Igor Gontchar, Maria Chushnyakova Omsk, Russia Nucleus 2015

Similar documents
Probing surface diffuseness of nucleus-nucleus potential with quasielastic scattering at deep sub-barrier energies

arxiv:nucl-th/ v1 4 Nov 2003

Presence of Barrier Distributions in Heavy Ion Fusion

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Received 16 June 2015; accepted 30 July 2015

Effect of Barrier Height on Nuclear Fusion

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION

How to do C.C. calculations if there is only limited experimental information on intrinsic degrees of freedom?

X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood

Direct reactions methodologies for use at fragmentation beam energies

POTENTIAL ENERGY OF HEAVY NUCLEAR SYSTEM

(Multi-)nucleon transfer in the reactions 16 O, 3 32 S Pb

Effects of Isospin on Pre-scission Particle Multiplicity of Heavy Systems and Its Excitation Energy Dependence

Woods-Saxon Equivalent to a Double Folding Potential

Sub-barrier fusion enhancement due to neutron transfer

Microscopic description of fission in the neutron-deficient Pb region

Short-Ranged Central and Tensor Correlations. Nuclear Many-Body Systems. Reaction Theory for Nuclei far from INT Seattle

Towards a microscopic theory for low-energy heavy-ion reactions

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons

Reaction Cross Sections and Nucleon Density Distributions of Light Nuclei. Maya Takechi

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Subbarrier fusion reactions with dissipative couplings

Macroscopic properties in low-energy nuclear reactions by microscopic TDDFT

Low-energy reactions involving halo nuclei: a microscopic version of CDCC

Static versus energy-dependent nucleus-nucleus potential for description of sub-barrier fusion

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

Nucleon Transfer within Distorted Wave Born Approximation

Neutron Halo in Deformed Nuclei

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei. scattered particles. detector. solid angle. target. transmitted particles

Entrance Channel Mass Asymmetry Effects in Sub-Barrier Fusion Dynamics by Using Energy

Observables predicted by HF theory

Direct reactions at low energies: Part II Interactions and couplings

Fusion Reactions with Carbon Isotopes

FAVORABLE HOT FUSION REACTION FOR SYNTHESIS OF NEW SUPERHEAVY NUCLIDE 272 Ds

SOME ASPECTS OF TRANSFER REACTIONS IN LIGHT AND HEAVY ION COLLISIONS

Dynamics of Quasifission in TDHF Theory

Microscopic approach to NA and AA scattering in the framework of Chiral EFT and BHF theory

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Entrance-channel potentials in the synthesis of the heaviest nuclei

Nuclear Matter Incompressibility and Giant Monopole Resonances

New Frontiers in Nuclear Structure Theory

Repulsive aspects of pairing correlation in nuclear fusion reaction

Coulomb and nuclear potentials between deformed nuclei

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Stability of heavy elements against alpha and cluster radioactivity

arxiv: v1 [nucl-th] 21 Apr 2007

Eikonal method for halo nuclei

QRPA calculations of stellar weak-interaction rates

Quantum Theory of Many-Particle Systems, Phys. 540

Heavy-Ion Fusion Reactions around the Coulomb Barrier

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Analysis of nuclear structure effects in sub-barrier fusion dynamics using energy dependent Woods-Saxon potential

Quasifission and dynamical extra-push in heavy and superheavy elements synthesis

Radiative-capture reactions

Probing Nuclear Structure of Medium and Heavy Unstable Nuclei and Processes with Helium Isotopes

Charge density distributions and charge form factors of some even-a p-shell nuclei

A program for coupled-channels calculations with all order couplings for heavy-ion fusion reactions arxiv:nucl-th/ v1 30 Mar 1999

Theory Challenges for describing Nuclear Reactions

Fusion Barrier of Super-heavy Elements in a Generalized Liquid Drop Model

Microscopic Fusion Dynamics Based on TDHF

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Nuclear physics: a laboratory for many-particle quantum mechanics or From model to theory in nuclear structure physics

Lecture VI: Neutrino propagator and neutrino potential

Compound and heavy-ion reactions

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF

Nuclear structure Anatoli Afanasjev Mississippi State University

Dissipative nuclear dynamics

Calculations of the Pion-Nucleus Inelastic Cross Sections Using the Microscopic Optical Potential

Nucleus-Nucleus Scattering Based on a Modified Glauber Theory

Nonstatistical fluctuations for deep inelastic processes

Exploring contributions from incomplete fusion in 6,7 Li+ 209 Bi and 6,7 Li+ 198 Pt reactions

Effect of parent and daughter deformation on half-life time in exotic decay

SUB-BARRIER FUSION of HEAVY IONS

Velocity-dependent transverse momentum distribution of projectilelike fragments at 95 MeV/u. Sadao MOMOTA Kochi University of Technology

Capture barrier distributions and superheavy elements

Some new developments in relativistic point-coupling models

RPA and QRPA calculations with Gaussian expansion method

Asymmetry dependence of Gogny-based optical potential

Dynamical features of nuclear fission

Theoretical Study on Alpha-Decay Chains of

arxiv:nucl-th/ v1 23 Mar 2004

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei

Problems in deuteron stripping reaction theories

E438: Study of Σ-Nucleus Potential by the (π -, K + ) Reaction on Heavy Nuclei

Fission dynamics of the compound nucleus 213 Fr formed in heavy-ion-induced reactions

Mass and energy dependence of nuclear spin distributions

Nuclear matter inspired Energy density functional for finite nuc

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

RFSS: Lecture 2 Nuclear Properties

Proton Elastic Scattering and Neutron Distribution of Unstable Nuclei

Awad A. Ibraheem 1,2 ABSTRACT

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Influence of Shell on Pre-scission Particle Emission of a Doubly Magic Nucleus 208 Pb

Di-neutron correlation in Borromean nuclei

Density dependence of the symmetry energy and the nuclear equation of state : A dynamical and statistical model perspective

Investigations on Nuclei near Z = 82 in Relativistic Mean Field Theory with FSUGold

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Transcription:

SYSTEMATIC COMPARISON OF HEAVY-ION FUSION BARRIERS CALCULATED WITHIN THE FRAMEWORK OF THE DOUBLE FOLDING MODEL USING TWO VERSIONS OF NUCLEON-NUCLEON INTERACTION Igor Gontchar, Maria Chushnyakova Omsk, Russia Nucleus 2015

1 Experimental fusion excitation function Fig. 1 [1] Newton et al., Phys. Rev. C 64, 064608 (2001)

2 Theoretical description CCM: Coupled channels model reasonable for the subbarrier cross sections BPM: Single barrier penetration model gives the upper limit of excitation function TMSF: Trajectory model with surface friction accounts for the energy dissipation; moves down the excitation function

3 Double folding potentials with M3Y effective NN (nucleon-nucleon) interaction [2-4] Migdal effective NN interaction [5] [2] Satchler, Love, Phys. Rep. 55, 183 (1979) [3] Bertsch et al., Nucl. Phys. A 284 (1977) 399 [4] Anantaraman et al. Nucl. Phys. A 398 (1983) 269 [5] Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, New York, 1967)

Comparison of our fluctuation-dissipation model with the experiment for a single reaction 4 Fig. 4 [6] Chushnyakova, Bhattacharya, Gontchar, Phys. Rev. C 90, 017603 (2014)

M3Y vs experiment (91 points) 5 Fig. 5 r σ σ / σ = (1) th exp

M3Y vs experiment (91 points) 5 M3Y =>? Migdal Fig. 5 r σ σ / σ = (1) th exp

6 Double folding model with M3Y NN interaction: (, ) = (, ) + (, ) U R E U R E U R E n P nd P ne P U R E g E dr dr r F s r (, ) ( ) ρ ( ) ( ρ ) v ( ) ρ ( ) = nd P P P T AP P v FA D AT T (2) (3) P Fig. 6 Projectile R Target T Density Dependent M3Y 3 ( ) ( ) v ( s) = G [exp s r ] s r D Di vi vi i= 1 (4) [7] Khoa et al., Phys. Rev. C 56, 954 (1997) [8] Gontchar, Chushnyakova, Comp. Phys. Comm. 181 (2010) 168 182

7 Double folding model with Migdal forces: The quote from Zagrebaev et al., Phys. Elem. Part. At. Nucl. 38, 892 (2007).

8 Double folding model with Migdal forces: (5) (6) [5] Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, New York, 1967) [9] Zagrebaev et al., Phys. Elem. Part. At. Nucl. 38, 892 (2007).

9 Two versions of the NN potential 16 O+ 208 Pb Fig. 9

M3Y vs Migdal: 10 Systematic comparison of the barriers Barrier heights Barrier radii (7) 1/3 1/3 ( ) B = Z Z / A + A (8) Z P T P T Fig. 10

Comparison of BPM cross sections with the experimental ones for a single reaction 11 Fig. 11 [1] J. O. Newton et al., Phys. Rev. C 64, 064608 (2001)

Comparison of BPM cross sections with the experimental ones for a single reaction 12 Fig. 12 [1] J. O. Newton et al., Phys. Rev. C 64, 064608 (2001)

Migdal vs experiment (91 points) 13 Fig. 13 r σ σ / σ = (1) th exp

Conclusions 14 The comparison made for 19 reactions with spherical nuclei revealed that the Migdal barriers are always higher by several percent than the M3Y barriers. This results in rather low fusion cross sections calculated with the Migdal forces: most of the calculated cross sections significantly (up to 40%) underestimates the experimental values. Using the Migdal nucleon nucleon interaction with the constants from Ref. [5] for describing fusion (capture) cross sections is questionable. [5] A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, New York, 1967).

Fig. 030. Comparison of the experimental charge density [10] with the calculated one within the Hartree Fock approach with the SKX coefficient set [10] H. de Vries et al., At. Data Nucl. Data Tables 36, 495 (1987)

theor expt rms ( ch th ch exp ) ( ch th ch exp ) δ = 2 ρ ρ / ρ + ρ (20)

The ratio of the calculated rms charge radius Rq th to the experimental one Rq exp [10]. 12 C 16 O 28 Si 32 S Nucleus R / R 1.0199 1.0164 1.0029 0.9987 1.0006 0.9952 0.9994 0.9985 0.9981 q th q exp 36 S 92 Zr 144 Sm 204 Pb 208 Pb [10] H. de Vries et al., At. Data Nucl. Data Tables 36, 495 (1987)

Reactions 12 C+ 92 Zr, 16 O+ 92 Zr, 28 Si+ 92 Zr Expt. data Refs. [1] Newton et al., Phys. Rev. C 64, 064608 (2001) 12 C+ 144 Sm [11] Kossakowski et al., Phys.Rev. C 32, 1612 (1985) [12] Mukherjee, Hinde et al., Phys. Rev. C 75, 044608 12 C+ 208 Pb (2007) 12 C+ 204 Pb [13] Berriman, Hinde et al, Nature (London) 413, 144 (2001) 16 O+ 144 Sm [14] Leigh, Dasgupta et al., Phys. Rev. C 52, 3151 (1995) [15] Morton, Berriman et al., Phys. Rev. C 60, 044608 16 O+ 208 Pb (1999) 16 O+ 204 Pb [16] Dasgupta et al, Phys. Rev. Lett. 99, 192701 (2007) 28 Si+ 208 Pb, 32 S+ 208 Pb [17] Hinde et al., Nucl. Phys. A 592, 271 (1995). 36 S+ 208 Pb [18] Yanez et al., Phys. Rev. C 82, 054615 (2010) 36 S+ 204 Pb [19] Hinde et al., Phys. Rev. C 75, 054603 (2007)

2 Fusion (capture) cross section 2 Lmax π σ = + 2mE R c. m. L= 0 ( 2L 1) T L (1) Single Barrier Penetration Model T L 1 = 1 + exp 2 π / ( U E ) ( ω ) BL c. m. BL (2) Fig. 3

Woods Saxon profile: 3 Un( R) = VWS 1+ exp 1/3 1/3 ( ) R r A + A WS P T a WS 1 (3) P Projectile R Target Fig. 4 T

F U Classical Trajectory Model with the Surface Friction (TMSF) ( ) 2 dp = F + F +Φ dt +ξχ D dt Dq q U cen Dq q t = du dq tot (7) ( ) ( ) Φ = F s Γ t s ds 0 Dq 1 t s Γ( t s) = exp τ τ F (9) cen F L = mq Dq D q 2 2 q 3 q (5) dq = dt (6) (8) 2 pq du n = KR mq dq 2 dun = θkr dq < ξ ( t) >= 0 < ξ ( t ) ξ ( t ) >= Γ( t t ) p m (11) (12) 1 2 1 2 q (10) (13) (14) 4 [2] D.H.E. Gross, H. Kalinowski, Phys. Rep. 45 (1978) 175 [3] P. Fröbrich, Phys. Rep. 116 (1984) 337

5 Fusion (capture) cross section 2 Lmax π σ = + 2mE R c. m. L= 0 ( 2L 1) T L (1) TMSF T L Ncap L = (15) N tot Fig. 5

Two versions of the NN potential 16 O+ 208 Pb

M3Y vs Migdal NN forces Systematic comparison of the fusion barrier parameters: a) height b) radius c) curvature

Classical Trajectory Model with the Surface Friction (TMSF) ( ) 2 dp = F + F +Φ dt +ξχ D dt q U cen Dq q p q (5) dq = dt (6) m q 30 dl = F dt + bχ 2D dt Dϕ ϕ (20) L dϕ = m q dt (21) F ( ) 2 L Ls dun Dϕ = Kϕ m q dq (22) D ϕ du K n = θ ϕ dq 2 (23) [2] D.H.E. Gross, H. Kalinowski, Phys. Rep. 45 (1978) 175 [3] P. Fröbrich, Phys. Rep. 116 (1984) 337

Parameters of the matter distribution 31 R ch [9] I. Angeli, At. Dat. Nucl. Dat. Tables 87 (2004) 185 ach arbitrary R 0ch 3 2 7π a = Rch 5 5 2 2 ch (20) R = R 0ch 0A (22) 2 2 5 2 2 aa = ach r 2 < chp > < rchn > 7π N Z (23)

7 K R = 2-1 2.0 10 MeV zs a AT = 0.510fm F Dq p du n = KR mq dq 2 (10) Fig. 6

32 Gross, Kalinowski (1978) Fröbrich (1984) Potential Single folding Single folding Forces 1) Conservative 2) instant friction 1) Conservative, 2) instant friction 3) dynamical quadrupole deformations TMSF (2014) Double folding with DD M3Y & finite range exchange term 1) Conservative 2) retarding friction 3) thermal fluctuations L continuous continuous discrete Data ~20% ~20% ~1% Agreemen t Figures Figures χ² Density Fermi step Fermi step Microscopical Hartree-Fock approach

34 [7] H. de Vries et al., At. Dat. Nucl. Dat. Tab. 36 (1987) 495 Fig. 9 Parameters of the model: a a v np 2-1 ( ) ( ) K R :1 4 10 MeVzs τ : 0 1 zs aap : ( 0.45 0.60) fm aat F nt ( ρ ) FA a a pp pt

36 RPT = RP + RT R= qr PT (30) (31) p q = pr PT (32) F q = FR PT (33) m m R A A = A A 2 P T q n PT P + T (34)

[6] MC, IG PRC 87 (2013) 014614 (no fluctuations) 8 TMSF DF2 M3Y K R = τ = 0 2-1 2.5 10 MeV zs Fig. 7

9 Parameters of the model: K R = τ <1zs a a AP AT [ ] [ ] 2-1 3.5 10 MeV zs 2 or 2-1 4.0 10 MeV zs 3 : ( 0.45 0.60) fm [2] D.H.E. Gross, H. Kalinowski, Phys. Rep. 45 (1978) 175 [3] P. Fröbrich, Phys. Rep. 116 (1984) 337

11 Fig. 12 [9] ANU data: PRC 52 (1995) 3151 σ exp > 200 mb τ = 0

Fig. 13 12

Fig. 13 12

Fig. 13 12

Fig. 13 12

12 Fig. 13 Dq t 0 Dq ( ) ( ) Φ = F s Γ t s ds (9)

13 O + 16 144 Sm ANU data: J.R. Leigh et al., PRC 52 (1995) 3151 ANU analysis: PRC 70 (2004) 024605 This work (2013) SBPM TMSF Double folding (M3Y Woods-Saxon potential DD6) a = 0.75 fm a = 0.68 fm WS χ = 2 ν 6.3 DF χ = 2 ν 3.4

λ = 2π p = 0.6588 MeV zs (35) (36) 37 O + 16 92 Zr pr 4 MeV zs fm 1 (37) λ =1.0 fm (38) RT = 4.9 fm (39) RT > λ (40)

The Need for Precise Experimental Above-Barrier Cross Sections: 15 Symmetric reactions: C + 12 12 O C + 16 16 O P+ P 32, 34, 36, 38 S+ S Cl + Cl 31 31 37 37 40, 48 40, 48 Ni + Ca 58 58 + Ni Ca Another above-barrier barrier cross sections: 12 28 58 89 C+ Si, Ni, Ca, Y Si + Ni, Zr, Sm, Pb 31 P + spherical nuclei 28 58 92 144 208 32 28 40 58 92 144 S+ Si, Ca, Ni, Zr, Sm 37 Cl + spherical nuclei 40 112,120 144 208 209 Ar + Sn, Sm, Pb, Bi

Double folding model 39 P Projectile U ( R) = U ( R) + U ( R) (41) PT n C R Target Fig. 4 T U ( ) nd R U ( ) ne R Direct part of the nuclear term: U R g dr dr ρ r F ρ v s ρ r (42) ( ) ( ) ( ) ( ) ( ) = nd P T PA P FA D TA T Exchange part of the nuclear term: UnE ( R) = g dr P drt ρpa ( rp ; rp + s ) F ρ v s ρ r ; r s exp ik s A (43) ( ) ( ) ( ) ( ) FA E TA T T rel red

Density dependence: 40 F { } ( ) C 1 exp( ) ρ = + α β ρ γ ρ FA F F F FA F FA ρ = ρ + + ρ ( r s 2) ( r s 2) FA PA P TA T (44) (45) P Fig. 20 T

Density dependence: 41 F { } ( ) C 1 exp( ) ρ = + α β ρ γ ρ (44) FA F F F FA F FA

42 Fig. 22 Fig. 21

( ) ( ) ( ) p0 L = 2 mq Ec. m. UC q0 Un q0 Ucen q0, L (46) 43 ΔR 2 Un( R) = ln 1 + exp A0GK + A1 GK Δ R + A2GK Δ R agk 1/3 1/3 ( ) Δ R = R r A + A r0 GK = 1.30 fm GK P T a GK = 0.61 fm (48) A0 GK = 33 MeV A1 GK = 2 MeV A 2GK = 3 MeV (47) (49)

44 Fig. 23 Fig. 24

Fig. 25 Fig. 26 45

46 2/3 ( ) 1 θ = E a A + a A DP( T ) 1 P( T ) 2 P( T ) (50) a 1 1 = 0.073 MeV 1 a2 = 0.095 MeV p E E E E U [20] A. V. Ignatyuk et al., Yad. Fiz. 21 (1975) 1185 2 2 2 q L D = DP + DT = cm 2 tot 2mq 2mqq 3 ( ) ( ) v ( s) = G [exp s r ] s r D Di vi vi i= 1 3 ( ) ( ) v ( s) = G [exp s r ] s r Ef Ef i vi vi i= 1 v Eδ( s) = GE δδ s ( ) (51) (52) (53)

SBPM DF2 M3Y TMSF DF2 M3Y 47 KR = 3.5 10 zsmev 2 1 [6] J.O. Newton et al., PRC 64 (2001) 064608 [7] J.R. Leigh et al., PRC 52 (1995) 3151 [8] C.R. Morton et al., PRC 60 (1999) 044608 Fig. 27 Fig. 28

48 2 Lmax π σ = + 2mE R c. m. L= 0 ( 2L 1) T L (1) Fig. 29

SYSTEMATIC COMPARISON OF HEAVY-ION FUSION BARRIERS CALCULATED WITHIN THE FRAMEWORK OF THE DOUBLE FOLDING MODEL USING TWO VERSIONS OF NUCLEON-NUCLEON INTERACTION Gontchar I.I. 1, Chushnyakova M.V. 2,3 1 Omsk State Transport University, Omsk, Russia; 2 Omsk State Technical University, Omsk, Russia; 3 Tomsk Polytechnic University, Tomsk, Russia E-mail: vigichar@hotmail.com It was shown in Refs. [1, 2] that the high energy parts of the heavy ion fusion excitation functions can be successfully reproduced within the framework of the double folding approach. The major ingredients of this approach are the nuclear densities and the effective nucleon-nucleon interaction [3]. In [1, 2] the wellknown M3Y NN forces [4, 5] were used. However sometimes in the literature the Migdal NN forces [6] are used to calculate the nucleus-nucleus potential [7, 8]. The question is to what extent the fusion barrier heights are different when calculating interaction potentials within the double folding approach with two options of the nucleon-nucleon interaction: the M3Y and the Migdal ones. In the present work we address this question performing systematic calculations of the fusion barrier height for zero angular momentum, U B0. In our calculations the nuclear densities came from the Hartree-Fock approach with the SKX coefficient set [9, 10]. The charge densities obtained within these calculations are shown to be in good agreement with the experimental data [11, 12]. The values of U B0 are calculated in the wide range of the value of the 1/3 1/3 parameter BZ ZPZT / AP AT : it varies from 10 MeV up to 150 MeV. Only spherical nuclei from 12 C up to 208 Pb are considered. Our calculations make it possible to draw definite conclusions about the applicability of the Migdal NN forces for describing the nucleus-nucleus collision. 1. I.I.Gontchar et al. // Phys. Rev. C. 2014. V.89. 034601. 2. M.V.Chushnyakova et al. // Phys. Rev. C. 2014. V.90. 017603. 3. Dao T.Khoa et al. // Phys. Rev. C. 1997. V.56. P.954. 4. G.Bertsch et al. // Nucl. Phys. A. 1977. V.284. P.399. 5. N.Anantaraman et al. // Nucl. Phys. A. 1983. V.398. P.269. 6. A.B.Migdal. Theory of Finite Fermi Systems and Application to Atomic Nuclei. New York: Interscience Publishers. 1967. P.319. 7. N.V.Antonenko et al. // Phys. Rev. C. 1994. V.50. P.2063. 8. V.I.Zagrebaev et al. // Phys. Elem. Part. At. Nucl. 2007. V.38. P.469. 9. B.A.Brown // Phys. Rev. C. 1998. V.58. P.220. 10. R.Bhattacharya // Nucl. Phys. A. 2013. V.913. P.1. 11. H.de Vries et al. // At. Dat. Nucl. Dat. Tables. 1987. V.36. P.495. 12. I.Angeli // At. Dat. Nucl. Dat. Tables. 2004. V.87. P.185. 47