Mechanics Comprehensive Exam Solution

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction

Physics 106a, Caltech 16 October, Lecture 5: Hamilton s Principle with Constraints. Examples

Lagrangian Dynamics: Derivations of Lagrange s Equations

The Inverted Pendulum

Physics 235 Chapter 7. Chapter 7 Hamilton's Principle - Lagrangian and Hamiltonian Dynamics

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be.

Phys 7221 Homework # 8

Analytical Dynamics: Lagrange s Equation and its Application A Brief Introduction

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a

Non-Linear Response of Test Mass to External Forces and Arbitrary Motion of Suspension Point

Physics 6010, Fall 2016 Constraints and Lagrange Multipliers. Relevant Sections in Text:

Lagrange s Equations of Motion and the Generalized Inertia

SOLUTIONS, PROBLEM SET 11

I ml. g l. sin. l 0,,2,...,n A. ( t vs. ), and ( vs. ). d dt. sin l

EE Homework 3 Due Date: 03 / 30 / Spring 2015

Solution Set Two. 1 Problem #1: Projectile Motion Cartesian Coordinates Polar Coordinates... 3

Forces of Constraint & Lagrange Multipliers

Classical Mechanics Review (Louisiana State University Qualifier Exam)

Analytical Mechanics: Elastic Deformation

Multibody simulation

Modeling and Experimentation: Compound Pendulum

Robotics. Islam S. M. Khalil. November 15, German University in Cairo

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

Stability of Nonlinear Systems An Introduction

Practice Problems for Final Exam

Nonholonomic Constraints Examples

Columbia University Department of Physics QUALIFYING EXAMINATION

ESM 3124 Intermediate Dynamics 2012, HW6 Solutions. (1 + f (x) 2 ) We can first write the constraint y = f(x) in the form of a constraint

Hamiltonian. March 30, 2013

Dynamics. 1 Copyright c 2015 Roderic Grupen

Classical mechanics of particles and fields

Differential Kinematics

Constraints. Noninertial coordinate systems

Lecture Notes for PHY 405 Classical Mechanics

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

The Principle of Least Action

Consider an ideal pendulum as shown below. l θ is the angular acceleration θ is the angular velocity

7 Pendulum. Part II: More complicated situations

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

POTENTIAL ENERGY AND ENERGY CONSERVATION

HW 6 Mathematics 503, Mathematical Modeling, CSUF, June 24, 2007

MSMS Basilio Bona DAUIN PoliTo

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 8, Fall 2013, equation sheet work in progress

Lecture 13: Forces in the Lagrangian Approach

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

P321(b), Assignement 1

VIBRATING BASE PENDULUM. Math 485 Project team Thomas Bello Emily Huang Fabian Lopez Kellin Rumsey Tao Tao

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g

Physics 8, Fall 2011, equation sheet work in progress

Nonlinear Dynamic Systems Homework 1

where x 0 is arbitrary.

Physics 235 Chapter 4. Chapter 4 Non-Linear Oscillations and Chaos

VTU-NPTEL-NMEICT Project

06. Lagrangian Mechanics II

Constrained motion and generalized coordinates

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form

Principles of Optimal Control Spring 2008

Massachusetts Institute of Technology Department of Physics. Final Examination December 17, 2004

Analytical Mechanics ( AM )

Lecture. Math Dylan Zwick. Spring Simple Mechanical Systems, and the Differential Equations

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D.

PHY 3221 Fall Homework Problems. Instructor: Yoonseok Lee. Submit only HW s. EX s are additional problems that I encourage you to work on.

The distance of the object from the equilibrium position is m.

2.10 Saddles, Nodes, Foci and Centers

PHY6426/Fall 07: CLASSICAL MECHANICS HOMEWORK ASSIGNMENT #1 due by 9:35 a.m. Wed 09/05 Instructor: D. L. Maslov Rm.

Sec. 14.3: Partial Derivatives. All of the following are ways of representing the derivative. y dx

System Control Engineering 0

Physics 5153 Classical Mechanics. Canonical Transformations-1

4.1 Important Notes on Notation

2.3 Calculus of variations

Classical Mechanics and Electrodynamics

Classical Mechanics and Electrodynamics

Nov : Lecture 22: Differential Operators, Harmonic Oscillators

Torque and Simple Harmonic Motion

1 Simple Harmonic Oscillator

Numerical Optimization Algorithms

Rough Plane Analysis. Contents

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

MEM04: Rotary Inverted Pendulum

Phys 7221, Fall 2006: Midterm exam

Parametric Equations and Polar Coordinates

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2

Lecture 6, September 1, 2017

Chapter 14 Periodic Motion

Chapter 10 Notes: Lagrangian Mechanics

ENGI Partial Differentiation Page y f x

Lecture 19: Calculus of Variations II - Lagrangian

Computational Physics (6810): Session 8

Solution Set Five. 2 Problem #2: The Pendulum of Doom Equation of Motion Simple Pendulum Limit Visualization...

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Transcription:

Analytical Mechanics: Variational Principles Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 1 / 71

Agenda Agenda 1 Variational Principle in Statics 2 Variational Principle in Statics under Constraints 3 Variational Principle in Dynamics 4 Variational Principle in Dynamics under Constraints Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 2 / 71

Variational Principle in Statics Statics Variation principle in statics minimize I = U W under constraint minimize I = U W subject to R = 0 Solutions analytically solve δi = 0 numerical optimization (fminbnd or fmincon) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 3 / 71

Variational Principle in Statics Example (simple pendulum) C θ l y m O x mg λ simple pendulum of length l and mass m suspended at point C τ: external torque around C, θ: angle around C Given τ, derive θ at equilibrium. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 4 / 71

Variational Principle in Statics Statics in variational form U W potential energy work done by external forces/torques Variational principle in statics Internal energy I = U W reaches to its minimum at equilibrium: I = U W minimum Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 5 / 71

Variational Principle in Statics Statics in variational form Solutions: 1 Solve minimize I = U W analytically 2 Solve minimize I = U W numerically 3 Solve δi = 0 analytically Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 6 / 71

Variational Principle in Statics Example (simple pendulum) C θ l y O x m mg λ U = mgl(1 cos θ), W = τθ I = mgl(1 cos θ) τθ Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 7 / 71

Variational Principle in Statics Example (simple pendulum) Solve analytically minimize I = mgl(1 cos θ) τθ I = mgl sin θ τ = 0 θ Equilibrium of moment around C Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 8 / 71

Variational Principle in Statics Example (simple pendulum) Solve numerically minimize I = mgl(1 cos θ) τθ ( π θ π) Let m = 0.01, l = 2.0, g = 9.8, τ = 0.1 Apply fminbnd to minimize a function numerically Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 9 / 71

Variational Principle in Statics Example (simple pendulum) File internal_energy_simple_pendulum.m function I = internal_energy_simple_pendulum(theta) global mass; global length; global grav; global tau; end U = mass*grav*length*(1-cos(theta)); W = tau*theta; I = U - W; Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 10 / 71

Variational Principle in Statics Example (simple pendulum) File internal_energy_simple_pendulum_min.m global mass; global length; global grav; global tau; mass = 0.01; length = 2.0; grav = 9.8; tau = 0.1; [thetamin, Imin] =... fminbnd(@internal_energy_simple_pendulum, -pi, pi); thetamin Imin Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 11 / 71

Variational Principle in Statics Example (simple pendulum) Result: >> internal_energy_simple_pendulum_min thetamin = 0.5354 Imin = -0.0261 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 12 / 71

Variational Principle in Statics Example (simple pendulum) Solve analytically δi = 0 I = mgl(1 cos θ) τθ I + δi = mgl(1 cos(θ + δθ)) τ(θ + δθ) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 13 / 71

Variational Principle in Statics Example (simple pendulum) Note that cos(θ + δθ) = cos θ (sin θ)δθ: I = mgl(1 cos θ) τθ I + δi = mgl(1 cos θ + (sin θ)δθ) τ(θ + δθ) δi = mgl(sin θ)δθ τδθ = (mgl sin θ τ)δθ 0, δθ mgl sin θ τ = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 14 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) C R<0 y l R=0 m R>0 O x mg λ simple pendulum of length l and mass m suspended at point C [ x, y ] T : position of mass [ f x, f y ] T : external force applied to mass Given [ f x, f y ] T, derive [ x, y ] T at equilibrium. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 15 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) C R<0 y l R=0 m R>0 O x mg λ geometric constraint distance between C and mass = l R = { x 2 + (y l) 2} 1/2 l = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 16 / 71

Variational Principle in Statics under Constraints Statics under single constraint U W R potential energy work done by external forces/torques geometric constraint Variational principle in statics Internal energy U W reaches to its minimum at equilibrium under geometric constraint R = 0: minimize U W subject to R = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 17 / 71

Variational Principle in Statics under Constraints Statics under single constraint Solutions: 1 Solve minimize U W subject to R = 0 analytically 2 Solve minimize U W subject to R = 0 numerically Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 18 / 71

Variational Principle in Statics under Constraints Statics under single constraint Solve minimize U W subject to R = 0 analytically minimize I = U W λr λ: Lagrange s multiplier δi = δ(u W λr) = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 19 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) C R<0 y l R=0 m R>0 O x mg λ U = mgy, W = f x x + f y y R = { x 2 + (y l) 2} 1/2 l Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 20 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) [ {x I = mgy (f x x + f y y) λ 2 + (y l) 2} ] 1/2 l Note that δr = R x δx + R y δy, where R x = R x = x { x 2 + (y l) 2} 1/2 R y = R y = (y l) { x 2 + (y l) 2} 1/2 δi = mg δy f x δx f y δy λr x δx λr y δy = ( f x λr x )δx + (mg f y λr y )δy 0, δx, δy Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 21 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) f x λr x = 0 mg f y λr y = 0 [ 0 mg ] + [ fx f y ] + λ [ Rx R y ] = [ 0 0 ] [ 0 mg ] grav. force, [ fx f y ] ext. force, [ Rx λ R y ] constraint force gradient vector ( to R = 0) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 22 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) three equations w.r.t. three unknowns x, y, and λ: f x λr x = 0 mg f y λr y = 0 R = 0 we can determine position of mass [ x, y ] T and magnitude of constraint force λ Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 23 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) Note I = U W λr = U (W + λr) C y θ l R=-1 R=0 R=1 R=2 m λ R magnitude of a constraint force distance along the force constraint force contour R = constant O x mg λ λr work done by a constraint force W + λr work done by external & constraint forces Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 24 / 71

Variational Principle in Statics under Constraints Statics under single constraint Solve numerically minimize I = U W subject to R = 0 Let m = 0.01, l = 2.0, g = 9.8, f x = 0.1, f y = 0.2 Apply fmincon to minimize a function numerically under constraints Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 25 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) File internal_energy_pendulum_cartesian.m function I = internal_energy_pendulum_cartesian (q) global mass; global grav; global fx; global fy; x = q(1); y = q(2); U = mass*grav*y; W = fx*x + fy*y; I = U - W; end Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 26 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) File nonlcon.m function [ineq, cond] = nonlcon (q) global length; x = q(1); y = q(2); R = sqrt(x^2+(y-length)^2)-length; ineq = []; cond = [R]; end Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 27 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) File internal_energy_pendulum_cartesian_min.m global mass; global length; global grav; global fx; global fy; mass = 0.01; length = 2.0; grav = 9.8; fx = 0.1; fy = 0.2; qinit = [0;0]; [qmin, Imin] = fmincon(@internal_energy_pendulum_cartesian qinit, [],[], [],[], [],[], @nonlcon); qmin fmin Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 28 / 71

Variational Principle in Statics under Constraints Example (pendulum in Cartesian coordinates) Result: >> internal_energy_pendulum_cartesian_min Local minimum found that satisfies the constraints. <stopping criteria details> qmin = 1.4001 3.4281 Imin = -0.4897 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 29 / 71

Variational Principle in Statics under Constraints Statics under multiple constraints U W R 1, R 2 potential energy work done by external forces/torques geometric constraints Variational principle in statics Internal energy U W reaches to its minimum at equilibrium under geometric constraints R 1 = 0 and R 2 = 0: minimize U W subject to R 1 = 0, R 2 = 0 δi = δ(u W λ 1 R 1 λ 2 R 2 ) = 0 λ 1, λ 2 : Lagrange s multipliers Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 30 / 71

Variational Principle in Dynamics Dynamics Lagrangian L = T U + W L = T U + W + λr (under constraint) Lagrange equations of motion L q d L dt q = 0 Solutions numerical ODE solver (ode45) constraint stabilization method (CSM) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 31 / 71

Variational Principle in Dynamics Example (simple pendulum) C θ l y m O x mg λ simple pendulum of length l and mass m suspended at point C τ: external torque around C at time t, θ: angle around C at time t Derive the motion of the pendulum. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 32 / 71

Variational Principle in Dynamics Dynamics in variational form T U W kinetic energy potential energy work done by external forces/torques Lagrangian L = T U + W Lagrange equation of motion L θ d L dt θ = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 33 / 71

Variational Principle in Dynamics Example (simple pendulum) C θ l y m O x mg λ T = 1 2 (ml 2 ) θ 2 U = mgl(l cos θ), W = τθ Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 34 / 71

Variational Principle in Dynamics Example (simple pendulum) Lagrangian L = 1 2 (ml 2 ) θ 2 mgl(l cos θ) + τθ partial derivatives L θ = mgl sin θ + τ, L Lagrange equation of motion θ = (ml 2 ) θ d L = ml 2 θ dt θ mgl sin θ + τ ml 2 θ = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 35 / 71

Variational Principle in Dynamics Example (simple pendulum) Equation of the pendulum motion ml 2 θ = mgl sin θ + τ Canonical form of ordinary differential equation θ = ω ω = 1 (τ mgl sin θ) ml 2 can be solved numerically by an ODE solver Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 36 / 71

Variational Principle in Dynamics Example (simple pendulum) Let m = 0.01, l = 2.0, g = 9.8 and τ(t) = 0 File pendulum_ode.m function dotq = pendulum_ode (t,q) global mass; global length; global grav; theta = q(1); omega = q(2); dottheta = omega; dotomega = 1/(mass*length*length)*... (external_torque(t) - mass*grav*length*sin(theta)); dotq = [dottheta; dotomega]; end Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 37 / 71

Variational Principle in Dynamics Example (simple pendulum) File external_torque.m function tau = external_torque(t) tau = 0; end File pendulum.m global mass; global length; global grav; mass = 0.01; length = 2.0; grav = 9.8; interval = [0, 10]; qinit = [pi/3; 0]; % [ theta(0); omega(0) ] [time, q] = ode45(@pendulum_ode, interval, qinit); plot(time, q(:,1)); Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 38 / 71

Variational Principle in Dynamics Example (simple pendulum) Result: >> pendulum >> Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 39 / 71

Variational Principle in Dynamics Example (simple pendulum) Graphs: plot(time, q(:,1)); saveas(gcf, pendulum_theta.png ); plot(time, q(:,2)); saveas(gcf, pendulum_omega.png ); plot(q(:,1), q(:,2)); saveas(gcf, pendulum_phase.png ); Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 40 / 71

Variational Principle in Dynamics Example (simple pendulum) t θ (pendulum theta.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 41 / 71

Variational Principle in Dynamics Example (simple pendulum) t ω (pendulum omega.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 41 / 71

Variational Principle in Dynamics Example (simple pendulum) θ ω (phase plot) (pendulum phase.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 41 / 71

Variational Principle in Dynamics Example (pendulum with viscous friction) Assumptions viscous friction around supporting point C works viscous friction causes a negative torque around C magnitude of the torque is proportional to angular velocity viscous friction torque = b θ (b: positive constant) Replacing τ by τ b θ: (ml 2 ) θ = (τ b θ) mgl sin θ θ = ω ω = 1 (τ bω mgl sin θ) ml 2 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 42 / 71

Variational Principle in Dynamics Example (pendulum with viscous friction) Let m = 0.01, l = 2.0, g = 9.8, b = 0.01 and τ(t) = 0 File pendulum_viscous_ode.m function dotq = pendulum_viscous_ode (t,q) global mass; global length; global grav; global viscous; theta = q(1); omega = q(2); dottheta = omega; dotomega = 1/(mass*length*length)*... (external_torque(t) - mass*grav*length*sin(theta).. - viscous*omega); dotq = [dottheta; dotomega]; end Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 43 / 71

Variational Principle in Dynamics Example (pendulum with viscous friction) File pendulum_viscous.m global mass; global length; global grav; global viscous; mass = 0.01; length = 2.0; grav = 9.8; viscous = 0.01; interval = [0, 10]; qinit = [pi/3; 0]; % [ theta(0); omega(0) ] [time, q] = ode45(@pendulum_viscous_ode,... interval, qinit); plot(time, q(:,1)); saveas(gcf, pendulum_viscous_theta.png ); plot(time, q(:,2)); saveas(gcf, pendulum_viscous_omega.png ); plot(q(:,1), q(:,2)); saveas(gcf, pendulum_viscous_phase.png ); Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 44 / 71

Variational Principle in Dynamics Example (pendulum with viscous friction) t θ (pendulum viscous theta.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 45 / 71

Variational Principle in Dynamics Example (pendulum with viscous friction) t ω (pendulum viscous omega.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 45 / 71

Variational Principle in Dynamics Example (pendulum with viscous friction) θ ω (phase plot) (pendulum viscous phase.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 45 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) C R<0 y l R=0 m R>0 O x mg λ simple pendulum of length l and mass m suspended at point C [ x, y ] T : position of mass at time t [ f x, f y ] T : external force applied to mass at time t Derive the motion of the pendulum in Cartesian coordinates. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 46 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) C R<0 y l R=0 m R>0 O x mg λ geometric constraint distance between C and mass = l R = { x 2 + (y l) 2} 1/2 l = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 47 / 71

Variational Principle in Dynamics under Constraints Dynamics under single constraint T U W kinetic energy potential energy work done by external forces/torques Lagrangian Lagrange equations of motion L = T U + W + λr L x d L dt ẋ = 0 L y d L dt ẏ = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 48 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) C θ l y m O x mg λ T = 1 2 m{ẋ 2 + ẏ 2 } U = mgy, W = f x x + f y y R = { x 2 + (y l) 2} 1/2 l Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 49 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) Lagrangian L = 1 [ {x 2 m{ẋ 2 + ẏ 2 } mgy + f x x + f y y + λ 2 + (y l) 2} ] 1/2 l partial derivatives L x = f x + λr x, L y = mg + f y + λr y, Lagrange equations of motion L ẋ = mẋ L ẏ = mẏ f x + λr x mẍ = 0 mg + f y + λr y mÿ = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 50 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) Lagrange equations of motion [ ] [ ] 0 fx + + λ mg f y [ Rx R y ] + { [ ẍ m ÿ gravitational external constraint inertial dynamic equilibrium among forces ]} = [ 0 0 ] Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 51 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) three equations w.r.t. three unknowns x, y, and λ: mẍ = f x + λr x mÿ = mg + f y + λr y R = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 52 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) three equations w.r.t. three unknowns x, y, and λ: mẍ = f x + λr x mÿ = mg + f y + λr y R = 0 Mixture of differential and algebraic equations Difficult to solve the mixture of differential and algebraic equations Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 52 / 71

Variational Principle in Dynamics under Constraints Constraint stabilization method (CSM) Constraint stabilization convert algebraic eq. to its almost equivalent differential eq. algebraic eq. R = 0 differential eq. R + 2α Ṙ + α 2 R = 0 (α: large positive constant) critical damping (converges to zero most quickly) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 53 / 71

Variational Principle in Dynamics under Constraints Constraint stabilization method (CSM) Dynamic equation of motion under geometric constraint: differential eq. L q d L dt q = 0 algebraic eq. R = 0 differential eq. L q d L dt q = 0 differential eq. R + 2α Ṙ + α 2 R = 0 can be solved numerically by an ODE solver. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 54 / 71

Variational Principle in Dynamics under Constraints Computing equation for constraint stabilization Assume R depends on x and y: R(x, y) = 0 Differentiating R(x, y) w.r.t time t: Ṙ = R x dx dt + R dy y dt = R xẋ + R y ẏ Differentiating R x (x, y) and R y (x, y) w.r.t time t: Ṙ x = R x x Ṙ y = R y x Second order time derivative: dx dt + R x dy y dt = R xxẋ + R xy ẏ dx dt + R y dy y dt = R yxẋ + R yy ẏ R = (Ṙxẋ + R x ẍ) + (Ṙyẏ + R y ÿ) = (R xx ẋ + R xy ẏ)ẋ + R x ẍ + (R yx ẋ + R yy ẏ)ẏ + R y ÿ Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 55 / 71

Variational Principle in Dynamics under Constraints Computing equation for constraint stabilization Second order time derivative: R = [ ] [ ] ẍ R x R y ÿ + [ ẋ ẏ ] [ R xx R xy R yx R yy Equation to stabilize constraint: [ ] [ ] ẍ R x R y = [ ẋ ẏ ] [ R xx R xy ÿ R yx R yy + 2α(R x ẋ + R y ẏ) + α 2 R ] [ ẋ ẏ ] [ ẋ ẏ ] ] [ ] [ ] v R x R x y v y v x = ẋ, vy = ẏ = [ ] [ R v x v xx R xy y R yx R yy + 2α(R x v x + R y v y ) + α 2 R ] [ vx v y ] Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 56 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) Equation for stabilizing constraint R(x, y) = 0: R x v x R y v y = C(x, y, v x, v y ) where and C(x, y, v x, v y ) = [ ] [ R v x v xx R xy y R yx R yy + 2α(R x v x + R y v y ) + α 2 R ] [ vx v y ] P = {x 2 + (y l) 2 } 1/2, R x = xp, R y = (y l)p R xx = P x 2 P 3, R yy = P (y l) 2 P 3 R xy = R yx = x(y 1)P 3 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 57 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) Combining equations of motion and equation for constraint stabilization: ẋ = v x m R x m R y R x R y v x v y λ ẏ = v y = f x mg + f x C(x, y, v x, v y ) five equations w.r.t. five unknown variables x, y, v x, v y and λ given x, y, v x, v y = ẋ, ẏ, v x, v y This canonical ODE can be solved numerically by an ODE solver. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 58 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) Let m = 0.01, l = 2.0, g = 9.8, α = 1000 and f x (t) = 0, f y (t) = 0 File pendulum_cartesian_ode.m function dotq = pendulum_cartesian_ode (t,q) global mass; global length; global grav; global alpha; x = q(1); y = q(2); vx = q(3); vy = q(4); dotx = vx; doty = vy; R = sqrt(x^2+(y-length)^2) - length; P = 1/sqrt(x^2+(y-length)^2); Rx = x*p; Ry = (y-length)*p; Rxx = P - x^2*p^3; Ryy = P - (y-length)^2*p^3; Rxy = -x*(y-length)*p^3; C = [vx,vy]*[rxx, Rxy; Rxy, Ryy]*[vx;vy]... + 2*alpha*(Rx*vx + Ry*vy)... + 2*alpha^2*R; Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 59 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) A = [mass, 0, -Rx; 0, mass, -Ry; -Rx, -Ry, 0]; b = [ 0; -mass*grav; C ]; s = A \ b; dotvx = s(1); dotvy = s(2); dotq = [dotx; doty; dotvx; dotvy]; end Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 60 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) File pendulum_cartesian.m global mass; global length; global grav; mass = 0.01; length = 2.0; grav = 9.8; global alpha; alpha = 1000; interval = [0, 10]; qinit = [length*sin(pi/3); length*(1-cos(pi/3)); 0; 0]; [time, q] = ode45(@pendulum_cartesian_ode,... interval, qinit); plot(time,q(:,1), -, time,q(:,2), -- ); saveas(gcf, pendulum_cartesian_x_y.png ); Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 61 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) plot(time,q(:,3), -, time,q(:,4), -- ); saveas(gcf, pendulum_cartesian_vx_vy.png ); plot(q(:,1), q(:,2)); saveas(gcf, pendulum_cartesian_path.png ); angle = atan2(q(:,1), length-q(:,2)); plot(time, angle); saveas(gcf, pendulum_cartesian_computed_angle.png ); R = sqrt(q(:,1).^2 + (q(:,2)-length).^2)-length; plot(time, R); saveas(gcf, pendulum_cartesian_r.png ); Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 62 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) t x, y (pendulum Cartesian x y.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 63 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) t v x, v y (pendulum Cartesian vx vy.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 63 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) x y (pendulum Cartesian path.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 63 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) t computed θ (pendulum Cartesian computed angle.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 63 / 71

Variational Principle in Dynamics under Constraints Example (pendulum in Cartesian coordinates) t constraint R (pendulum Cartesian R.png) Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 63 / 71

Variational Principle in Dynamics under Constraints Notice Lagrangian L = T U + W + λr = T (U W λr) = T I Lagrangian is equal to the difference between kinetic energy and internal energy under a constraint Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 64 / 71

Summary Summary Variational principles statics I = U W statics under constraint I = U W λr dynamics L = T U + W δi 0 dynamics under constraint L = T U + W + λr constraint stabilization method L q d L dt q = 0 Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 65 / 71

Summary Summary How to solve a static problem Solve (nonlinear) equations originated from variation or Numerically minimize internal energy How to solve a dynamic problem Step 1 Derive Lagrange equations of motion analytically Step 2 Solve the derived equations numerically Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 66 / 71

Summary Numerical Simulation Report # 1 due date : Nov. 12 (Mon) 1 Simulate the dynamic motion of a simple pendulum described with angle θ. Apply any ODE solver to solve the equation of motion numerically. 2 Simulate the dynamic motion of a simple pendulum described with Cartesian coordinates x and y under one geometric constraint. Apply constraint stabilization method to convert the constraint into its almost equivalent ODE, then apply any ODE solver to solve a set of ODEs (equations of motion and equation for constraint stabilization) numerically. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 67 / 71

Appendix Appendix: Variational calculus Small virtual deviation of variables or functions. y = x 2 Let us change variable x to x + δx, then variable y changes to y + δy accordingly. Thus y + δy = (x + δx) 2 = x 2 + 2x δx + (δx) 2 = x 2 + 2x δx δy = 2x δx Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 68 / 71

Appendix Appendix: Variational calculus Small virtual deviation of variables or functions. I = T 0 {x(t)} 2 dt Let us change function x(t) to x(t) + δx(t), then variable I changes to I + δi accordingly. I + δi = = T 0 T 0 {x(t) + δx(t)} 2 dt {x(t)} 2 + 2x(t) δx(t) dt Thus δi = T 0 2x(t) δx(t) dt Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 69 / 71

Appendix Appendix: Variational calculus Variational operator δ δθ δf (θ) virtual deviation of variable θ virtual deviation of function f (θ) virtual increment of variable increment of function simple examples δ(5x) = 5 δx δ sin θ = (cos θ) δθ, δf (θ) = f (θ)δθ θ θ + δθ f (θ) f (θ + δθ) = f (θ) + f (θ)δθ f (θ) f (θ) + δf (θ) δx 2 = 2x δx δ cos θ = ( sin θ) δθ Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 70 / 71

Appendix Appendix: Variational calculus Variational operator δ δθ δf (θ) virtual deviation of variable θ virtual deviation of function f (θ) virtual increment of variable increment of function simple examples δ(5x) = 5 δx δ sin θ = (cos θ) δθ, δf (θ) = f (θ)δθ θ θ + δθ f (θ) f (θ + δθ) = f (θ) + f (θ)δθ f (θ) f (θ) + δf (θ) δx 2 = 2x δx δ cos θ = ( sin θ) δθ Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 70 / 71

Appendix Appendix: Variational calculus assume that θ depends on time t virtual increment of function θ(t) θ(t) + δθ(t) dθ dt d dθ (θ + δθ) = dt dt + d dt δθ θ dt (θ + δθ) dt = θ dt + δθ dt variation of derivative and integral δ δ dθ dt = d dt δθ θ dt = δθ dt variational operator and differential/integral operator can commute Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Variational Principles 71 / 71