Strong Convergence Theorem by a Hybrid Extragradient-like Approximation Method for Variational Inequalities and Fixed Point Problems

Similar documents
Some unified algorithms for finding minimum norm fixed point of nonexpansive semigroups in Hilbert spaces

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS

An iterative method for fixed point problems and variational inequality problems

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES

The Journal of Nonlinear Science and Applications

WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES

A Relaxed Explicit Extragradient-Like Method for Solving Generalized Mixed Equilibria, Variational Inequalities and Constrained Convex Minimization

On an iterative algorithm for variational inequalities in. Banach space

A general iterative algorithm for equilibrium problems and strict pseudo-contractions in Hilbert spaces

Iterative common solutions of fixed point and variational inequality problems

Monotone variational inequalities, generalized equilibrium problems and fixed point methods

Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces 1

An Algorithm for Solving Triple Hierarchical Pseudomonotone Variational Inequalities

Strong convergence to a common fixed point. of nonexpansive mappings semigroups

Algorithms for finding minimum norm solution of equilibrium and fixed point problems for nonexpansive semigroups in Hilbert spaces

Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces

A GENERALIZATION OF THE REGULARIZATION PROXIMAL POINT METHOD

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE

Research Article Strong Convergence of a Projected Gradient Method

Strong convergence theorems for fixed point problems, variational inequality problems, and equilibrium problems

Iterative Method for a Finite Family of Nonexpansive Mappings in Hilbert Spaces with Applications

On nonexpansive and accretive operators in Banach spaces

Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem

arxiv: v1 [math.oc] 28 Jan 2015

Research Article Algorithms for a System of General Variational Inequalities in Banach Spaces

CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES. Gurucharan Singh Saluja

Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces

STRONG CONVERGENCE THEOREMS FOR COMMUTATIVE FAMILIES OF LINEAR CONTRACTIVE OPERATORS IN BANACH SPACES

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

Convergence theorems for a finite family. of nonspreading and nonexpansive. multivalued mappings and equilibrium. problems with application

Thai Journal of Mathematics Volume 14 (2016) Number 1 : ISSN

PROXIMAL POINT ALGORITHMS INVOLVING FIXED POINT OF NONSPREADING-TYPE MULTIVALUED MAPPINGS IN HILBERT SPACES

Regularization Inertial Proximal Point Algorithm for Convex Feasibility Problems in Banach Spaces

CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES

ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI. Received December 14, 1999

Common fixed points of two generalized asymptotically quasi-nonexpansive mappings

A Viscosity Method for Solving a General System of Finite Variational Inequalities for Finite Accretive Operators

1 Introduction and preliminaries

A Direct Proof of Caristi s Fixed Point Theorem

A VISCOSITY APPROXIMATIVE METHOD TO CESÀRO MEANS FOR SOLVING A COMMON ELEMENT OF MIXED EQUILIBRIUM, VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS

Multi-step hybrid steepest-descent methods for split feasibility problems with hierarchical variational inequality problem constraints

Weak and strong convergence of a scheme with errors for three nonexpansive mappings

WEAK AND STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

The Split Hierarchical Monotone Variational Inclusions Problems and Fixed Point Problems for Nonexpansive Semigroup

Scalar Asymptotic Contractivity and Fixed Points for Nonexpansive Mappings on Unbounded Sets

A NEW ITERATIVE METHOD FOR THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES. Fenghui Wang

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces

638 W. TAKAHASHI, N.-C. WONG, AND J.-C. YAO

A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings

APPROXIMATING SOLUTIONS FOR THE SYSTEM OF REFLEXIVE BANACH SPACE

New Iterative Algorithm for Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces

Research Article Cyclic Iterative Method for Strictly Pseudononspreading in Hilbert Space

STRONG CONVERGENCE THEOREMS BY A HYBRID STEEPEST DESCENT METHOD FOR COUNTABLE NONEXPANSIVE MAPPINGS IN HILBERT SPACES

On the Weak Convergence of the Extragradient Method for Solving Pseudo-Monotone Variational Inequalities

ITERATIVE ALGORITHMS WITH ERRORS FOR ZEROS OF ACCRETIVE OPERATORS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 ISSN

Strong Convergence Theorems for Nonself I-Asymptotically Quasi-Nonexpansive Mappings 1

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

STRONG CONVERGENCE OF A MODIFIED ISHIKAWA ITERATIVE ALGORITHM FOR LIPSCHITZ PSEUDOCONTRACTIVE MAPPINGS

STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR ASYMPTOTICALLY NONEXPANSIVE IN THE INTERMEDIATE SENSE MAPPINGS IN BANACH SPACES

A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS

SHRINKING PROJECTION METHOD FOR A SEQUENCE OF RELATIVELY QUASI-NONEXPANSIVE MULTIVALUED MAPPINGS AND EQUILIBRIUM PROBLEM IN BANACH SPACES

Viscosity approximation method for m-accretive mapping and variational inequality in Banach space

Research Article Hybrid Algorithm of Fixed Point for Weak Relatively Nonexpansive Multivalued Mappings and Applications

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

A generalized forward-backward method for solving split equality quasi inclusion problems in Banach spaces

Research Article Iterative Approximation of a Common Zero of a Countably Infinite Family of m-accretive Operators in Banach Spaces

ON THE CONVERGENCE OF THE ISHIKAWA ITERATION IN THE CLASS OF QUASI CONTRACTIVE OPERATORS. 1. Introduction

THROUGHOUT this paper, we let C be a nonempty

Convergence Rates in Regularization for Nonlinear Ill-Posed Equations Involving m-accretive Mappings in Banach Spaces

Strong Convergence of Two Iterative Algorithms for a Countable Family of Nonexpansive Mappings in Hilbert Spaces

Zeqing Liu, Jeong Sheok Ume and Shin Min Kang

FIXED POINT ITERATION FOR PSEUDOCONTRACTIVE MAPS

PARALLEL SUBGRADIENT METHOD FOR NONSMOOTH CONVEX OPTIMIZATION WITH A SIMPLE CONSTRAINT

Strong convergence of multi-step iterates with errors for generalized asymptotically quasi-nonexpansive mappings

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

ON WEAK AND STRONG CONVERGENCE THEOREMS FOR TWO NONEXPANSIVE MAPPINGS IN BANACH SPACES. Pankaj Kumar Jhade and A. S. Saluja

INERTIAL ACCELERATED ALGORITHMS FOR SOLVING SPLIT FEASIBILITY PROBLEMS. Yazheng Dang. Jie Sun. Honglei Xu

CONVERGENCE THEOREMS FOR MULTI-VALUED MAPPINGS. 1. Introduction

A General Iterative Method for Constrained Convex Minimization Problems in Hilbert Spaces

CONVERGENCE OF THE STEEPEST DESCENT METHOD FOR ACCRETIVE OPERATORS

The viscosity technique for the implicit midpoint rule of nonexpansive mappings in

PROPERTIES OF FIXED POINT SET OF A MULTIVALUED MAP

FIXED POINT THEOREMS FOR POINT-TO-SET MAPPINGS AND THE SET OF FIXED POINTS

Extensions of Korpelevich s Extragradient Method for the Variational Inequality Problem in Euclidean Space

A projection-type method for generalized variational inequalities with dual solutions

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods

Best proximity points of Kannan type cyclic weak ϕ-contractions in ordered metric spaces

On the simplest expression of the perturbed Moore Penrose metric generalized inverse

On Total Convexity, Bregman Projections and Stability in Banach Spaces

On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces

Available online at J. Nonlinear Sci. Appl., 10 (2017), Research Article

Research Article Generalized Mann Iterations for Approximating Fixed Points of a Family of Hemicontractions

Split equality monotone variational inclusions and fixed point problem of set-valued operator

A double projection method for solving variational inequalities without monotonicity

Viscosity Approximation Methods for Equilibrium Problems and a Finite Family of Nonspreading Mappings in a Hilbert Space

ON WEAK CONVERGENCE THEOREM FOR NONSELF I-QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

Transcription:

Strong Convergence Theorem by a Hybrid Extragradient-like Approximation Method for Variational Inequalities and Fixed Point Problems Lu-Chuan Ceng 1, Nicolas Hadjisavvas 2 and Ngai-Ching Wong 3 Abstract. The purpose of this paper is to investigate the problem of finding a common element of the set of fixed points F (S) of a nonexpansive mapping S and the set of solutions Ω A of the variational inequality for a monotone, Lipschitz continuous mapping A. We introduce a hybrid extragradient-like approximation method which is based on the well-known extragradient method and a hybrid (or outer approximation) method. The method produces three sequences which are shown to converge strongly to the same common element of F (S) Ω A. As applications, the method provides an algorithm for finding the common fixed point of a nonexpansive mapping and a pseudocontractive mapping, or a common zero of a monotone Lipschitz continuous mapping and a maximal monotone mapping. Keywords: Hybrid extragradient-like approximation method; variational inequality; fixed point; monotone mapping; nonexpansive mapping; demiclosedness principle. Mathematics Subject Classification 2000: 47J20; 47H09. 1 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China. E- mail: zenglc@hotmail.com 2 Corresponding author. Department of Product and Systems Design Engineering, University of the Aegean, 84100 Hermoupolis, Syros, Greece. Email: nhad@aegean.gr. The author was supported by grant no. 227-ε of the Greek General Secretariat of Research and Technology. 3 Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan. Email: wong@math.nsysu.edu.tw 1

1 Introduction Let H be a real Hilbert space with inner product, and norm, respectively. Let C be a nonempty closed convex subset of H and A be a mapping of C into H. Then A is called monotone if Ax Ay, x y 0, x, y C. A is called α-inverse-strongly monotone (see [4, 12]) if there exists a positive constant α such that Ax Ay, x y α Ax Ay 2, x, y C. A is called k-lipschitz continuous if there exists a positive constant k such that Ax Ay k x y, x, y C. It is clear that if A is α-inverse-strongly monotone, then A is monotone and Lipschitz continuous. In this paper, we consider the following variational inequality (for short, VI(A, C)): find u C such that Au, v u 0, v C. The set of solutions of the VI(C, A) is denoted by Ω A. A mapping S : C C is called nonexpansive [7] if Sx Sy x y, x, y C. We denote by F (S) the set of fixed points of S, i.e., F (S) = {u C : Su = u}. A more restrictive class of maps are the contractive maps, i.e. maps S : C C such that for some α (0, 1), Sx Sy α x y, x, y C. Due to the many applications of the variational inequality problem to several branches of mathematics, but also to mechanics, economics etc, finding its solutions is a very important field of research. In some cases, as for strictly monotone operators A, the solution, if it exists, is unique. More generally the set of solutions Ω A of a continuous monotone mapping A is a convex subset of C. In such cases one is often interested in finding a solution that has some desirable properties. For instance, Antipin has investigated methods for finding a solution of a variational inequality that satisfies some additional inequality constraints [1, 2], in a finite-dimensional space. Takahashi and Toyoda [18] considered the problem of finding a solution of the variational inequality which is also a fixed point of some mapping, in an infinite-dimensional setting. More precisely, given a nonempty, closed and convex set C H, a nonexpansive mapping S : C C 2

and an α-inverse-strongly-monotone mapping A : C H, they introduced the following iterative scheme in order to find an element of F (S) Ω A : { x 0 = x C, (1) x n+1 = α n x n + (1 α n )SP C (x n λ n Ax n ) for all n 0, where {α n } is a sequence in (0, 1), {λ n } is a sequence in (0, 2α), and P C is the metric projection of H onto C. It is shown in [18] that if F (S) Ω A, then the sequence {x n } generated by (1) converges weakly to some z F (S) Ω A. Later on, in order to achieve strong convergence to an element of F (S) Ω A under the same assumptions, Iiduka and Takahashi [10] modified the iterative scheme by using a hybrid method as follows: x 0 = x C, y n = α n x n + (1 α n )SP C (x n λ n Ax n ), C n = {z C : y n z x n z }, (2) Q n = {z C : x n z, x x n 0}, x n+1 = P Cn Q n x for all n 0, where 0 α n c < 1 and 0 < a λ n b < 2α. It is shown in [10] that if F (S) Ω A, then the sequence {x n } converges strongly to P F (S) ΩA x. The restriction of the above methods to the class of of α-inverse strongly monotone mappings (i.e., mappings whose inverse is strongly monotone) excludes some important classes of mappings, as pointed out by Nadezhkina and Takahashi [14]. The so-called extragradient method, introduced in 1976 by Korpelevich [11] for a finite-dimensional space, provides an iterative process converging to a solution of VI(A, C) by only assuming that C R n is closed and convex and A : C R n is monotone and k-lipschitz continuous. The extragradient method was further extended to infinite dimensional spaces by many authors; see for instance the recent contributions of He, Yang and Yuan [8], Solodov and Svaiter [17], Ceng and Yao [6, 19] etc. By modifying the extragradient method, Nadezhkina and Takahashi were able to show the following weak convergence result, for mappings A that are only supposed to be monotone and k-lipschitz: Theorem 1 [13, Theorem 3.1] Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C H be a monotone and k-lipschitz continuous mapping and S : C C be a nonexpansive mapping such that F (S) Ω A. Let {x n }, {y n } be the sequences generated by x 0 = x C, y n = P C (x n λ n Ax n ), x n+1 = α n x n + (1 α n )SP C (x n λay n ) for all n 0, where {λ n } [a, b] for some a, b (0, 1/k) and {α n } [c, d] for some c, d (0, 1). Then the sequences {x n }, {y n } converge weakly to the same point z F (S) Ω A where z = lim n P F (S) ΩA x n. 3

Further, inspired by Nadezhkina and Takahashi s extragradient method [13], Ceng and Yao [5] also introduced and considered an extragradient-like approximation method which is based on the above extragradient method and the viscosity approximation method, and proved the following strong convergence result. Theorem 2 [5, Theorem 3.1] Let C be a nonempty closed convex subset of a real Hilbert space H. Let f : C C be a contractive mapping with a contractive constant α (0, 1), A : C H be a monotone, k-lipschitz continuous mapping and S : C C be a nonexpansive mapping such that F (S) Ω A. Let {x n }, {y n } be the sequences generated by x 0 = x C, y n = (1 γ n )x n + γ n P C (x n λ n Ax n ), x n+1 = (1 α n β n )x n + α n f(y n ) + β n SP C (x n λay n ), for all n 0, where {λ n } is a sequence in (0, 1) with n=0 λ n <, and {α n }, {β n }, {γ n } are three sequences in [0, 1] satisfying the conditions: (i) α n + β n 1 for all n 0; (ii) lim n α n = 0, n=0 α n = ; (iii) 0 < lim inf n β n lim sup n β n < 1. Then the sequences {x n }, {y n } converge strongly to the same point q = P F (S) ΩA f(q) if and only if {Ax n } is bounded and lim inf n Ax n, y x n 0 for all y C. Very recently, by combining a hybrid-type method with an extragradienttype method, Nadezhkina and Takahashi [14] introduced the following iterative method for finding an element of F (S) Ω A and established the following strong convergence theorem. Theorem 3 [14, Theorem 3.1] Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C H be a monotone and k-lipschitz continuous mapping and let S : C C be a nonexpansive mapping such that F (S) Ω A. Let {x n }, {y n }, {z n } be sequences generated by x 0 = x C, y n = P C (x n λ n Ax n ), z n = α n x n + (1 α n )SP C (x n λ n Ay n ), (3) C n = {z C : z n z x n z }, Q n = {z C : x n z, x x n 0}, x n+1 = P Cn Q n x, for all n 0, where {λ n } [a, b] for some a, b (0, 1/k) and {α n } [0, c] for some c [0, 1). Then the sequences {x n }, {y n }, {z n } converge strongly to the same point q = P F (S) ΩA x. In this paper, we introduce a hybrid extragradient-like approximation method which is based on the above extragradient method and hybrid (or outer approx- 4

imation) method, i.e., x 0 C, y n = (1 γ n )x n + γ n P C (x n λ n Ax n ), z n = (1 α n β n )x n + α n y n + β n SP C (x n λ n Ay n ), C n = {z C : z n z 2 x n z 2 + (3 3γ n + α n )b 2 Ax n 2 }, Q n = {z C : x n z, x 0 x n 0}, x n+1 = P Cn Q n x 0 for all n 0, where {λ n } is a sequence in [a, b] with a > 0 and b < 1 2k, and {α n }, {β n }, {γ n } are three sequences in [0, 1] satisfying the conditions: (i) α n + β n 1 for all n 0; (ii) lim n α n = 0 ; (iii) lim inf n β n > 0 (iv) lim n γ n = 1 and γ n > 3/4 for all n 0. It is shown that the sequences {x n }, {y n }, {z n } generated by the above hybrid extragradient-like approximation method are well-defined and converge strongly to the same point q = P F (S) ΩA x. Using this theorem, we construct an iterative process for finding a common fixed point of two mappings, one of which is nonexpansive and the other taken from the more general class of Lipschitz pseudocontractive mappings. In the next section we will recall some basic notions and results. In Section 3 we present and prove our main theorem. The last section is devoted to some applications. 2 Preliminaries Given a nonempty, closed and convex subset C of a Hilbert space H, for any x H there exists a unique element P C x C which is nearest to x, i.e. for all y C, x P C x x y (4) The projection operator P C : H C is nonexpansive on H: For every x, y H, P C x P C y x y. In addition, it has the following properties: For every x H and y C, also, x y 2 x P C x 2 + y P C x 2 ; (5) x P C x, y P C x 0. (6) Assume that A is monotone and continuous. Then the solutions of the variational inequality VI(A, C) can be characterized as solutions of the so-called Minty variational inequality: x Ω A Ax, x x 0, x C. (7) 5

We will also make use of Browder s demiclosedness principle, cf. for instance [16]. Let us denote by I the identity operator in H. Proposition 4 Let C H be closed and convex. Assume that S : C H is nonexpansive. If S has a fixed point, then I S is demiclosed; that is, whenever {x n } is a sequence in C converging weakly to some x C and the sequence {(I S)x n } converges strongly to some y H, it follows that (I S)x = y. A mapping T : C C is called pseudocontractive if and only if for all x, y C, T x T y, x y x y 2. It is clear that any contractive mapping is pseudocontractive. Also, it is easy to see that T is pseudocontractive if and only if the mapping A = I T is monotone [3]. A multivalued mapping B : H 2 H is called monotone if for all x, y H, x T x and y T y one has y x, y x 0. Such a mapping is called maximal monotone if it has no proper monotone extension, i.e., if B 1 : H 2 H is monotone and Bx B 1 x for all x H, then B = B 1. If B is maximal monotone, then for each r > 0 and x H there exists a unique element z H such that (I + rb)z = x. This element is denoted by Jr B x. The mapping Jr B thus defined is called the resolvent of B [9]. 3 The main convergence result In this section we define an iterative process and prove its convergence to a member of F (S) Ω A, where S is nonexpansive and A is monotone and k- Lipschitz continuous. Theorem 5 Let C be a nonempty closed convex subset of a real Hilbert space H, A : C H be a monotone, k-lipschitz continuous mapping and let S : C C be a nonexpansive mapping such that F (S) Ω A. We define inductively the sequences {x n }, {y n }, {z n } by x 0 C, y n = (1 γ n )x n + γ n P C (x n λ n Ax n ), z n = (1 α n β n )x n + α n y n + β n SP C (x n λ n Ay n ), C n = {z C : z n z 2 x n z 2 + (3 3γ n + α n )b 2 Ax n 2 }, Q n = {z C : x n z, x 0 x n 0}, x n+1 = P Cn Q n x 0 for all n 0, where {λ n } is a sequence in [a, b] with a > 0 and b < 1 2k, and {α n }, {β n }, {γ n } are three sequences in [0, 1] satisfying the conditions: (i) α n + β n 1 for all n 0; (ii) lim n α n = 0 ; 6

(iii) lim inf n β n > 0 (iv) lim n γ n = 1 and γ n > 3/4 for all n 0. Then the sequences {x n }, {y n }, {z n } are well-defined and converge strongly to the same point q = P F (S) ΩA x 0. Proof. We divide the proof into several steps. Step 1. Assuming that x n is a well-defined element of C for some n N, we show that F (S) Ω A C n. Since x n is defined, y n, z n are obviously well-defined elements of C. Let x F (S) Ω A be arbitrary. Set t n = P C (x n λ n Ay n ) for all n 0. Taking x = x n λ n Ay n and y = x in (5), we obtain t n x 2 x n λ n Ay n x 2 x n λ n Ay n t n 2 = x n x 2 + 2λ n Ay n, x y n + 2λ n Ay n, y n t n x n t n 2. Since by (7) we have Ay n, y n x 0, we deduce t n x 2 x n x 2 x n t n 2 + 2λ n Ay n, y n t n = x n x 2 (x n y n ) + (y n t n ) 2 + 2λ n Ay n, y n t n = x n x 2 x n y n 2 y n t n 2 + 2 x n λ n Ay n y n, t n y n. (8) We estimate the last term, using y n = (1 γ n )x n + γ n P C (x n λ n Ax n ): x n λ n Ay n y n, t n y n = x n λ n Ax n y n, t n y n + λ n Ax n Ay n, t n y n x n λ n Ax n (1 γ n )x n γ n P C (x n λ n Ax n ), t n y n + λ n Ax n Ay n t n y n γ n x n λ n Ax n P C (x n λ n Ax n ), t n y n (9) (1 γ n )λ n Ax n, t n y n + λ n k x n y n t n y n. In addition, using properties (6) and (4) of the projection P C (x n λ n Ax n ) we obtain x n λ n Ax n P C (x n λ n Ax n ), t n y n = x n λ n Ax n P C (x n λ n Ax n ), t n (1 γ n )x n γ n P C (x n λ n Ax n = (1 γ n ) x n λ n Ax n P C (x n λ n Ax n ), t n x n + γ n x n λ n Ax n P C (x n λ n Ax n ), t n P C (x n λ n Ax n ) (1 γ n ) x n λ n Ax n P C (x n λ n Ax n ) t n x n (1 γ n ) λ n Ax n ( t n y n + y n x n ). (10) 7

Gathering (8), (9), (10) and using γ n 1 and λ n b we find t n x 2 x n x 2 x n y n 2 y n t n 2 + 2γ n (1 γ n ) b Ax n ( t n y n + y n x n ) + 2(1 γ n )b Ax n t n y n + 2bk x n y n t n y n x n x 2 x n y n 2 y n t n 2 + (1 γ n ) (2b 2 Ax n 2 + t n y n 2 + y n x n 2 ) + (1 γ n )(b 2 Ax n 2 + t n y n 2 ) + bk( x n y n 2 + t n y n 2 ) = x n x 2 x n y n 2 (γ n bk) (11) y n t n 2 (2γ n 1 bk) + 3(1 γ n )b 2 Ax n 2. Using our assumptions b < 1 2k and γ n > 3/4, we obtain that for all n N, t n x 2 x n x 2 + 3(1 γ n )b 2 Ax n 2. (12) Also, using again (7) and properties of P C, we obtain y n x 2 = (1 γ n )(x n x ) + γ n (P C (x n λ n Ax n ) x ) 2 (1 γ n ) x n x 2 + γ n P C (x n λ n Ax n ) P C x 2 (1 γ n ) x n x 2 + γ n x n x λ n Ax n 2 = (1 γ n ) x n x 2 + γ n [ x n x 2 2λ n Ax n, x n x + λ 2 n Ax n 2 ] x n x 2 + b 2 Ax n 2 (13) Since S is nonexpansive and x F (S) we have St n x t n x. Thus, (13) and (12) imply that z n x 2 = (1 α n β n )x n + α n y n + β n St n x 2 (1 α n β n ) x n x 2 + α n y n x 2 + β n St n x 2 (14) (1 α n β n ) x n x 2 + α n [ x n x 2 + b 2 Ax n 2 ] + β n [ x n x 2 + 3(1 γ n )b 2 Ax n 2 ] = x n x 2 + (3 3γ n + α n )b 2 Ax n 2. (15) Consequently, x C n. Hence F (S) Ω A C n. Step 2. We show that the sequence {x n } is well-defined and F (S) Ω A C n Q n for all n 0. We show this assertion by mathematical induction. For n = 0 we have Q 0 = C. Hence by Step 1 we obtain F (S) Ω A C 0 Q 0. Assume that x k is defined and F (S) Ω A C k Q k for some k 0. Then y k, z k are well-defined elements of C. Note that C k is a closed convex subset of C since C k = {z C : z k x k 2 + 2 z k x k, x k z (3 3γ k + α k )b 2 Ax k 2 }. 8

Also, it is obvious that Q k is closed and convex. Thus, C k Q k is a closed convex subset, which is nonempty since by assumption it contains F (S) Ω A. Consequently, x k+1 = P Ck Q k x 0 is well-defined. The definition of x k+1 and of Q k+1 imply that C k Q k Q k+1. Hence, F (S) Ω A Q k+1. Using Step 1 we infer that F (S) Ω A C k+1 Q k+1. Step 3. We show that the following statements hold: (1) {x n } is bounded, lim n x n x 0 exists, and lim n (x n+1 x n ) = 0; (2) lim n (z n x n ) = 0. Indeed, take any x F (S) Ω A. Using x n+1 = P Cn Q n x 0 and x F (S) Ω A C n Q n, we obtain x n+1 x 0 x x 0, n 0. (16) Therefore, {x n } is bounded and so is {Ax n } due to the Lipschitz continuity of A. From the definition of Q n it is clear that x n = P Qn x 0. Since x n+1 C n Q n Q n, we have x n+1 x n 2 x n+1 x 0 2 x n x 0 2 n 0. (17) In particular, x n+1 x 0 x n x 0 hence lim n x n x 0 exists. Then (17) implies that lim (x n+1 x n ) = 0. (18) n Since x n+1 C n, we have z n x n+1 2 x n x n+1 2 + (3 3γ n + α n )b 2 Ax n 2. Since {Ax n } is bounded and lim n γ n = 1, lim n α n = 0, we deduce that lim n (z n x n+1 ) = 0. Combining with (18) we infer that lim n (z n x n ) = 0. Step 4. We show that the following statements hold: (1) lim n (x n y n ) = 0; (2) lim n (Sx n x n ) = 0. Indeed, from inequalities (14) and (15) we infer z n x 2 x n x 2 ( α n β n ) x n x 2 + α n y n x 2 + β n St n x 2 (3 3γ n + α n )b 2 Ax n 2. (19) Since α n 0, γ n 1, and {x n }, {Ax n }, {y n } are bounded, we deduce from (19) that lim n + β n( St n x 2 x n x 2 ) = 0. 9

Using lim inf n + β n > 0 we get lim n + ( St n x 2 x n x 2 ) = 0. Then (12) implies lim ( St n x 2 x n x 2 ) lim ( t n x 2 x n x 2 ) n + n + lim 3(1 γ n)b 2 Ax n 2 = 0 n + thus, lim n + ( t n x 2 x n x 2 ) = 0. Now we rewrite (11) as x n y n 2 (γ n bk)+ y n t n 2 (2γ n 1 bk) x n x 2 t n x 2 +3(1 γ n )b 2 Ax n 2. We deduce that lim [ x n y n 2 (γ n bk) + y n t n 2 (2γ n 1 bk)] = 0. n + Our assumptions on λ n and γ n imply that γ n bk > 1/4 and 2γ n 1 bk > 1 2 bk > 0. Consequently, lim n + (x n y n ) = lim n + (y n t n ) = 0. Hence, lim n + (x n t n ) = 0. Using that S is nonexpansive, we get lim n + (Sx n St n ) = 0. We rewrite the definition of z n as z n x n = α n x n + α n y n + β n (St n x n ). From lim n + (z n x n ) = 0, lim n + α n = 0, the boundedness of x n, y n and lim inf n + β n > 0 we infer that lim n + (St n x n ) = 0. Thus finally lim n + (Sx n x n ) = 0. Step 5. We claim that ω w (x n ) F (S) Ω A, where ω w (x n ) denotes the weak ω-limit set of {x n }, i.e., ω w (x n ) = {u H : {x nj } converges weakly to u for some subsequence {n j } of {n}}. Indeed, since {x n } is bounded, it has a subsequence which converges weakly to some point in C and hence ω w (x n ). Let u ω w (x n ) be arbitrary. Then there exists a subsequence {x nj } {x n } which converges weakly to u. Since we also have lim j (x nj Sx nj ) = 0, from the demiclosedness principle it follows that (I S)u = 0. Thus u F (S). We now show that u Ω A. Since t n = P C (x n λ n Ay n ), for every x C we have x n λ n Ay n t n, t n x 0 hence x t n, Ay n x t n, x n t n. λ n Combining with monotonicity of A we obtain x t n, Ax x t n, At n = x t n, At n Ay n + x t n, Ay n x t n, At n Ay n + x t n, x n t n. λ n 10

Since lim n + (x n t n ) = lim n + (y n t n ) = 0, A is Lipschitz continuous and λ n > a > 0 we deduce that x u, Ax = lim x tnj, Ax 0, x C. n j + Then (7) entails that u F (S) Ω A. Step 6. We show that {x n }, {y n }, {z n } converge strongly to the same point q = P F (S) ΩA x 0. Assume that {x n } does not converge strongly to q. Then there exists ε > 0 and a subsequence {x nj } {x n } such that xnj q > ε for all j. Without loss of generality we may assume that {x nj } converges weakly to some point u. By Step 5, u F (S) Ω A. Using q = P F (S) ΩA x 0, the weak lower semicontinuity of, and relation (16) for x = q, we obtain q x 0 u x 0 lim inf j x n j x 0 = lim n + x n x 0 q x 0. (20) It follows that q x 0 = u x 0, hence u = q since q is the unique element in F (S) Ω A that minimizes the distance from x 0. Also, (20) implies lim j x nj x 0 = q x 0. Since {x nj x 0 } converges weakly to q x 0, this shows that {x nj x 0 } converges strongly to q x 0, and hence {x nj } converges strongly to q, a contradiction. Thus, {x n } converges strongly to q. It is easy to see that {y n }, {z n } converge strongly to the same point q. 4 Applications If one takes α n = 0, β n = 1 and γ n = 1 for all n N in Theorem 5, then one finds the following simpler theorem: Theorem 6 Let C be a nonempty closed convex subset of a real Hilbert space H, A : C H be a monotone, k-lipschitz continuous mapping and let S : C C be a nonexpansive mapping such that F (S) Ω A. We define inductively the sequences {x n }, {y n }, {z n } by x 0 C, y n = P C (x n λ n Ax n ), z n = SP C (x n λ n Ay n ), C n = {z C : z n z 2 x n z 2 }, Q n = {z C : x n z, x 0 x n 0}, x n+1 = P Cn Q n x 0 for all n 0, where {λ n } is a sequence in [a, b] with a > 0 and b < 1 2k. Then the sequences {x n }, {y n }, {z n } are well-defined and converge strongly to the same point q = P F (S) ΩA x 0. 11

However, relations like (15) suggest that, as is often the case, taking more general sequences {α n }, {β n } and {γ n } might improve the rate of convergence to a solution. Taking S = I, α n = 0 and β n = 1 in Theorem 5, one finds the following theorem providing an algorithm to find the solution of a variational inequality: Theorem 7 Let C be a nonempty closed convex subset of a real Hilbert space H, A : C H be a monotone, k-lipschitz continuous mapping such that Ω A. We define inductively the sequences {x n }, {y n }, {z n } by x 0 C, y n = (1 γ n )x n + γ n P C (x n λ n Ax n ), z n = P C (x n λ n Ay n ), C n = {z C : z n z 2 x n z 2 + (3 3γ n )b 2 Ax n 2 }, Q n = {z C : x n z, x 0 x n 0}, x n+1 = P Cn Q n x 0 for all n 0, where {λ n } is a sequence in [a, b] with a > 0 and b < 1 2k, and {γ n } is a sequence in [0, 1] such that lim n γ n = 1 and γ n > 3/4 for all n 0. Then the sequences {x n }, {y n }, {z n } are well-defined and converge strongly to the same point q = P ΩA x 0. Taking γ n = 1 and α n = 0 in Theorem 5, one recovers the main result of [14]. If in addition one puts A = 0, one recovers the main result of [15] on an algorithm to find the fixed point of a nonexpansive mapping. Another consequence of Theorem 5 is the following. Theorem 8 Let H be a real Hilbert space, A : H H be monotone and k- Lipschitz, and S : H H be nonexpansive, such that F (S) A 1 {0}. Define the sequences {x n }, {y n } and {z n } by x 0 H y n = x n λ n Ax n z n = (1 β n )x n α n λ n Ax n + β n S(x n λn γ n Ay n ) C n = {z C : z n z 2 x n z 2 + (3 3γ n + α n )b 2 Ax n 2 } Q n = {z C : x n z, x 0 x n 0}, x n+1 = P Cn Q n x 0 for all n 0, where {λ n } is a sequence in [a, b] with a > 0 and b < 1 4k, and {α n }, {β n }, {γ n } are three sequences in [0, 1] satisfying the conditions: (i) α n + β n 1 for all n 0; (ii) lim n α n = 0 ; (iii) lim inf n β n > 0 (iv) lim n γ n = 1 and γ n > 3/4 for all n 0. Then the sequences {x n }, {y n } and {z n } are well-defined and converge strongly to the same point q = P F (S) A 1 {0}x 0. 12

Proof. We set λ n = λ n /γ n. Then a λ n < 4 3 λ n < 2b < 1 2k. Thus we can apply Theorem 5 for this sequence, and for C = H. We have P H = I and Ω A = A 1 {0}. Then Theorem 5 guarantees that the sequences {x n }, {y n } and and {z n } converge to q = P F (S) A 1 {0}x 0, where y n = x n γ n λ nax n = x n λ n Ax n, z n = (1 α n β n )x n + α n y n + β n S(x n λ nay n ) = (1 β n ) x n α n λ n Ax n + β n S(x n λ n γ n Ay n ). Because of the relations that exist between monotone operators and nonexpansive mappings, Theorem 5 can also be applied for finding the common zeros of two monotone mappings, or the common fixed points of two mappings. For example, suppose that A : H H is a monotone, Lipschitz continuous mapping and B : H H is a maximal monotone mapping. Assume that the set of common zeros A 1 (0) B 1 (0) is nonempty. Theorem 5 can be applied to find an element of A 1 (0) B 1 (0) as follows. It is known that for any r > 0 the resolvent Jr B of B is nonexpansive [9]; also, if we set C = H then F (Jr B ) = B 1 (0) while Ω A = A 1 (0). Thus, by applying Theorem 5 to the mappings A and Jr B we can find an element of Ω A F (Jr B ) = A 1 (0) B 1 (0). Likewise, assume that C H is nonempty, closed convex, T : C C is pseudocontractive and Lipschitz, and S : C C is nonexpansive, such that F (T ) F (S). We can find an element of F (T ) F (S) as follows. If we set A = I T then it is known that A is monotone and Lipschitz [3]. Also, it is easy to see that Ω A = F (T ). Indeed, if u F (T ) then Au = 0 so that u Ω A. Conversely, if u Ω A then u T u, y u 0, y C. Setting y = T u we get u T u, u T u 0, i.e., u F (T ). Consequently, Theorem 5 can be applied to the mappings A and S to produce sequences converging to an element of Ω A F (S) = F (T ) F (S). References [1] A.S. Antipin, Methods for solving variational inequalities with related constraints, Comput. Math. Math. Phys., 40, 1239-1254 (2000). [2] A.S. Antipin and F.P. Vasiliev, Regularized prediction method for solving variational inequalities with an inexactly given set, Comput. Math. Math. Phys., 44, 750-758 (2004). [3] F.E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sc. USA, 55, 1100-1103 (1965). [4] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20, 197-228 (1967). 13

[5] L.C. Ceng and J.C. Yao, An extragradient-like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput., 190, 205-215 (2007). [6] L.C. Ceng and J.C. Yao, On the convergence analysis of inexact hybrid extragradient proximal point algorithms for maximal monotone operators, J. Comput. Appl. Math., 217, 326-338 (2007). [7] K. Geobel and W.A. Kirk, Topics on Metric Fixed-Point Theory, Cambridge University Press, Cambridge, England (1990). [8] B.-S. He, Z.-H. Yang and X.-M. Yuan, An approximate proximalextragradient type method for monotone variational inequalities, J. Math. Anal. Appl., 300 (2004) 362-374. [9] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, vol. I: Theory, Kluwer Academic Publishers, Dordrecht (1997). [10] H. Iiduka and W. Takahashi, Strong convergence theorem by a hybrid method for nonlinear mappings of nonexpansive and monotone type and applications, Adv. Nonlinear Var. Inequal., 9, 1-10 (2006). [11] G.M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12, 747-756 (1976). [12] F. Liu and M.Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal., 6, 313-344 (1998). [13] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128, 191-201 (2006). [14] N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., 16, 1230-1241 (2006). [15] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279, 372-379 (2003). [16] Z. Opial, Weak convergence f the sequence of successive approximations for nonlinear mappings, Bull. Amer. Math. Soc. 73, 591-597 (1967). [17] M.V. Solodov and B.F. Svaiter, An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions, Math. Oper. Res., 25, 214-230 (2000). [18] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118, 417-428 (2003). 14

[19] L.C. Zeng and J.C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwan. J. Math., 10, 1293-1303 (2006). 15