Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Similar documents
Neutrinos as a Unique Probe: cm

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos: status, models, string theory expectations

Frontiers in Neutrino Physics

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrinos and Astrophysics

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrino masses respecting string constraints

Overview of cosmological constraints on neutrino mass, number, and types

Status and prospects of neutrino oscillations

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Neutrino Physics: Lecture 12

Sterile Neutrinos from the Top Down

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Sterile Neutrinos in July 2010


Sterile Neutrinos from the Top Down

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Alternatives to the GUT Seesaw

Neutrino Anomalies & CEνNS

Neutrino Mass Models

A. Yu. Smirnov. A. Yu. Smirnov

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Is the Neutrino its Own Antiparticle?

Status and Phenomenology of the Standard Model

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Is the Neutrino its Own Antiparticle?

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Yang-Hwan, Ahn (KIAS)

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos as Probes of new Physics

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

A Novel and Simple Discrete Symmetry for Non-zero θ 13

Overview of mass hierarchy, CP violation and leptogenesis.

Impact of light sterile!s in LBL experiments "

Overview of Reactor Neutrino

Fundamentals of Neutrino Physics and Astrophysics

Updating the Status of Neutrino Physics

Particle Physics: Neutrinos part II

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

On Minimal Models with Light Sterile Neutrinos

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Sterile Neutrinos. Carlo Giunti

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillations

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Sensitivity to sterile ν mixings at a ν Factory --Side business of a ν Factory --

Relic Supernova νʻs. Stanley Wojcicki

NEUTRINOS II The Sequel

Neutrino Oscillations

Grand Unification Theories

RG evolution of neutrino parameters

Beyond the Standard Model

The NOνA Experiment and the Future of Neutrino Oscillations

The Matter-Antimatter Asymmetry and New Interactions

1 Neutrinos. 1.1 Introduction

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

Status of Light Sterile Neutrinos Carlo Giunti

Neutrino Oscillations

arxiv:hep-ph/ v1 26 Jul 2006

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

Yang-Hwan, Ahn (KIAS)

Updated three-neutrino oscillation parameters from global fits

Non-zero Ue3, Leptogenesis in A4 Symmetry

Solar and atmospheric ν s

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Status of Light Sterile Neutrinos Carlo Giunti

Massive Neutrinos and (Heterotic) String Theory

Particle Physics: Neutrinos part I

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Testing the low scale seesaw and leptogenesis

Oscillations Beyond Three-Neutrino Mixing (Status of Light Sterile Neutrinos) Carlo Giunti

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

DAEδALUS. Janet Conrad LNS Seminar March 16, 2010

Brave ν World. Northwestern University. Colloquium University of Virginia. April 27, 2018

Introduction to Neutrino Physics

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Phenomenological Status of Neutrino Mixing

eutrino oscillations - Wikipedia, the free encyclopedia

New Physics from the String Vacuum

Neutrino Mass in Strings

Neutrinos in Supernova Evolution and Nucleosynthesis

Supersymmetry, Dark Matter, and Neutrinos

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Neutrino Oscillation and CP violation

Brave ν World. Northwestern University. University of Mississippi Colloquium. March 18, 2014

Yang-Hwan Ahn Based on arxiv:

Weak Interactions and Neutrinos in the LHC Era

Particle Physics: Neutrinos part II

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Neutrinos & Large Extra Dimensions. Renata Zukanovich Funchal Universidade de São Paulo, Brazil

Transcription:

Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K KamLAND 95% Super-K 95% Neutrinos as a Probe Electroweak Interactions of Neutrinos Mass, Mixing, and Intrinsic Properties Neutrino Oscillations Models Outstanding Issues 10 12 ν µ All limits are at 90%CL unless otherwise noted 10 4 10 2 10 0 tan 2 θ 10 2 Reference: The Standard Model and Beyond, CRC Press http://hitoshi.berkeley.edu/neutrino

Neutrino Counting Invisible Z width: N ν = 3 + N ν N ν = 0.015(9) (also counts light ν (1/2), triplet Majoron + scalar (2), etc.) Cosmology: big bang nucleosynthesis, large scale structure

Dirac or Majorana ββ 0ν nn ppe e (m ββ i U 2 ei m i) Magnetic or electric dipole moments Dirac: may have diagonal ( νσ αβ νf αβ ) or transition ( ν i σ αβ ν j F αβ, i j) moments Majorana: only transition moments (diagonal Dirac from off-diagonal Majorana) One loop (Dirac): µ i 3eG F m i 8 3.2 10 ( 19 m i 2π 2 (much larger in some models) Laboratory, astrophysical limits: µ < 10 10 10 12 µ B 1 ev) µb p e e p n m ee ev 10 0 10 1 10 2 10 3 10 4 W m ββ W General theory prediction Disfavored by 0ΝΒΒ decay m 2 31 0 IO m 2 31 0 NO Disfavored by cosmology 10 4 10 3 10 2 10 1 10 0 m ev Winter, 1004.4160 n

Tritium β spectrum (KATRIN) m ( i U 2 ei m2 i Absolute Mass Scale ) 1/2 2 ev 0.2 ev Large scale structure: Σ i m i (0.5 1) ev O(0.05) ev If ββ 0ν observed (m ββ 0.01 ev) inverted or degenerate

Neutrino Oscillations and Propagation The two flavor case: }{{} weak = ν 1 cos θ + ν 2 sin θ, ν }{{} µ = ν 1 sin θ + ν 2 cos θ mass t = 0: ν(0) = ν µ (from π + µ + ν µ ) t > 0: ν(t) = ν 1 sin θe ie1t + ν 2 cos θe ie 2t [ ] ν 1 sin θe im2 1 t 2E + ν2 cos θe im2 2 t 2E e iet

Probability of oscillating to (appearance experiment) P νµ (L) = ν(t) 2 = sin 2 θ cos 2 θ ( m = sin 2 2θ sin 2 2 ) L 4E e im m 2 L/4E large 2 1 t 2E t + e im2 2 t 2 2E t 1 2 sin2 2θ µ+ π + ν µ L e ν e p m 2 = m 2 2 m2 1, Oscillation length: L osc = 4πE m 2 L t Survival probability (disappearance experiment): P νµ ν µ (L) = 1 P νµ (L)

Three or More Families ν(0) = ν a }{{} weak = i U ai ν i }{{} mass ν(t) i U ai ν i e im2 i t 2E P νa ν b (L) = ν b ν(t) 2 =δ ab 4 Re ( ( ) U ai U biu aj U ) bj sin 2 ij L 4E i<j + 2 Im ( ( ) U ai U biu aj U ) ij L bj sin }{{} 2E i<j CP violating ij m 2 i m2 j Rephasing invariant

Antineutrinos P νal ν bl (L) =δ ab 4 Re ( ( ) U ai U biu aj U ) bj sin 2 ij L 4E i<j +2 Im ( ( ) U ai U biu aj U ) ij L bj sin }{{} 2E i<j CP violating P νal ν bl (L) U U P νbl ν al (L) P ν c ar ν c br (L) = P ν bl ν al (L) (by CP T ) =δ ab 4 i<j Re ( U ai U biu aj U bj 2 i<j Im ( U ai U biu aj U bj ( ) ) sin 2 ij L 4E ( ) ) ij L sin 2E

Propagation in Matter Coherent forward scattering in matter potential (cf optics) Two flavor oscillations in vacuum: ν(t) = a c a(t) ν a i d dt ( ca (t) c b (t) ) = m2 4E ( ) ( cos 2θ sin 2θ ca (t) sin 2θ cos 2θ c b (t) ) In matter (different interactions of ν a and ν b ): ν µ e e e Z W Z ν µ e e e

i d dt ( ca (t) c b (t) ) = n = m2 4E cos 2θ + G F 2 n m 2 4E sin 2θ m 2 4E m 2 4E sin 2θ cos 2θ G F n e for L ν µl, ν τ L 0 for ν µl ν τ L n e 2 1n n for 1 2 n n for L νl c ν µl, ν τ L νl c 2 n ( ca (t) c b (t) ) Signs reversed for ν c R, ν R Solar (MSW), atmospheric (not sterile; (hierarchy), supernovae also WNC), long baseline MINOS vs νr c : new flavor-dependent matter interaction? (to mimic CP T violation)

Long Baseline (LBL) Oscillation Experiments 3 ν oscillations, small s 13 and m 2 (Akhmedov et al, JHEP 04, 078): P ν µ νe = α 2 sin 2 2θ 12 c 2 sin 2 A 23 + 4 s 2 sin 2 (A 1) A 2 13 s2 23 (A 1) 2 where α = + 2 α s 13 sin 2θ 12 sin 2θ 23 cos( + δ) m2 m 2 Atm 0.03, δ δ and A A for P νµ, A > 0 (normal),, A < 0 (inverted) sin A A sin(a 1) A 1 = m2 Atm L 4E, A = 2 2EGF n e m }{{ 2 Atm } matter In principle, determine s 13, δ, hierarchy (easier if s 13 from reactor)

Sterile Neutrinos CDHSW 10 0 KARMEN2 NOMAD MiniBooNE Bugey NOMAD CHORUS NOMAD CHORUS LSND 90/99% 1 st class oscillations: ν a ν b, both active m 2 [ev 2 ] 10 3 10 6 10 9 10 12 Cl 95% Ga 95% CHOOZ all solar 95% SNO 95% ν X ν µ ν τ ν τ ν µ All limits are at 90%CL unless otherwise noted SuperK 90/99% MINOS 10 4 10 2 10 0 tan 2 θ http://hitoshi.berkeley.edu/neutrino K2K KamLAND 95% Super-K 95% 10 2 2 nd class: active sterile LSND: third ij sterile ν s LSND + MiniBooNE: sterile ν s and CP violation (but reactor, accelerator disappearance; other appearance; cosmology?) ν c L appearance (need new interactions) Non-orthogonal light neutrinos (from mixing with heavy)

m2 atm m 2 LSND m 2 LSND m 2 m 2 atm m 2

Models No unbroken gauge symmetry forbids Majorana mass for active ν s Seesaw leptogenesis (heavy ν 2M decay in Type I) But New TeV physics or string constraints may forbid seesaw Appropriate masses not automatic (e.g., SO(10) Higgs 126 or HDO) so that Majorana may be negligible Alternative baryogenesis (e.g., electroweak) Other plausible mechanisms for both Majorana and Dirac (especially in strings) Type, mechanism, scale is open question

Small Dirac masses Usually forbid bare mass (string? U(1)?) Higher dimensional operator (m D ν ϕ S /M P ) Large extra dimension (wave function overlap) String instanton Non-holomorphic soft h ν ν R φ 0 ν R φ S φ 0 φ S

Small Majorana masses The Standard Electroweak Theory Higgs triplet (spontaneous L excluded) Stringy Weinberg operator h T νl φ 0 T φ 0 φ 0 φ 0 φ 0 Heavy ν R (Type I seesaw) Heavy Higgs triplet (Type II seesaw) φ S ν R ν R h S h T φ 0 T κ Loops (new scalars) TeV (extended) seesaws φ 0 φ 0 φ 0 φ 0 φ 0 φ 0 R P violation φ 0 Typeset by FoilTEX ν µl e e L h φ φ 0

Outstanding Issues (intrinsic properties) Scale of underlying physics? (string, GUT, TeV?) Mechanism? (seesaw, LED, HDO, stringy instanton?) Hierarchy, U e3, leptonic CP violation? (mechanism, leptogenesis) Absolute mass scale? (cosmology) Dirac or Majorana? (mechanism, scale, leptogenesis) Baryon asymmetry? (leptogenesis, electroweak baryogenesis, other?)

Outstanding Issues (intrinsic properties) Scale of underlying physics? (string, GUT, TeV?) (LHC, flavor) Mechanism? (seesaw, LED, HDO, stringy instanton?)(indirect: LHC) Hierarchy, U e3, leptonic CP violation? (mechanism, leptogenesis) (long baseline, reactor, ββ 0ν, supernova) Absolute mass scale? (cosmology) (β decay, cosmology, ββ 0ν, supernova) Dirac or Majorana? (mechanism, scale, leptogenesis) (ββ 0ν ) Baryon asymmetry? (leptogenesis, electroweak baryogenesis, other?) (indirect: LHC)

Other Topics Puzzles/anomalies (LSND, NuTeV, MiniBooNE, GSI, MINOS) Quantum subtleties Sterile ν models/constraints ν decay Decoherence Non-standard interactions Heavy ν s CP T, Lorentz, equivalence violation FCNC (associated ν, l) R P violation Mass-varying ν s Time-varying ν s Correlated LHC physics Model approaches (GUTs, family symmetries, string instantons/hdos, textures, anarchy, bimaximal, tri-bimaximal, discrete S4/A4)

Neutrino Spectra ν Oscillations P νa ν b = sin 2 2θ sin 2 ( m 2 L 4E ) 10 0 KARMEN2 NOMAD MiniBooNE Bugey NOMAD CDHSW CHORUS NOMAD CHORUS LSND 90/99% 3 ν Patterns Solar: LMA (SNO, KamLAND, Borexino) m 2 8 10 5 ev 2, mixing large but nonmaximal Atmospheric + K2K + MINOS: m 2 Atm 2.4 10 3 ev 2, near-maximal mixing Reactor: U e3 small (U V l ) m 2 [ev 2 ] 10 3 10 6 10 9 10 12 Cl 95% Ga 95% CHOOZ all solar 95% SNO 95% ν X ν µ ν τ ν τ ν µ All limits are at 90%CL unless otherwise noted SuperK 90/99% MINOS 10 4 10 2 10 0 tan 2 θ http://hitoshi.berkeley.edu/neutrino K2K KamLAND 95% Super-K 95% 10 2

Mixings: let ν ± 1 2 (ν µ ± ν τ ): ν 3 ν + ν 2 cos θ ν sin θ ν 1 sin θ ν + cos θ 3 2 m 2 m 2 atm 1 m 2 atm Normal hierarchy 2 1 m2 3 Inverted hierarchy Analogous to quarks, charged leptons ββ 0ν rate very small ββ 0ν if Majorana Degenerate pattern for m m 2

Conclusions Neutrino physics is extremely interesting

Conclusions Neutrino physics is extremely interesting Neutrino physics is extremely difficult