Molecular Biology (9)

Similar documents
-14. -Abdulrahman Al-Hanbali. -Shahd Alqudah. -Dr Ma mon Ahram. 1 P a g e

Gene Expression: Translation. transmission of information from mrna to proteins Chapter 5 slide 1

CHAPTER4 Translation

9 The Process of Translation

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

BCH 4054 Spring 2001 Chapter 33 Lecture Notes

Chapter

Protein synthesis II Biochemistry 302. Bob Kelm February 25, 2004

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

From gene to protein. Premedical biology

Section 7. Junaid Malek, M.D.

Lecture 25: Protein Synthesis Key learning goals: Be able to explain the main stuctural features of ribosomes, and know (roughly) how many DNA and

BCMB Chapters 39 & 40 Translation (protein synthesis)

BCMB Chapters 39 & 40 Translation (protein synthesis)

NO!!!!! BCMB Chapters 39 & 40 Translation (protein synthesis) BCMB Chapters 39 & 40 Translation (protein synthesis)

GENETICS - CLUTCH CH.11 TRANSLATION.

From Gene to Protein

Chapter 19 Overview. Protein Synthesis. for amino acid. n Protein Synthesis genetic info encoded in nucleic acids translated into standard amino acids

Translation. Genetic code

ومن أحياها Translation 2. Translation 2. DONE BY :Nisreen Obeidat

Chapter 17 The Mechanism of Translation I: Initiation

Degeneracy. Two types of degeneracy:

Molecular Biology - Translation of RNA to make Protein *

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA

Biochemistry Prokaryotic translation

Information Content in Genetics:

Molecular Biology of the Cell

Conceptofcolinearity: a continuous sequence of nucleotides in DNA encodes a continuous sequence of amino acids in a protein

Chapter 17. From Gene to Protein. Biology Kevin Dees

Lecture 13: PROTEIN SYNTHESIS II- TRANSLATION

GCD3033:Cell Biology. Transcription

Advanced Topics in RNA and DNA. DNA Microarrays Aptamers

TRANSLATION: How to make proteins?

Laith AL-Mustafa. Protein synthesis. Nabil Bashir 10\28\ First

L I F E S C I E N C E S

What is the central dogma of biology?

Translation and the Genetic Code

Molecular Genetics Principles of Gene Expression: Translation

1. In most cases, genes code for and it is that

Protein synthesis I Biochemistry 302. February 17, 2006

TRANSLATION: How to make proteins?

Translation and Operons

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell.

Chapter 12. Genes: Expression and Regulation

UNIT 5. Protein Synthesis 11/22/16

mrna and Genetic code standard

Lecture 9 Translation.

ومن أحياها Translation 1. Translation 1. DONE BY :Maen Faoury

Translation Part 2 of Protein Synthesis

ATP. P i. trna. 3 Appropriate trna covalently bonds to amino acid, displacing AMP. Computer model Hydrogen bonds

Translational Initiation

Molecular Biology of the Cell

BME 5742 Biosystems Modeling and Control

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

From DNA to protein, i.e. the central dogma

Videos. Bozeman, transcription and translation: Crashcourse: Transcription and Translation -

Translation. A ribosome, mrna, and trna.

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Protein synthesis I Biochemistry 302. Bob Kelm February 23, 2004

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Part IV => DNA and RNA. 4.6 RNA Translation 4.6a Genetic Code 4.6b Translational Machinery

Protein Synthesis. Unit 6 Goal: Students will be able to describe the processes of transcription and translation.

Regulation of Transcription in Eukaryotes

TRANSLATION: How to make proteins?

Organization of Genes Differs in Prokaryotic and Eukaryotic DNA Chapter 10 p

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications

Central Dogma. DNA is the genetic material within the nucleus. The process of replication creates new copies of DNA.

Eukaryotic vs. Prokaryotic genes

Regulation of Gene Expression

Molecular Biology of the Cell

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

Multiple Choice Review- Eukaryotic Gene Expression

Ribosome readthrough

9/11/18. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

PROTEIN SYNTHESIS: TRANSLATION AND THE GENETIC CODE

9/2/17. Molecular and Cellular Biology. 3. The Cell From Genes to Proteins. key processes

Introduction. Gene expression is the combined process of :

Tutorial 4 Protein Biochemistry 2 Genes to proteins: Protein synthesis, transport, targeting, and degradation

The Eukaryotic Genome and Its Expression. The Eukaryotic Genome and Its Expression. A. The Eukaryotic Genome. Lecture Series 11

Lesson Overview. Ribosomes and Protein Synthesis 13.2

Computational Biology: Basics & Interesting Problems

Biophysics Lectures Three and Four

CHAPTER 3. Cell Structure and Genetic Control. Chapter 3 Outline

Chapter 16 Lecture. Concepts Of Genetics. Tenth Edition. Regulation of Gene Expression in Prokaryotes

Introduction to the Ribosome Overview of protein synthesis on the ribosome Prof. Anders Liljas

15.2 Prokaryotic Transcription *

Regulation of gene expression. Premedical - Biology

Organic Chemistry Option II: Chemical Biology

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine.

Prokaryotic Regulation

Translation - Prokaryotes

Gene Expression. Molecular Genetics, March, 2018

MCB 110. "Molecular Biology: Macromolecular Synthesis and Cellular Function" Spring, 2018

PROTEIN SYNTHESIS INTRO

Lecture 7: Simple genetic circuits I

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper.

RNA Processing: Eukaryotic mrnas

Transcription:

Molecular Biology (9) Translation Mamoun Ahram, PhD Second semester, 2017-2018 1

Resources This lecture Cooper, Ch. 8 (297-319) 2

General information Protein synthesis involves interactions between three types of RNA molecules: trnas rrnas, which exist in ribosomes (the factories of protein synthesis) mrna templates 3

trna structure trnas are short RNA molecules (80 bases long). Charged or activated trna carries one amino acid. Twenty Aminoacyl-tRNA synthetases exist for each amino acid. An amino acid is covalently attached to the ribose of the terminal adenosine at CCA. The amino acid attached to trna is specified not only by the anticodon, but also identifier sequences. 4

Codon vs. anticodon trnas contain a three-nucleotide sequence known as anticodon that pairs with the codon or triplet mrna molecules (note the anti-parallel alignment of mrna-trna complex) 5

6

Features of the genetic Not universal Example: AUA in mitochondria (methionine) in cytosol (isoleucine) Wobble base pairing (degenerate codon) The bases that are common to several codons are usually the first and second bases, with more room for variation in the third base, which is called the wobble base. The degeneracy of the code acts as a buffer against deleterious mutations. 7

Examples of wobble base pairing Relaxed base pairing at this position results from the formation of G-U base pairs.

Ribosomes Ribosomes are the sites of protein synthesis in both prokaryotic and eukaryotic cells. E. coli contain about 20,000 ribosomes, which account for approximately 25% of the dry weight of the cell, and rapidly growing mammalian cells contain about 10 million ribosomes. The peptidyl transferase reaction of a peptide bond is catalyzed by the rrna of the large ribosomal subunit.

Ribosome structure

The general mechanism of translation Three stages: initiation, elongation, and termination. The direction is 5 3. Protein synthesis begins at the amino terminus and extends toward the carboxyl terminus. 11

Transcription/translation Coupling Translation and transcription are coupled in space and time in prokaryotes. 12

Start of translation In both prokaryotes and eukaryotes, translation starts at specific initiation sites, and not from the first codon of the mrna. The 5 terminal portions upstream of the initiation sites of both prokaryotic and eukaryotic mrnas contain noncoding sequences, referred to as 5 untranslated regions (UTRs). There is also a 3 -untranslated region. 13

Remember Bacterial mrna is polycistronic Eukaryotic mrna is monocistronic 14

Shine-Dalgarno sequence 15

But in eukaryotes Eukaryotic ribosomes recognize mrnas by binding to the 7-methylguanosine cap at their 5 terminus 16

Internal ribosome entry site (IRES) Alternatively, internal ribosome entry site (IRES) is recognized by the 40S ribosome or eif4g protein followed by recruitment of the 40S ribosome. IRES AUG

The first amino acid Translation always initiates with the amino acid methionine, usually encoded by AUG. In most bacteria, it is N-formylmethionine. 18

Translation initiation in eukaryotes The initiation factor, eif4g, is member of a complex that includes poly-a binding protein (PABP), which binds to the poly-a tail via and eif4e, which binds to the CAP.

Translation initiation Prokaryotes The 30S ribosomal subunit binds to mrna and fmet-trna in the presence of GTP and the three initiation factors, IF-1, IF-2, and IF-3, forming the 30S initiation complex. The 50S ribosomal subunit is added, forming the 70S initiation complex. 20

Translation elongation I Three steps: aminoacyl-trna binding, peptide bond formation, and translocation. 21

Details of elongation Step 1: An aminoacyl-trna is bound to the A site on the ribosome. Elongation factor EF-Tu (Tu) and GTP are required. The P site on the ribosome is already occupied. Step 2: Elongation factor EF-Tu is released from the ribosome and regenerated Step 3: The peptide bond is formed, leaving an uncharged trna at the P site. Step 4: the uncharged trna is released. The peptidyl-trna is translocated to the P site, leaving an empty A site. The uncharged trna is translocated to the E site and subsequently released.

Translation termination A stop signal is required for the termination of protein synthesis. The codons UAA, UAG, and UGA are the stop signals. These codons are not recognized by any trnas, but they are recognized by proteins called release factors. The release factor blocks the binding of a new aminoacyltrna and facilitates the hydrolysis of the bond between the carboxyl end of the peptide and the trna. Then, the whole complex dissociates. 23

Polyribosomes (polysomes) A single mrna molecule is translated by several ribosomes simultaneously. Each ribosome produces one copy of the polypeptide chain specified by the mrna. When the protein has been completed, the ribosome dissociates into subunits that are used in further rounds of protein synthesis. 24

Inhibitors of translation INHIBITOR Tetracycline Streptomycin Chloramphenicol Erythromycin SPECIFIC EFFECT blocks binding of aminoacyl-trna to A-site of ribosome Induces binding of wrong t-rna-aa complexes resulting in false proteins blocks the peptidyl transferase reaction on ribosomes blocks the translocation reaction on ribosomes In eukaryotes, diphtheria toxin is a protein that interferes with protein synthesis by decreasing the activity of the eukaryotic elongation factor eef2. 25

Inhibitors of translation

A benefit of cloning Production of eukaryotic proteins in bacteria (example: Insulin) Challenges: insulin is a dimer linked by disulfide bonds and produced from genes containing introns. Solution: synthetic DNA is made for each polypeptide and inserted into bacteria separately. The polypeptides are purified from each bacterial batch and mixed to form the mature insulin protein. 27

Heme and protein synthesis In reticulocytes (immature erythrocytes), heme stimulates protein synthesis. The mrna is translated only if adequate heme is available to form functional hemoglobin molecules. This is done via regulating the activity of eif-2, which is responsible for escorting initiator methionyl trna to the ribosome. eif-2 must be bound to GTP to be active. When it is released from the ribosome, GTP is hydrolyzed to GDP, which must be exchanged with GTP for eif-2 to be active again. 28

Regulation If adequate heme is available, GDP-GTP exchange occurs and translation is able to proceed. If heme supplies are inadequate, a protein kinase that phosphorylates eif-2 is activated. Phosphorylation of eif-2 blocks the exchange of GTP for GDP, so eif-2/gtp cannot be regenerated and translation is inhibited. 29

ApoB-100 vs. apob-48 These proteins make up specific lipoprotiens that are responsible for lipid transport. ApoB-100 is a liver proteins that is part of low-density lipoproteins ApoB-48 is an intestinal proteins that is part of chylomicrons Both proteins are synthesized from the same gene. 30

Gene editing 31

Regulation by microrna (mirna) MicroRNA is synthesized by RNA Pol II into single-stranded, primary mirna (pri-mirna) transcript. Pri-miRNA is processed in the nucleus by Drosha and exported to the cytoplasm, modified by an endonuclease complex containing Dicer to generate a mature mirna duplex. One strand is loaded onto RISC complex where mirna is targeted to mrna resulting in either translation repression of mrna degradation. 32

Alternative polyadenylation 33

Fate of (mis)- and (un)-folded proteins Proteins are degraded either in degradative subcellular organelles like lysosomes or by the macromolecular proteasomes. Proteins are targeted for destruction in a proteasome by ubiquitinylation which involves labeling by small polypeptides known as ubiquitin. 34

Levels of regulation Transcription RNA processing RNA transport mrna stability Translation Post-translational modification Protein activity Protein degradation 35