Mathematica Slovaca. Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation

Similar documents
Časopis pro pěstování matematiky

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Commentationes Mathematicae Universitatis Carolinae

Linear Differential Transformations of the Second Order

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Acta Mathematica Universitatis Ostraviensis

Časopis pro pěstování matematiky

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Czechoslovak Mathematical Journal

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Czechoslovak Mathematical Journal

Commentationes Mathematicae Universitatis Carolinae

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Archivum Mathematicum

Mathematica Bohemica

Aktuárské vědy. D. P. Misra More Multiplicity in the Rate of Interest; Poly-party and Poly-creditor Transactions. II

Mathematica Bohemica

Commentationes Mathematicae Universitatis Carolinae

Časopis pro pěstování matematiky a fysiky

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

Mathematica Bohemica

Czechoslovak Mathematical Journal

Archivum Mathematicum

Commentationes Mathematicae Universitatis Carolinae

Acta Mathematica et Informatica Universitatis Ostraviensis

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Mathematica Bohemica

Boundedness of solutions to a retarded Liénard equation

Archivum Mathematicum

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Carolinae. Mathematica et Physica

("-1/' .. f/ L) I LOCAL BOUNDEDNESS OF NONLINEAR, MONOTONE OPERA TORS. R. T. Rockafellar. MICHIGAN MATHEMATICAL vol. 16 (1969) pp.

On the convergence of solutions of the non-linear differential equation

Mathematica Slovaca. Dragan Marušič; Tomaž Pisanski The remarkable generalized Petersen graph G(8, 3) Terms of use:

ON THE OSCILLATION OF DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

Czechoslovak Mathematical Journal

Archivum Mathematicum

Mathematica Slovaca. Demeter Krupka; Abdurasoul Èzbekhovich Sattarov The inverse problem of the calculus of variations for Finsler structures

Mathematica Slovaca. Ján Borsík Products of simply continuous and quasicontinuous functions. Terms of use: Persistent URL:

Časopis pro pěstování matematiky

Mathematica Slovaca. λ-statistical convergence. Mohammad Mursaleen. Terms of use: Persistent URL:

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky a fysiky

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

PANM 18. Stanislav Bartoň; Lukáš Renčín A. C. Clarke s space odyssey and Newton s law of gravity. Terms of use:

Archivum Mathematicum

JUST THE MATHS UNIT NUMBER LAPLACE TRANSFORMS 3 (Differential equations) A.J.Hobson

LMI Methods in Optimal and Robust Control

Časopis pro pěstování matematiky

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

f(s)ds, i.e. to write down the general solution in

Czechoslovak Mathematical Journal

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Disconjugate operators and related differential equations

Kybernetika. Milan Mareš On fuzzy-quantities with real and integer values. Terms of use:

Mathematica Bohemica

Czechoslovak Mathematical Journal

Kybernetika. Šarūnas Raudys Intrinsic dimensionality and small sample properties of classifiers

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

Časopis pro pěstování matematiky

Theory of Ordinary Differential Equations

Applications of Mathematics

Теоремы типа Бохера для динамических уравнений на временных шкалах

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Applications of Mathematics

Mathematica Slovaca. Zuzana Bukovská Thin sets in trigonometrical series and quasinormal convergence

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

Acta Universitatis Carolinae. Mathematica et Physica

Kybernetika. István Berkes; Lajos Horváth Approximations for the maximum of stochastic processes with drift

Mathematica Slovaca. Tibor Žáčik; Ladislav Mišík A simplified formula for calculation of metric dimension of converging sequences

1 Solutions to selected problems

Czechoslovak Mathematical Journal

Mathematica Bohemica

Math 421, Homework #9 Solutions

Kybernetika. Jiří Demel Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras

Math 266, Midterm Exam 1

Weak convergence and large deviation theory

WSGP 23. Lenka Lakomá; Marek Jukl The decomposition of tensor spaces with almost complex structure

On the Ψ - Exponential Asymptotic Stability of Nonlinear Lyapunov Matrix Differential Equations

A NOTE ON VOLTERRA INTEGRAL EQUATIONS AND TOPOLOGICAL DYNAMICS 1

Problem List MATH 5173 Spring, 2014

Nonlinear Systems Theory

LYAPUNOV-RAZUMIKHIN METHOD FOR DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT. Marat Akhmet. Duygu Aruğaslan

Function: exactly Functions as equations:

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

Transcription:

Mathematica Slovaca Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation Mathematica Slovaca, Vol. 26 (1976), No. 4, 337--342 Persistent URL: http://dml.cz/dmlcz/136127 Terms of use: Mathematical Institute of the Slovak Academy of Sciences, 1976 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Math. Slov,, 26,1976, No. 4, 337 342 OSCILLATORINESS OF SOLUTIONS OF A NONLINEAR SECOND ORDER DIFFERENTIAL EQUATION Consider a differential equation PAVEL SOLTES x" + a(t)x" + b(t)f(x)h(x') = 0 (1) where a(t)ec 0 (t 0, <*), i(oec,(r,oo), /(x)ec,(-oo, oo), h(y)ec 0 (- xf(x)>0 for *= 0, h(y)>0 for all ye(-oo ( oo), with t 0 e(-«>, ).», oo), Put ғ W =/;/ ( í)d,, ЯÙO-JГ^*. We have then the following Theorem 1. (Theorem 4 of [2]): Suppose that aec x (t 0, oo) and t/zat t/?e following conditions hold for all te( t 0, oo) and x e (- oo, oo): 1. a(t)^0, a'(t)^0, b(t)^0, b'(t)^0, f'(x)^e>0; 2. a(s)ds^a<oo, J b(s)ds= +*>. If lim H(y) = H^ + oo, then any solution x(t) of (1) such that M-»- is either oscillatory, or limx(t) = 0. tfo = H(jr'(.- 0 )) + 6(/ 0 )F(x(/ 0 )) < H t»oo A similar statement can be proved also under weaker assumptions. Note that it is the consequence of the hypotheses of Theorem 1 that b(t) > 0 for all t e (t 0, oo). Throughout this paper we shall suppose that, for every t^t 0, a(t)^0, b(t)>0, [ {b ' $ + where {b'(t)} + = max {b'(t), 0}. ds = K<, 337

We have Theorem 2. Suppose that l - lima(t)-0, f'(x)^e>0 for all xe(-, <*) 2. b(s)ds=+oo? a(s)ds<a< Jt< If lim H(y) = H^ + <»- then ny olution x(t) of (1) such that y -»oo is either oscillatory or 1 mx(t) - 0. t * Proof. From the equation (1) we ha e [H(x'(t 0 )) + b(t 0 )Fx( )]expk<h (2) H(x'(t)) + b(t)f( (/))</*( '(t)) + b(t 0 )F(x(t > )) + and hence + j' {b'(s)} + F(x(s))ds H(x'(t)) + b(t)f(x(t))< A +f {b b{ S s) }+ [H(x'(s)) + b(s)f(x(s))]ds, an using this in conjuction with Bellman s 1 mma, we get H(x(t))< xpj { b b^ + ds, where K 0 -= H(x'(t 0 )) +b(t 0 )F( ( ). Suppose that the solution x(t) ex st on (t, t) Using (2) and the last derived relation, we see that x'(t) 1 bound d on (t, /). Now if t< + oo, then x(t) is also bounded on (t 0, t) and therefore x(t) exi t on (t, oo). Suppose that *(/) is not o cill t, 1 e th t there exists t x > t 0 uch that x(t) + 0 for all t^t x. Suppose e.g that x(t)>0 (th proof is quite analogous for x(t)<0) By methods similar to tho e u d in [ ] it I po lble t show th t there ex ts t 2 > t x such that for t > U therefore ^Щ<K t h(а)j b(s)ds, f(x(t) ( > 338

so that x(t) is a decreasing function. We shall now prove that \imx(t) = 0. It is t»oo a consequence of (3) that for any k > 0 there exists t 3 ^ t 2 such that for any t ^ t 3 we have f(x(t)) Integrating this from t 3 to t^t 3, we have [' x'(s). f-<*> dr and therefore lim x(t) = 0, since /(*) is continuous. t» o Obviously, we also have Theorem 3. Suppose, in addition to the assumption of Theorem 2, that for x > 0 lim TA<, lim TA< (5) --0+ J, /(j) r-o- J, /(s) 77ze/i any solution x(t) of (1) satisfying (2) is oscillatory. Proof. It is necessary to prove the impossibility of lim x(t) = 0. This is a direct t»oo consequence of (4). In fact, if (5) holds, then the left part of (4) is bounded, yielding a contradiction. Remark 1. If a(t) = 0, it is sufficient to replace the assumption of Theorem 2 that f'(x)^e>0 by the weaker assumption that f'(x)^0. Theorem 4. Suppose that the following assumptions hold: 1. f'(x)^e>0 forall xe(- o 9 <x>) 2. J sa(s)ds^a<, I sb(s)ds= + o 9 and that, for every x>0, f ds ^ [ ds ^,, x I/(s) <00 ' J-,7w <0 (6) - 77ze/i any solution x(t) of(\) satisfying (2) is either oscillatory or lim x(t) = 0. t K» //, iii addition to this, (5) Ao/cb, tae/i any solution satisfying (2) is oscillatory. Proof. By methods similar to those of [2] we show that a solution x(t) of (1) which satisfies (2) exists on (t 0, ) and that x'(t) is bounded. Suppose that it is not 339

oscillatory and that t^to is a number such that x(t)±0 for all t^t,. We shall assume that x(t)>0, since the method of proof is similar if *(t)<0. Then Integrating this from t x to t^ti, we get so that + ta(_xv) f(x(t)) + f(x(t)) ta { t m x(t)). jx_t) ( x'(s) r sf'(x(s))x'*(s) rsa(s)x'(s) f(x(t)) ),J(x(s)) as + as /( l r(x(s)) + J f(x(s)) Л *'< Л) Гsb(s)h(x'(s))ds, ^f(x(tò) Jt, L*'(t) ^ (' sx' 2 (s) rrt/ 1 ^t_x'(t_), 7wo) + i Fwsl) [/ <*<'»-*«<'>! d^7w7o) + + i*" TT^ + i {' sa(s)ds- í' sb(s)h(x'(s))ds. JxVl) f( r ) J'i J', Since jt'(t) ^Af <a> and h(y) is continuous, there exists a such that, for all t^t,, h(x'(t))^h(a). A further consequence of the assumptions of the Theorem is that lim a(t) = 0; hence there exists t 2^ti such that, for all t^t 2, t >oo f'(x(t))-ia(t)^0. Because of (7), we have, for all t^t 2, tx'(t) f(x(t)) where K } is a constant, and therefore Kг-Ңa) í' sb(s)ds, Jt7 /RoT- for '- 00 - Now we note the following two consequences of (8): first, x(t) is a monotonic decreasing function, so that lim x(t) exists; second, for any k > 0 there exists t 3 ^ t 2 such that, for all t^t 3, so that 340 tx'(t) fш)* * (8)

Hence lim.r(t) = 0. ímhz^mi If (5) holds as well as (9), then evidently x(t) is oscillatory. This completes the proof. Remark 2. It is evident from the proof of Theorem 4 that the conclusion of the Theorem will also hold if assumption 2 is replaced by the assumption that a(t)-*0, \ I sa(s)ds-c sb(s)ds- oo for Ѓ >oo with c>0 an arbitrary constant. A theorem analogous to that concerning the oscillatoriness of solutions of the equation (1) is also true for the equation x" + a(t)g(x, x') + b(t)f(x)h(x') = 0 (10) where a(t), b(t), f(x) and h(y) are the same functions as in (1) and g(x, y) is continuous for all (x, y)e(-, <*)x, x( oo, oo). Namely we have Theorem 5. Suppose that the following assumptions hold: 1. g(x,y)y^0, y 2 f'(x)^g 2 (x,y) for all (x,y)e(-, oo)x(-oo, oo) sа 2 (s)ds-c sb(s)ds~* - for í^oo, with c > 0 an arbitrary constant. If (6) holds, then any solution x(t) of (10) satisfying (2) is either oscillatory or lim.*(t) = 0. If, in addition to this, (5) holds, then any solution x(t) satisfying (2) is oscillatory. Proof. The existence of a solution x(t) on (t 0, oo) and the boundedness of x'(t) are proved in a way similar to that of Theorem 2. Let the solution.r(t) be oscillatory and suppose e.g. that x(t) > 0 for all t^t^ t 0, t x > 0. The proof is similar for the case *(t)<0. Equation (10) yields t*'(t) f' x'(s) rsx' 2 (s)f'(x(s)) f(x(t)) itj(x(s)) as^) tl f(x(s)) f'sa(s)g(x(s),x'(s)) t,x'(t l )_ f< sb(s)h(x. (s))ds as k f(x(s)) f(x(t x )) J/^WW^; 341

hence 7w») + 1 fofe) w w '» " l g2(x(s) > x ' (s))] ds * ^K 2 + I sa 2 (s)ds-h(a) jt x h x sb(s)ds where K 2 is a constant. The rest of the proof is similar to that of Theorem 4. Remark 3. Results similar to those stated as Theorem 4 and 5 are stated in Theorems 1 and 2 of [1] which concern solutions of the equation (1) for lj(/)so and h(y) = l. REFERENCES [1] ONOSE H.: Oscillation theorems for nonlinear second order differential equations, Proc Arner. Math. Soc, 26, 1970, 461 464. [2] SOLTES P.: Boundedness and oscillatoriness of solutions of the equation y"+ a(*)g(y, y') + b(x)f(y)h(y') = 0, Ann. Polon. Math., XXVIII, 1973, 291 296. Received September 28, 1974 H k a t e d r a m a t e m a t i k y Pnrodovedeckej fakulty UPjS Komenskeho 14 041 54 Kosice КОЛЕБАТЕЛЬНЫЕ СВОЙСТВА РЕШЕНИЙ НЕЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ВТОРОГО ПОРЯДКА Павел Шолтес В работе решаются вопросы колебательности решений нелинейного дифференциального уравнения второго порядка х" + а(()х' + Ь(()/(хЩх') = 0. (I) На основании свойств функций а((), Ь((), /(*), Н(х') приведены достаточные условия, при выполнении которых или решение х(() уравнения (1) колеблется или \\тх(1) = 0. Тоже приведены достаточные условия, при которых все решения, которые выполняит условие (2), колеблются. 342