MULTIDIMENSIONAL SINGULAR λ-lemma

Similar documents
April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

Lecture 11 Hyperbolicity.

DIFFERENTIAL TOPOLOGY AND THE POINCARÉ-HOPF THEOREM

DIFFERENTIABLE CONJUGACY NEAR COMPACT INVARIANT MANIFOLDS

Analysis II: The Implicit and Inverse Function Theorems

Hyperbolic Dynamics. Todd Fisher. Department of Mathematics University of Maryland, College Park. Hyperbolic Dynamics p.

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

EXISTENCE OF CONJUGACIES AND STABLE MANIFOLDS VIA SUSPENSIONS

Chapter 4. Inverse Function Theorem. 4.1 The Inverse Function Theorem

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems:

Problem Set 6: Solutions Math 201A: Fall a n x n,

MARKOV PARTITIONS FOR HYPERBOLIC SETS

27. Topological classification of complex linear foliations

Adapted metrics for dominated splittings

The theory of manifolds Lecture 3

Hadamard and Perron JWR. October 18, On page 23 of his famous monograph [2], D. V. Anosov writes

THE JORDAN-BROUWER SEPARATION THEOREM

i = f iα : φ i (U i ) ψ α (V α ) which satisfy 1 ) Df iα = Df jβ D(φ j φ 1 i ). (39)

8.1 Bifurcations of Equilibria

1 Introduction Definitons Markov... 2

CONDITIONS FOR HAVING A DIFFEOMORPHISM BETWEEN TWO BANACH SPACES

DIFFERENTIAL GEOMETRY, LECTURE 16-17, JULY 14-17

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY

Coordinate Systems and Canonical Forms

HYPERBOLIC SETS WITH NONEMPTY INTERIOR

TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS

Connecting Orbits with Bifurcating End Points

The theory of manifolds Lecture 2

B5.6 Nonlinear Systems

Problem: A class of dynamical systems characterized by a fast divergence of the orbits. A paradigmatic example: the Arnold cat.

THE POINCARE-HOPF THEOREM

DEVELOPMENT OF MORSE THEORY

Smooth Structure. lies on the boundary, then it is determined up to the identifications it 1 2

10. Smooth Varieties. 82 Andreas Gathmann

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

INVERSE FUNCTION THEOREM and SURFACES IN R n

arxiv: v1 [math.ds] 29 May 2018

FIXED POINT ITERATIONS

Differential Topology Final Exam With Solutions

Lecture 5. Numerical continuation of connecting orbits of iterated maps and ODEs. Yu.A. Kuznetsov (Utrecht University, NL)

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES

Introduction to Continuous Dynamical Systems

The Structure of Hyperbolic Sets

Rigidity of certain solvable actions on the torus

Essential hyperbolicity versus homoclinic bifurcations. Global dynamics beyond uniform hyperbolicity, Beijing 2009 Sylvain Crovisier - Enrique Pujals

arxiv: v1 [math.ds] 20 Feb 2017

Math 147, Homework 1 Solutions Due: April 10, 2012

Math 147, Homework 5 Solutions Due: May 15, 2012

arxiv: v1 [math.ds] 6 Apr 2011

Hyperbolic Geometry on Geometric Surfaces

Globalization and compactness of McCrory Parusiński conditions. Riccardo Ghiloni 1

Lozi-like maps. M. Misiurewicz and S. Štimac. May 13, 2017

Characterization of the stability boundary of nonlinear autonomous dynamical systems in the presence of a saddle-node equilibrium point of type 0

SARD S THEOREM ALEX WRIGHT

Polynomial mappings into a Stiefel manifold and immersions

LECTURE 2. (TEXED): IN CLASS: PROBABLY LECTURE 3. MANIFOLDS 1. FALL TANGENT VECTORS.

Math 396. Bijectivity vs. isomorphism

THE HARTMAN-GROBMAN THEOREM AND THE EQUIVALENCE OF LINEAR SYSTEMS

Robustly transitive diffeomorphisms

Introduction to Computational Manifolds and Applications

EXISTENCE OF SOLUTIONS FOR A RESONANT PROBLEM UNDER LANDESMAN-LAZER CONDITIONS

POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT BOUNDARY-VALUE PROBLEM. Ruyun Ma

A LOWER BOUND FOR THE GRADIENT OF -HARMONIC FUNCTIONS Edi Rosset. 1. Introduction. u xi u xj u xi x j

Chap. 1. Some Differential Geometric Tools

Generic family with robustly infinitely many sinks

Topology Homework Assignment 1 Solutions

A classification of explosions in dimension one

Introduction to Bifurcation and Normal Form theories

A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS

The Existence of Chaos in the Lorenz System

Geometric control and dynamical systems

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Generic family with robustly infinitely many sinks

A SHORT GALLERY OF CHARACTERISTIC FOLIATIONS

notes 5d. Details of the Construction of the Smale horseshoe map.

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I

9 Change of variables

Periodic Sinks and Observable Chaos

1 The Local-to-Global Lemma

Chapter 16. Manifolds and Geodesics Manifold Theory. Reading: Osserman [7] Pg , 55, 63-65, Do Carmo [2] Pg ,

LECTURE 9: THE WHITNEY EMBEDDING THEOREM

Convergence Rate of Nonlinear Switched Systems

arxiv: v1 [math.ds] 15 Apr 2013

Topological properties

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

Foliations of hyperbolic space by constant mean curvature surfaces sharing ideal boundary

1.4 The Jacobian of a map

Global well-posedness for KdV in Sobolev spaces of negative index

10. The subgroup subalgebra correspondence. Homogeneous spaces.

Notes on Differential Topology

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds

Solution to Homework #4 Roy Malka

Takao Akahori. z i In this paper, if f is a homogeneous polynomial, the correspondence between the Kodaira-Spencer class and C[z 1,...

Morse Theory for Lagrange Multipliers

Dynamics of Group Actions and Minimal Sets

arxiv: v1 [math.ds] 6 Jun 2016

On the smoothness of the conjugacy between circle maps with a break

Solutions to Problem Set 5 for , Fall 2007

CHAPTER 3. Gauss map. In this chapter we will study the Gauss map of surfaces in R 3.

is holomorphic. In other words, a holomorphic function is a collection of compatible holomorphic functions on all charts.

Transcription:

Electronic Journal of Differential Equations, Vol. 23(23), No. 38, pp.1 9. ISSN: 172-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) MULTIDIMENSIONAL SINGULAR λ-lemma VICTORIA RAYSKIN Abstract. The well known λ-lemma [3] states the following: Let f be a C 1 -diffeomorphism of R n with a hyperbolic fixed point at and m- and p- dimensional stable and unstable manifolds W S and W U, respectively (m+p = n). Let D be a p-disk in W U and w be another p-disk in W U meeting W S at some point A transversely. Then n f n (w) contains p-disks arbitrarily C 1 -close to D. In this paper we will show that the same assertion still holds outside of an arbitrarily small neighborhood of, even in the case of nontransverse homoclinic intersections with finite order of contact, if we assume that is a low order non-resonant point. 1. Introduction Let M be a smooth manifold without boundary and f : M M be a C 1 map that has a hyperbolic fixed point at the origin. The well known λ-lemma [3] gives an important description of chaotic dynamics. The basic assumption of this theorem is the presence of a transverse homoclinic point. Theorem 1.1 (Palis). Let f be a C 1 diffeomorphism of R n with a hyperbolic fixed point at and m- and p-dimensional stable and unstable manifolds W S and W U (m + p = n). Let D be a p-disk in W U, and w be another p-disk in W U meeting W S at some point A transversely. Then n f n (w) contains p-disks arbitrarily C 1 -close to D. The assumption of transversality is not easy to verify for a concrete dynamical system. Obviously, the conclusion of the Theorem of Palis is not true for an arbitrary degenerate (non-transverse) crossing. Example by Newhouse illustrates this situation (See picture 1). In this paper we prove an analog of the λ-lemma for the non-transverse case in arbitrary dimension. Suppose W S and W U are sufficiently smooth and cross nontransversally at an isolated homoclinic point, i.e. they have a singular homoclinic crossing. In Section 2 we define the order of contact for this crossing (Definition 2.3) and show that it is preserved under a diffeomorphic transformation (Lemma 2.5). 2 Mathematics Subject Classification. 37B1, 37C5, 37C15, 37D1. Key words and phrases. Homoclinic tangency, invariant manifolds, λ-lemma, order of contact, resonance. c 23 Southwest Texas State University. Submitted November 4, 23. Published April 11, 23. 1

2 VICTORIA RAYSKIN EJDE 23/38 W U A W S Figure 1. Newhouse example. Branches of W U are not C 1 -close near We prove Singular λ-lemma for the case of singular finite order homoclinic crossing of manifolds which have a graph portion (see Definition 2.6), under non-resonance restriction. See Lemma 3.1 in Section 3. 2. Definitions and Lemmas In this section we are considering two immersed C r manifolds in R n, r > 1. Suppose they meet at an isolated point A. We will discuss the structure of these manifolds in the neighborhood of the point A. First, assume that each manifold is a curve. Hirsch in his work [2] describes the order of contact for two curves and formulates the following definition: Definition 2.1. Let Λ i (i = 1, 2) denote two immersed C r curves in R 2, r > 1. Suppose the two curves meet at point A. Let t u i (t) be a C r parameterization of Λ i, both defined for t in some interval I, with non-vanishing tangent vectors u i (t). Suppose I and A = u i (). The order of contact of the two curves at A is the unique real number l in the range 1 l r, if it exists, such that u 1 u 2 has a root of order l at. For our higher-dimensional proof we can reformulate this definition for two curves in R n : Definition 2.2. Let Λ i (i = 1, 2) denote two immersed C r curves in R n, r > 1. Suppose the two curves meet at point A. Let t u i (t) be a C r parameterization of Λ i, both defined for t in some interval I, with non-vanishing tangent vectors u i (t). Suppose I and A = u i (). The order of contact of the two curves at A is the

EJDE 23/38 MULTIDIMENSIONAL SINGULAR λ-lemma 3 unique real number l in the range 1 l r, if it exists, such that u 1 u 2 has a root of order l at. Now we can define the order of contact for two manifolds of arbitrary dimensions. Definition 2.3. Let W S and W U denote two immersed C r manifolds in R n, r > 1. Suppose the two manifolds meet at an isolated point A. The order of contact α at A is the unique real number α in the range 1 α r, if it exists, such that α = sup { l C r -curve γ 1 W S has order of contact l with another C r -curve γ 2 W U and A γ 1 γ 2 } The order of contact is preserved under a diffeomorphism. This result is first proven for curves (Lemma 2.4). Lemma 2.4. Consider a C surface without boundary and a C r diffeomorphism φ that maps a neighborhood N of this surface onto some neighborhood N R 2. Assume that u(t), v(t) are C r curves, such that u() = v(). Then, φ preserves the order of contact of these curves. Proof. Without lost of generality, we assume that u() = v() =. We have curves φ u(t), φ v(t), transformed by the diffeomorphism φ. There are positive constants m and M such that u(t) v(t) m t l M, as t. By the C 1 Mean Value Theorem, [ 1 ] φ(x) φ(y) = (Dφ) σ(s) ds (x y), where σ(s) = (1 s)x + sy. Then [ 1 ] (φ u)(t) (φ v)(t) = (Dφ) σ(s) ds (u(t) v(t)), where σ(s) = (1 s)u(t) + sv(t). Therefore, (φ u)(t) (φ v)(t) [ 1 ] u(t) v(t) t l = (Dφ) σ(s) ds ( t l ) As t, σ(s) u() and the matrix 1 (Dφ) σ(s)ds tends to the invertible matrix (Dφ) u(). The ratio u(t) v(t) is a vector whose norm is bounded by M and m, t l < m M <. Hence [ 1 ] ( u(t) v(t) ) m (Dφ) σ(s) ds M. t l This lemma can easily be generalized for higher dimensions. Lemma 2.5. Consider a C surface without boundary and a C r diffeomorphism φ that maps a neighborhood N of this surface onto some neighborhood N R n. Assume that u(t), v(t) are C r manifolds, such that u() = v(). Then, φ preserves the order of contact of these manifolds.

4 VICTORIA RAYSKIN EJDE 23/38 This Lemma follows from Lemma 2.4 and Definition 2.3. For the estimates in the proof of the Singular λ-lemma we need the following definition of a graph portion. Definition 2.6. Let f be a C r diffeomorphism of R n with a hyperbolic fixed point at the origin. Denote by W S (resp., W U ) the associated stable (resp., unstable) manifold, and by m (resp., p) its dimension (m + p = n, p < m). Let A be a homoclinic point of W S and W U. Suppose that there exists a small p-disk in W U around point A (call it U), and there exists another small p-disk in W U around the origin (call it V). Define a local coordinate system E 1 at, which spans V. Similarly, define a local coordinate system E 2 in some neighborhood of (we can assume that A belongs to this neighborhood), centered at, which spans W S in this neighborhood. Let E = E 1 + E 2. If U is a graph of a bijective (in E) function defined on V, then U will be called a graph portion. W S A f(a) f(f(a)) W U Figure 2. In this picture the iterated part of the W U manifold is not a graph portion of the manifold W U. It will not become C 1 -close to the bottom part with the iterations. There is another assumption that we have to make for the proof of our λ-lemma. The assumption is stronger than the regular first order non-resonance condition, but weaker than the second order non-resonance. We will call our restriction oneand-a-half order resonance.

EJDE 23/38 MULTIDIMENSIONAL SINGULAR λ-lemma 5 Definition 2.7. Let f be a C 2 -diffeomorphism of R n with a hyperbolic fixed point at and m- and p-dimensional stable and unstable manifolds, and f(x, y) : R n R n has the linear part ((Ax) 1,..., (Ax) p, (By) 1,..., (By) m ). Then, the following condition will be called one-and-a-half order non-resonance condition: If a spec A and b spec B, then ab / (speca spec B). 3. Singular λ-lemma Using the above definitions we formulate the following Singular λ-lemma. Lemma 3.1. Let f be a C r -diffeomorphism of R n with a hyperbolic fixed point at and m- and p-dimensional stable and unstable manifolds W S and W U (p m, m + p = n). Let V be a p-disk in W U and Λ be a graph portion in W U having a homoclinic crossing with W S at some point A. Assume that Λ and W S have order of contact r (1 < r < ) at A. Also assume that f is one-and-a-half order non-resonant. Then for any ρ >, for an arbitrarily small ɛ-neighborhood U R n of the origin and for the graph portion Λ, ( n f n (Λ)) \ U contains disks ρ-c 1 close to V \ U. Remark 3.2. There is no loss of generality to assume that p m, because we can always replace f with f 1. Y Λ(x) A f(x, Λ(x)) f(a) f(f(x, Λ(x))) f(f(a)) W U W S X Figure 3. Iterations of the graph portion Λ with the diffeomorphism f Proof of Lemma 3.1. Let α = 1/l ( < α < 1). Since Λ is a graph portion that has finite order of contact with W S, we can assume that locally Λ is represented by the graph of the following form: and for any sufficiently small σ > Λ(x) = A + r(x) : R p R m, r() =, r(x) const x α and r(x) const x α 1 x i

6 VICTORIA RAYSKIN EJDE 23/38 for all x < σ, i = 1,..., p. Let x = (x 1,..., x p ) R p, y = (y 1,..., y m ) R m (p + m = n) and f(x, y) : R n R n has the linear part ((Ax) 1,..., (Ax) p, (By) 1,..., (By) m ). Assume that A 1, B < λ < 1. Choose an arbitrarily small. If there is a cross terms const x i y j in the power expansion of this map around, then we assume one-and-a-half-order non-resonance condition. Then, by Flattening Theorem (See [4]) there exists smooth change of coordinates, such that locally f can be written in the form f(x, y) = (S 1 (x, y), S 2 (x, y)), where ((Ax)1 S 1 (x, y) =( + φ 1 (x) + x i y j Uij(x, 1 y) ),..., and ( (Ax)p + φ p (x) + S 2 (x, y) =( ((By)1 + ψ 1 (y) + ( (By)m + ψ m (y) + x i y j U p ij (x, y))) x i y j V 1 ij(x, y) ),..., x i y j V m ij (x, y) )). Here U() = V () =, φ C 1, ψ C 1, U C, V C, and U C 1, V C 1 are bounded. Consider f(x, Λ(x)) = (T1 Λ (x), T2 Λ (x)). We will work with (x, T2 Λ (T1 Λ ) 1 (x)) and deduce that f n (x, Λ(x)) is C 1 -small for n big enough and σ > sufficiently small. First we will show that in C 1 -topology (T1 Λ ) 1 is -close to A 1. For simplicity we will denote T1 Λ by T 1 and T2 Λ by T 2. ( T 1 (x) = (Ax) 1 + φ 1 (x) + x i Λ j (x)uij(x, 1 Λ(x)),..., Claim 3.3. (Ax) p + φ p (x) + for x < σ (σ > sufficiently small, K > ). x i Λ j (x)u p ij (x, Λ(x)) ). x i Λ j (x)uij(x, t Λ(x)) C 1 < K Proof. Fix some l {1,..., p}. Recall that Λ(x) = A + r(x). Here x i Λ j (x) δil Λ(x) + x i Λ j (x) x l x l δ il ( A + x α ) + x O(1) x α 1 A δ il + (δ il + O(1)) x α = O(1) δ il = { 1 if i = l, if i l.

EJDE 23/38 MULTIDIMENSIONAL SINGULAR λ-lemma 7 Through the proof of this Theorem, O(1) will be the set Also, O(1) = { γ(ζ) : R R such that there exists a positive constant c with γ(ζ) c for all sufficiently small ζ } x l U t ij(x, Λ(x)) = x l U t ij(x, y) + Therefore, x i Λ j (x)u t ij(x, Λ(x)) C 1 p l=1 p l=1 O(1), m k=1 x l (x i Λ j (x)u t ij(x, Λ(x))) U t y ij(x, y) Λ k (x) = O(1). k x l x l (x i Λ j (x)) U t ij(x, Λ(x)) + x i Λ j (x) x l U t ij(x, Λ(x)) if σ is sufficiently small and x < σ (Arbitrarily small was chosen above). The estimate proves the claim. Now, we continue the proof of Lemma 3.1. As it was noted earlier in the proof, φ C 1, by Flattening Theorem. This estimate and the assertion of the Claim imply that A T 1 C 1 = O(1). This obviously implies A 1 T1 1 C 1 = O(1). Now we can do the main estimate, the estimate for T 2 T1 1 C k (k =, 1). ( T 2 T1 1 = (BΛ(T1 1 )) 1 + ψ 1 (Λ(T1 1 )) + (T1 1 ) i (Λ(T1 1 )) j Vij(T 1 1 1, Λ(T1 1 )),..., (BΛ(T1 1 )) m + ψ m (Λ(T1 1 )) + (T1 1 ) i (Λ(T1 1 )) j V m We will begin by estimating each term of this vector. ij (T 1 BΛ(T 1 1 ) = B A + B r(t 1 1 (x)). ) 1, Λ(T1 1 )) B r(t1 1 (x)) = O(1) B T1 1 (x) α = O(1) B ( A 1 + ) α x α. By the chain rule, B r(t1 1 (x)) x l = O(1) B T 1 1 C 1 T 1 1 (x) α 1 = O(1) B ( A 1 + )( A 1 + ) α 1 x α 1 = O(1) B ( A 1 + ) α x α 1 = O(1) λ x α 1

8 VICTORIA RAYSKIN EJDE 23/38 with λ < 1. Moreover, B n r(t1 n (x)) = O(1) B n ( A 1 n + ) α x α 1 = O(1) λ n x α 1 x l This term can be made small if we perform enough iterations by the map f. I.e., (B n ΛT1 n ) m is C 1 -small outside of a fixed neighborhood of, if n is big enough. For the estimates of the next term one can use the following expansion: ψ 1 (Λ(T 1 1 (x))) = ψ 1 (A + r(t 1 1 (x))) = ψ 1 (A) + Dψ 1 (A) r(t 1 1 (x)) + R(T 1 1 (x)), where R(T 1 1 (x)) = o( (T 1 1 (x)) α ). Here the set o(1) is the following set of functions: o(1) = { γ(ζ) : R R such that for any positive constant c and for all sufficiently small ζ < σ, γ(ζ) < c } Similar to the previous calculations ψ 1 (Λ(T1 1 (x))) can be made small in C 1 -norm if we perform enough iterations with the map f. Finally, we will note that the last term (T1 1 ) i (Λ(T1 1 )) j Vij(T t 1 1, Λ(T1 1 )) can be written as a composition Σ t T1 1 (x), where Σ t (x) = x i Λ j (x)vij(x, t Λ(x)). Consider x l Σ t T1 1 (x). x l Σ t T 1 1 (x) = We have already shown that Similar, one can show that Σ t C 1 = Also, p i=1 Σ t T 1 1 (x) (T1 1 (x)) i. x i x l x i Λ j (x)u t ij(x, Λ(x)) C 1 = O(1). x i Λ j (x)v t ij(x, Λ(x)) C 1 = O(1). T 1 1 C 1 A 1 C 1 + T 1 1 A 1 C 1 A 1 C 1 + O(1). The estimates on Σ t C 1 and T 1 1 C 1, together with the fact that T () =, imply that Σ t T 1 1 C 1 = O(1). Thus, for any small positive number ρ and for any small (but bigger than a fixed ɛ) x one can find n such that (x, (T2 Λ ) n (T1 Λ ) n (x)) is ρ-c 1 -close to V. This implies that for any ρ > and for an arbitrarily small ɛ-neighborhood U R n of the origin, ( n f n (Λ)) \ U contains p-disks ρ-c 1 -close to V \ U.

EJDE 23/38 MULTIDIMENSIONAL SINGULAR λ-lemma 9 References [1] P. Hartman, On local homeomorphisms of Euclidean spaces, Boletin Sociedad Matematica Mexicana (2), 5, 22-241 (196). [2] M. Hirsch, Degenerate homoclinic crossings in surface diffeomorphisms, (preprint) (1993). [3] J. Palis, On Morse-Smale dynamical systems, Topology, 8, 385-45 (1969). [4] S. Aranson, G. Belitsky, E. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Translations of Mathematical Monographs, Volume 153, 1996. Victoria Rayskin Department of Mathematics, MS Bldg, 6363, University of California at Los Angeles, 15555, Los Angeles, CA 995, USA E-mail address: vrayskin@math.ucla.edu