Team. mining the Galactic Plane Goldmine S. Molinari INAF/IAPS, Rome & Herschel composite 346 < l < 356

Similar documents
Filamentary Structures in the Galactic Plane Morphology, Physical conditions and relation with star formation

Global star formation in the Milky Way from the VIALACTEA Project

Fragmentation in Hi-GAL clumps

Star Formation & the FIR properties of Infrared Dark Clouds in the Hi-GAL Science Demonstration Field. Mark Thompson and the Hi-GAL Consortium

within entire molecular cloud complexes

Hi-GAL: the Herschel infrared GALactic Plane Survey

An evolutionary sequence for high-mass stars formation

Mapping the column density and dust temperature structure of IRDCs with Herschel

Anatomy of the S255-S257 complex - Triggered high-mass star formation

arxiv: v1 [astro-ph.ga] 18 May 2010

Earliest phases of high mass star formation in the Galactic Plane

Christopher T. Tibbs, PhD

Star Formation in GMCs: Lessons from Herschel Observations of the Aquila Complex

Galactic dust in the Herschel and Planck era. François Boulanger Institut d Astrophysique Spatiale

Infrared Dark Clouds seen by Herschel and ALMA

ATLASGAL: APEX Telescope Large Area Survey of the Galaxy

Cold Cores on Planck1,

The Red MSX Source Survey. Massive Star Formation in the Milky Way. Stuart Lumsden University of Leeds

The Lifetimes of Phases in High-Mass Star-Forming Regions

The Milky Way Laboratory. Cara Battersby Harvard-Smithsonian Center for Astrophysics

Protoclusters in the Milky Way: Physical properties of massive starless & star-forming clumps from the BGPS. Brian Svoboda (Arizona)

Harvard-Smithsonian Center for Astrophysics Phone: (303) Garden St.

The prevalence of star formation as a function of Galactocentric radius

High mass star formation in the Herschel era: highlights of the HOBYS key program

Tracing Star Formation in the Milky Way Galaxy with Infrared Bubbles

Frédérique Motte and Nicola Schneider (AIM Paris-Saclay, Obs. Bordeaux) Coordinated by Frédérique Motte, Annie Zavagno, and Sylvain Bontemps

Cold Cores of Molecular Clouds. Mika Juvela, Department of physics, University of Helsinki

Open Research Online The Open University s repository of research publications and other research outputs

THE STAR FORMATION NEWSLETTER No February /5/29

arxiv: v1 [astro-ph.ga] 20 Apr 2016

It is advisable to refer to the publisher s version if you intend to cite from the work.

Molecular Clouds and Star Formation. James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics

Dust in dwarf galaxies: The case of NGC 4214

Galactic Cold Cores. M.Juvela On behalf of the Galactic Cold Cores project

Widespread star formation throughout the Galactic center cloud Sgr B2

Probing the formation mechanism of prestellar cores and the origin of the IMF: First results from Herschel

!From the filamentary structure of the ISM! to prestellar cores to the IMF:!! Results from the Herschel Gould Belt survey!

The Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) I. Why a Galactic Plane Survey? The inner workings of our own Galaxy are more

Infall towards massive star forming regions

An Evolutionary Model of Massive Star Formation and Radiation Transfer

Radio Nebulae around Luminous Blue Variable Stars

A MULTI-WAVELENGTH INVESTIGATION OF RCW175: AN HII REGION HARBORING SPINNING DUST EMISSION

Initial conditions for massive star formation

Massive 70µm quiet clumps I: evidence of embedded low/intermediate-mass star formation activity

Understanding the tracers of star formation

arxiv: v1 [astro-ph.ga] 1 Jul 2015

Dust properties in the ionized gas of the Large Magellanic Cloud

Early Phases of Star Formation

arxiv: v1 [astro-ph.ga] 1 Jun 2017

Observed Relationships between Filaments and Star Formation

Frédérique Motte (AIM Paris-Saclay)

VIALACTEA: the Milky Way as a Star Formation Engine

SOFIA follow-ups of high-mass clumps from the ATLASGAL galactic plane survey

Dust Polarization. J.Ph. Bernard Institut de Recherche en Astrophysique et Planetologie (IRAP) Toulouse

PMS OBJECTS IN THE STAR FORMATION REGION Cep OB3. II. YOUNG STELLAR OBJECTS IN THE Ha NEBULA Cep B

Ram Pressure Stripping in NGC 4330

Cycle-5 Proposal. Submission Statistics

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region

Star Formation. Answering Fundamental Questions During the Spitzer Warm Mission Phase

Astronomy. Astrophysics. Characterizing precursors to stellar clusters with Herschel,

arxiv: v1 [astro-ph.ga] 15 Jun 2015

Lifecycle of Dust in Galaxies

Star Formation. Spitzer Key Contributions to Date

arxiv: v1 [astro-ph.ga] 8 May 2012

21. The Green Bank Ammonia Survey: Dense Cores Under Pressure in Orion A Kirk+ ApJ in press GAS Herschel YSO

Payne-Scott workshop on Hyper Compact HII regions Sydney, September 8, 2010

The formation of high-mass stars: new insights from Herschel, IRAM, and ALMA imaging

HOPS + MALT90 + HiGAL

The Herschel view of molecular cloud structure and star- forma6on

Tricks of Resolution and Dynamics

The Interstellar Medium in Galaxies: SOFIA Science

Thomas Henning Max Planck Institute for Astronomy Heidelberg

University of Connecticut, Dept. of Physics Phone: (860) Hillside Road, Unit

arxiv: v1 [astro-ph.ga] 10 May 2010

Nearby Universe: Rapporteur

Star formation scales and efficiency in Galactic spiral arms

Low mass star formation. Mark Thompson (with contributions from Jennifer Hatchell, Derek Ward-Thompson, Jane Greaves, Larry Morgan...

arxiv: v1 [astro-ph.ga] 24 Apr 2015

Extended Star Formation in the Sgr B2 cloud

The pros and cons of the inversion method approach to derive 3D dust emission properties in the ISM: the Hi-GAL field centred on (l, b) = (30,0 )

Multi-wavelength analysis of Hickson Compact Groups of Galaxies.

Unraveling the Evolution of Protostars in Diverse Environments: The Herschel Orion Protostar Survey

The relation between cold dust and star formation in nearby galaxies

1. The AGB dust budget in nearby galaxies

Lecture 2: Molecular Clouds: Galactic Context and Observational Tracers. Corona Australis molecular cloud: Andrew Oreshko

arxiv: v1 [astro-ph.ga] 19 Nov 2015

SED modeling of young massive stars

The Ṁass- loss of Red Supergiants

OUR KNOWLEDGE OF HIGH-MASS STAR FORMATION AT THE DAWN OF HERSCHEL

arxiv: v1 [astro-ph.ga] 3 Feb 2010

Filling the Gaps in the GLIMPSE360 Survey

arxiv: v1 [astro-ph.ep] 14 Jan 2019

Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel

arxiv: v1 [astro-ph.ga] 13 Sep 2012

Francesco and masers

Large-scale mapping of molecular clouds: what can we learn?

High Redshift Universe

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO)

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

Young Stellar Structures in the Magellanic Clouds as Revealed by the VMC Survey

Transcription:

IRAS 100µm 346 < l < 356 Herschel composite 346 < l < 356 Hi-G@L mining the Galactic Plane Goldmine S. Molinari INAF/IAPS, Rome & Hi-G@L Team Italy: INAF-IAPS, Univ. Ferrara, Univ. Roma La Sapienza, INAF-Oss. Arcetri, INAF-Oss. Catania, Univ. Salento. USA: Caltech-SSC- IPAC, Univ. Colorado, University of Florida, JPL. UK: STFC-RAL, Univ. Cardiff, Liverpool John Moores Univ., UCL, Univ. Hertsfordshire, Univ. Leeds, Univ. Manchester, Univ. Exeter. France: CNRS-IRAP, LAM, IAS, CEA/Sap. Canada: Univ. Toronto, Univ. Calgary, Univ. Laval. Germany: MPIfR, MPIA. Japan: Nagoya University. China: NAO-CAS. ESO-HQ. ESA-ESTEC/ESAC

Hi-Gal the Herschel infrared Galactic Plane Survey IRAS 100µm 346 < l < 356 Herschel composite 346 < l < 356 Simultaneous 5-bands (70-160-250-350-500µm) continuum mapping of 720 sq. deg. of the Galactic Plane ( b 1 ) The entire Plane has been observed, also thanks to DDT allocated to cover 4 tiles that were left out by the HOTAC With almost 900 hours observing time is the largest OPEN TIME Herschel KP Access to images (with registered astrometry and absolute flux Galaxy-wide calibration) Census, and compact Luminosity, source photometry catalogues for longitudes Mass and SED between of dust 65 structures and 290 at will be publicly released through all dedicated scales from services massive once YSOs a set to of data presentation and fast science Spiral papers Arms are in acceptance stage (likely early 2014)

Hi-G@L Te^m & ES@ The Second Qu^dr^nt Hi-G^l Herschel infr^red G^l^ctic Pl^ne Survey Molin^ri et ^l. 2010 Herschel 160-250-350µm composite Tow^rd ^ Predictive Glob^l Model of G^l^ctic St^r Form^tion The Hi-G@L Team Institutes [PI: S. Molinari, INAF-IAPS Rome] Italy: INAF-IAPS, Univ. Roma Tor Vergata, Univ. Roma La Sapienza, INAF-Oss. Arcetri, INAF-Oss. Catania, Univ. Salento. USA: Caltech-SSC-IPAC, Univ. Colorado, JPL. UK: STFC-RAL, Univ. Cardiff, Liverpool John Moores Univ., UCL, Univ. Hertsfordshire, Univ. Leeds, Univ. Manchester, Univ. Exeter. France: CNRS-IRAP, LAM, IAS, CEA-Sap. Canada: Univ. Toronto, Univ. Calgary, Univ. Laval. Germany: MPIfR. Japan: Nagoya University. China: NAO-CAS. ESO-HQ. ESA-ESTEC/ESAC Hi-G@L data processing is carried out at INAF-IAPS (Rome) thanks to support from Agenzia Spaziale Italiana under Contract I/038/08/0

Papers from Hi-G@L Team.to date and to my knowledge 1. Molinari, S., Swinyard, B., Bally, J., et al. 2010, PASP 122, 314 2. Bernard, J.-P., Paradis, D., Marshall, D.J., et al. 2010, A&A 518, L88 3. Bally, J., Anderson, L.D., Battersby, C., et al. 2010, A&A 518, L90 4. Elia, D., Schisano, E., Molinari, S. et al. 2010, A&A 518, L97 5. Peretto, N., Fuller, G.A., Plume, R., et al. 2010, A&A 518, L98 6. Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A 518, L100 7. Zavagno, A., Anderson, L.D., Russeil, D. et al. 2010, A&A 518, L101 8. Martin, P.G., Miville-Deschenes, M.A., Roy, A., et al. 2010, A&A 518, L105 9. Paradis, D., Veneziani, M., Noriega-Crespo, A. et al. 2010, A&A 520, L8 10. Compiègne, M., Flagey, N., Noriega-Crespo, A. et al. 2010, ApJ 724, L44 11. Stamatellos, D., Griffin, M.J., Kirk, J.M. et al. 2010, MNRAS 409, 12 12. Russeil, D., Pestalozzi, M., Mottram, J.C. et al. 2011, A&A 526, 151 13. Wilcock, L.A., Kirk, J.M., Stamatellos, D. et al. 2011, A&A 526, 159 14. Molinari, S., Schisano, E., Faustini, F., et al. 2011, A&A 530, 133 15. Billot, N., Schisano, E., Pestalozzi, M., et al. 2011, ApJ 735, 28 16. Molinari, S., Bally, J., Noriega-Crespo, A., et al. 2011, ApJ 735, L33 17. Traficante, A., Calzoletti, L., Veneziani, M., et al. 2011, MNRAS 416, 2932 18. Battersby, C., Bally, J., Ginsburg, A., et al. 2011, A&A 535, 128 4

Papers from Hi-G@L Team.to date and to my knowledge 19. Paradis, D., Paladini, R., Noriega-Crespo, A., et al. 2012, A&A 537, 113 20. Paladini R., Umana G., Veneziani M., et al. 2012, A&A 760, 149 21. Longmore, S.N., Rathborne, J., Bastian, N. et al. 2012, ApJ 746, 117 22. Mottram, J.C., & Brunt, C.M. 2012, MNRAS, 420, 10 23. Li, J.J., Moscadelli, L., Cesaroni, R., et al. 2012, ApJ 749, 47 24. Wilcock L.A., Ward-Thompson D., Kirk J.M., et al. 2012, MNRAS 422, 1071 25. Anderson, L.D., Zavagno, A., Deharveng, L., et al. 2012, A&A 542, 10 26. Wilcock L.A., Ward-Thompson D., Kirk J.M., et al. 2012, MNRAS 424, 716 27. Tibbs, C.~T., Paladini, R., Compiègne, M., et al. 2012, ApJ 754, 94 28. Faimali A., Thompson M.A., Hindson L. et al. 2012, MNRAS 426, 402 29. Umana G., Ingallinera A., Trigilio C., et al. 2012, MNRAS 427, 2975 30. Veneziani M., Elia D., Noriega-Crespo A., et al. 2013, A&A 549, 130 31. Longmore S.N., Bally J., Testi L., et al. 2013, MNRAS 429, 987 32. Olmi L., Anglès-Alcàzar D., Elia D., et al. 2013, A&A 551, 111 33. Beltran M.T., Olmi L., Cesaroni R., et al. 2013, A&A 552, 123 34. Peretto N., Fuller G.A., Duarte-Cabral A., et al., A&A 555, 112 35. Elia D., Molinari S., Fukui Y., et al. 2013, ApJ 772, 45 36. Giannetti A., Brand J., Sanchez-Monge A., et al., 2013 A&A 556, 16 5

Papers from Hi-G@L Team.to date and to my knowledge 37. Etxaluze M., Goicoechea J.R., Cernicharo J., et al. 2013, A&A 556, 137 38. Sanchez-Monge A., Lopez-Sepulcre A., Cesaroni R., et al. A&A 557, 94 39. Traficante A., et al. A&A submitted (3D dust decomposition) 40. Zhou J. & Huang M., A&A submitted (dust models in HII regions) 41. Schisano E., et al. ApJ submitted (filamentary structures) 42. Robitaille J.F. et al. ApJ submitted (morphology and properties of ISM) 10 more papers are close to submission 3 Hi-G@L Data Release papers in advanced preparation About 30 ongoing Hi-G@L projects with papers in different stages of preparation 6

Talks and Posters featuring Hi-G@L. to my knowledge Talks: A. Noriega-Crespo et al.: star formation on the ridges of the GC Bubble? M. Pestalozzi et al.: Massive star formation in the Scutum-Crux Arm A. Zavagno et al.: Triggered star formation S. Molinari et al.: this talk. Posters: A3-P65: M. Etxaluze et al. SgrB2 A3-P70: G. Joncas et al. Turbulence A3-P84: R. Paladini et al. Dust in evolved HII regions A3-P86: J.F. Robitaille et al. Component separation in ISM A3-P93: A. Traficante et al. 3D inversion methods in the Galactic Plane B2-P24: R. Vavrek et al. Diffuse emission analysis in the Galactic Plane B4-P28: A. Traficante et al. Compact Sources in IRDCs B4-P33: N. Billot et al. Source Clustering properties in the Galactic Plane B4-P39: D. Elia et al. Star formation in the Carina Arm B4-P60: L. Olmi et al. Dense Clumps mass function B4-P73: E. Schisano et al. Filaments networks in the Galactic Plane B4-P77: M. Tapia et al. Star formation in RCW121 B4-P83: M. Veneziani et al. Star formation at the Tips of the Bar 7

Dust mixture, distribution and evolution in the ISM IRAC8 MIPS24 PACS 70, 160 SPIRE 250, 350 RESULTS: l=59 field [Compiegne+ 2010] DUSTEM model (Compiegne et al. 2010) Y PAH Y VSG 2 N H G 0 3D decomposition of diffuse dust emission I λ = Rings Gas ε H (λ,r)n H (r) Dust in Scutum-Crux ring Gas Phase T BG (K) Y PAH IONISED 23.15 0.72 ATOMIC 19.52 1.83 MOLECULAR 19.91 0.97 Traficante et al. subm 25 pxl-by-pxl SED fit of Hi-GAL maps using a PAH/VSG/BG dust mixture, solving for: N H : Column density of Big Grains G 0 : ISRF intensity Y PAH and Y VSG : PAH and VSG abundance

Revisiting Infrared Dark Clouds in Hi-G@L G030.50+0.95 [Wilcock et al. 2010] 8µm 500µm Observations Models IRDC density and temperature structure from full 2D radiative transfer modeling of Hi-GAL maps confirms negative temperature gradients and upper limits as low as L<10 L " for embedded protostars, uniquely pinpointing massive pre-stellar core candidates Full radiative transfer modeling with PHAETHON (Stamatellos et al. 2010) Large scale Hi-GAL statistical analysis of 3171 IRDCs catalogued using Spitzer data in the longitude range 300 < l < 330 show that only half of pre-herschel IRDCs are real, with strong implications for global SFR estimates. Temperature 20 15 10 5 Radius 82% of bona fide IRDCs are associated to a λ<24µm source and are considered star-forming. Only 18% may be in a pre-stellar phase [Wilcock et al. 2011] Peretto et al. 2010

l=224 Column density map from Hi-GAL l=220 Automatic Filament Extraction: Schisano et al. (ApJ subm.)

Filaments that host dense clumps are denser Clumps located on filaments are denser Schisano et al. 2013, ApJ subm. (B4-P73)

Total mass of clumps on each filament Mass of individual clumps on filaments Distribution of linear mass for filaments with NO clumps Do more massive clumps form on more massive filaments? Or do filaments grow mass from the surrounding environments and channel more mass to the clumps? No clear evidence for thresholds Schisano et al. 2013, ApJ subm. (B4-P73)

Evolutionary effects are clearly visible as a function of the filaments linear masses Blue: filament branches with PROTOstellar Clumps, i.e. with a 70µm counterpart Red: filament branches with PREstellar Clumps Black: filament branches with NO Clumps 1) Accretion rates 10-2 -10-3 M /pc/yr are needed to explain the differences in evolutionary terms (see also Kirk +13, Peretto+ 13) or 2) Differences in linear masses, clump masses and L/M are imprinted at the time of filament formation. Schisano et al. 2013, ApJ subm. (B4-P73)

Pre-stellar Sources (no 70µm counterpart) Proto-stellar Sources (with 70µm counterpart) Clumps evolutionary stage A separation between prestellar and proto-stellar sources is quite clear in terms of L/M. The appearance and intensity of the 70µm (and shortward), clearly makes the difference. Within each class, there is a clear trend of L/M with Temperature (estimated using only λ 160µm) Evolutionary tracks from Molinari et al. 2008 Elia+ 2013 Star Formation drives up the energy budget in the clump, raising its global temperature and luminosity. This can be ideally followed in the [L,M] diagram

adapted from Tan 2005

Nature of the compact Dense Clumps * Hi-GAL sources with counterpart in at least 3 adjacent bands, and with known distance Hi-GAL range 35 < l < 50 The majority of sources are gravitationally bound clumps according to Larson (1981). Herschel sensitivity is such that a solid multiband Far-IR detection in the Galactic Plane is likely a solid dense clump detection Less than half of the compact Clumps have densities high-enough to compare with known sites of intermediate and high-mass star formation (Kauffmann+ 2010). Krumholz & McKee (2008) Pezzuto+, in prep.

Initial sample of nearly 100,000 compact objects with counterparts in at least three adjacent bands and with a distance assignment: almost 60,000 are shown here outside the CMZ and with first estimates on distances. [Molinari+, photometric catalogues Pestalozzi+ physical catalogue Elia+ global science analysis]

Star Formation Rate from YSO counts A first attempt in deriving the SFR in the two Hi-GAL SDP fields l=30 and l=59 (Veneziani et al. 2012), comparing YSO statistics for PROTOSTELLAR Clumps in the L vs M plot against evolutionary predictions (McKee & Tan 2003, Molinari+ 2008). M ZAMS =6.5 13.5 18 8 35 M Each bin i is associated to: final ZAMS mass M ZAMS (i) formation time t f (i) t f =4.5 3.7 1.5x10 5 yr 2.7 2.1 SFR = N Mzams i=1 N Sources j =1 n M (i, j)m ZAMS (i)/t f (i) l=30 0.067 M /yr l=59 0.011 M /yr

The Future The full exploitation of the Hi-GAL goldmine, will require a new approach to Science analysis Obtain homogeneous and inter-calibrated evolutionary classifications of the cold and dense clumps hosting young forming clusters at a variety of evolutionary stages Deliver a new 3D model of the Galaxy, mapping the essential critical parameters like column density thresholds, rate and efficiency of star formation in the Galaxy Develop a suite of next-generation 3D-visualization tools that will integrate visual analytics, on-the-fly handling of multi-sed radiative transfer modeling Data mining/machine-learning technologies to incorporate the astronomer's know-how into a set of supervised workflows with decision making capabilities. VI@L@CTE@ an FP7-SPACE Project approved with top grades for a 2.5 M funding for three years.