Study of early dynamic evaluation methods in complex small fault-block reservoirs

Similar documents
Pressure Transient Analysis COPYRIGHT. Introduction to Pressure Transient Analysis. This section will cover the following learning objectives:

Figure 1 - Gauges Overlay & Difference Plot

Inflow Performance 1

Calculating Method for the Axial Force of Washover String During Extracting Casing in Directional Well

American Journal of Energy Engineering

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article

The SPE Foundation through member donations and a contribution from Offshore Europe

Flow equations The basic equation, on which all flow equations are based, is Darcy s Law for radial flow is given by: p

Reservoir Flow Properties Fundamentals COPYRIGHT. Introduction

The Effect of Well Patterns on Surfactant/Polymer Flooding

Rate Transient Analysis COPYRIGHT. Introduction. This section will cover the following learning objectives:

XYZ COMPANY LTD. Prepared For: JOHN DOE. XYZ et al Knopcik 100/ W5/06 PAS-TRG. Dinosaur Park Formation

Pressure Analysis of ZK212 Well of Yangyi High Temperature Geothermal Field (Tibet, China)

Evaluation and Forecasting Performance of Naturally Fractured Reservoir Using Production Data Inversion.

Available online at ScienceDirect. Energy Procedia 114 (2017 )

Reservoir Management Background OOIP, OGIP Determination and Production Forecast Tool Kit Recovery Factor ( R.F.) Tool Kit

Modelling of CO 2 storage and long term behaviour in the Casablanca field

National Exams May 2016

ScienceDirect. Technical and Economic Evaluation for Wire-line Coring in Large Diameter Deep Drilling Project in Salt Basin

Risk Factors in Reservoir Simulation

WATER INFLUX. Hassan S. Naji, Professor,

Main controlling factors of remaining oil and favorable area prediction of Xinli oilfield VI block

Open Access Study on Reservoir-caprock Assemblage by Dual Logging Parameter Method

Introduction to Well Stimulation

Available online at ScienceDirect. Procedia Engineering 84 (2014 )

Perforation Inflow Test Analysis (PITA)

ScienceDirect. Heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system with local thermal non-equilibrium model

Production System Analysis

Petroleum Engineering 613 Natural Gas Engineering. Texas A&M University. Lecture 07: Wellbore Phenomena

Application of Pressure Data Analysis in Tapping the Potential of Complex Fault Block Oilfield

COPYRIGHT. Optimization During the Reservoir Life Cycle. Case Study: San Andres Reservoirs Permian Basin, USA

Dimensionless Wellbore Storage Coefficient: Skin Factor: Notes:

Oil and Gas Well Performance

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

THEORETICAL RESERVOIR MODELS

Measure Twice Frac Once

Journal of Petroleum Science and Engineering

The Analytic Hierarchy Process for the Reservoir Evaluation in Chaoyanggou Oilfield

2. Standing's Method for Present IPR

National yams May Pet-B2, Nahiral Gas Engineering. 3 hours duration NOTES:

The Effect of Stress Arching on the Permeability Sensitive Experiment in the Su Lige Gas Field

Petroleum Engineering 324 Well Performance Daily Summary Sheet Spring 2009 Blasingame/Ilk. Date: Materials Covered in Class Today: Comment(s):

PET467E-Analysis of Well Pressure Tests 2008 Spring/İTÜ HW No. 5 Solutions

Determination of Gas Well Productivity by Logging Parameters

Opportunities in Oil and Gas Fields Questions TABLE OF CONTENTS

The Analysis of Internal Flow Field in Oil-Gas Separator

Flow of Non-Newtonian Fluids within a Double Porosity Reservoir under Pseudosteady State Interporosity Transfer Conditions

Introduction to Formation Evaluation Abiodun Matthew Amao

A unified formula for determination of wellhead pressure and bottom-hole pressure

Main controlling factors of hydrocarbon accumulation in Sujiatun oilfield of Lishu rift and its regularity in enrichment

Article 11 Monte Carlo Simulation/Risk Assessment (cont.)

region includes nine states and four provinces, covering over 1.4 million square miles. The PCOR Partnership

WP2 country review Lithuania

Open Access An Experimental Study on Percolation Characteristics of a Single-Phase Gas in a Low-Permeability Volcanic Reservoir Under High Pressure

Propagation of Radius of Investigation from Producing Well

Quantitative evaluation of fault lateral sealing

Prediction technique of formation pressure

GENERALIZED PSEUDOPRESSURE WELL TREATMENT

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure:

Study on the Four- property Relationship of Reservoirs in YK Area of Ganguyi Oilfield

MAXIMIZING THE RESERVOIR ACCESS WITH COMPLETION OPTIMIZATION AND EFFECTIVENESS. Luciano Fucello, NCS Multistage Fabio Chiarandini, Gaffney & Cline

The Seismic-Geological Comprehensive Prediction Method of the Low Permeability Calcareous Sandstone Reservoir

Effect Of The In-Situ Stress Field On Casing Failure *

Petroleum Engineering 324 Well Performance PRACTICE Final Examination (Well "B") 05 May 2003 (08:00-10:00 a.m. RICH 302)

ScienceDirect. Experimental Validation on Lift Increment of a Flapping Rotary Wing with Boring-hole Design

Energy and Power Engineering, 2009, doi: /epe Published Online August 2009 (

The experimental study on displacement pressure in fractured reservoir of Mudstone

Petroleum Engineering 324 Reservoir Performance. Objectives of Well Tests Review of Petrophysics Review of Fluid Properties 29 January 2007

WELL PRODUCTION PERFORMANCE ANALYSIS FOR UNCONVENTIONAL SHALE GAS RESERVOIRS; A CONVENTIONAL APPROACH. FLORIN HATEGAN Devon Canada Corporation

Integrating Geomechanics and Reservoir Characterization Examples from Canadian Shale Plays

Petroleum Engineering 324 Reservoir Performance. Objectives of Well Tests Review of Petrophysics Review of Fluid Properties 19 January 2007

TRANSIENT AND PSEUDOSTEADY-STATE PRODUCTIVITY OF HYDRAULICALLY FRACTURED WELL. A Thesis ARDHI HAKIM LUMBAN GAOL

GREEN WELL TESTING A REPORT SUBMITTED TO THE DEPARTMENT OF PETROLEUM ENGINEERING OF STANFORD UNIVERSITY

The Mine Geostress Testing Methods and Design

Production performance analysis of fractured horizontal well in tight oil reservoir

Open Access Establishment of Mathematical Model and Sensitivity Analysis of Plugging Capacity of Multi-Component Foam Flooding

Chinese Petroleum Resources / Reserves Classification System

Numerical Simulation of the Oil-water Distribution Law in X Block Geology by Using the STARS Mode

Petroleum Engineering 324 Well Performance Daily Summary Sheet Spring 2009 Blasingame/Ilk. Date: Materials Covered in Class Today: Comment(s):

Faculty of Science and Technology MASTER S THESIS

Triple Medium Physical Model of Post Fracturing High-Rank Coal Reservoir in Southern Qinshui Basin

Fluid Flow and Heat Transfer Characteristics in Helical Tubes Cooperating with Spiral Corrugation

WELL/RESERVOIR EVALUATION BY USING PRESSURE TRANSIENT AND MATERIAL BALANCE ANALYSIS OF A GAS WELL IN BANGLADESH. MD.

Tu D Understanding the Interplay of Fractures, Stresses & Facies in Unconventional Reservoirs - Case Study from Chad Granites

Analysis of stress variations with depth in the Permian Basin Spraberry/Dean/Wolfcamp Shale

The Ketzin Test Site (former CO 2 Sink-project)

A Geostatistical Study in Support of CO 2 Storage in Deep Saline Aquifers of the Shenhua CCS Project, Ordos Basin, China

Available online at ScienceDirect. Procedia Engineering 106 (2015 ) Dynamics and Vibroacoustics of Machines (DVM2014)

Fr CO2 02 Fault Leakage Detection From Pressure Transient Analysis

Coalbed Methane Properties

Fault seal analysis: a regional calibration Nile delta, Egypt

(Page 2 of 7) Reservoir Petrophysics: Introduction to Geology (continued) Be familiar with Reservoir Petrophysics (continued)... Slides Reservoi

Petrophysics. Theory and Practice of Measuring. Properties. Reservoir Rock and Fluid Transport. Fourth Edition. Djebbar Tiab. Donaldson. Erie C.

Evaluation of Petrophysical Properties of an Oil Field and their effects on production after gas injection

Characteristics of stratigraphic structure and oil-gas-water distribution by logging data in Arys oilfield

Today s oil is yesterday s plankton

The Challenge of Estimating Recovery from Naturally Fractured Reservoirs. Dr Shane Hattingh Principal Reservoir Engineer, ERC Equipoise

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

The SPE Foundation through member donations and a contribution from Offshore Europe

Exploration, Drilling & Production

Transcription:

vailable online at www.sciencedirect.com Energy Procedia 14 (01) 689 694 Study of early dynamic evaluation methods in complex small fault-block reservoirs Wu Yahong 1 Weng Xingfang Xu Mengya 1 Guo Shengtao 1 (1 Key Laboratory of Petroleum Engineering Education Ministry; China University of Petroleum (Beijing); Beijing City; 1049; China; Sinopec International Exploration and Production Corporation;Beijing City;100083;China) bstract Based on oil test and production test data of Sagizski complex small fault-block reservoir in Kazakhstan, this paper proposes systematic evaluation of reservoir dynamic characteristics and stable-development productivity equations, in view of reservoir early dynamic evaluation systems with oil test and production test materials. In association with dynamic production analysis, these paper studies convenient and feasible methods on the correction of calculation of bottom-hole pressure and test oil yield and determination of drive types of formation energy. In addition, this paper utilizes dynamic pressure data to more accurately estimate reserves, with the aim of providing a valid method for similar reservoirs early dynamic evaluation, which can effectively direct the setting of development programs and deployments. Key words: small fault-block;reservoir early evaluation;oil test;bottom-hole pressure;reserve estimate Introduction With increased exploration risks and costs, drilling workload can be substantially reduced and exploration benefits can greatly enhanced, if reservoir early oil test and production test data can be used to accurately assess reservoir statistics and determine productivity. Sagizski reservoir lies in the west of Kazakhstan, next to Caspian Sea. This area belongs to Mezhdurechenski tectonic zone in shore of Caspian Sea basin, and is a tectonic lithologic reservoir concerned with stratigraphic overlap and pinchout. The oil and gas reservoir with mesopore and medium pereability in salt canpoy anticline bottom and edge water of fault block. On the research work area of Sagizski complex small fault-block reservoir in Kazakhstan, this paper utilizes oil test and production test data to establish a set of method systems for early dynamic evaluation of complex small fault-block reservoirs, which provides accurate information and deployment basis for exploration in the next step. 1. Determination of reservoir early dynamic evaluation system Corresponding author: Wu Yahong. Tel.: +86-010-89731719. E-mail address: wuyahong66@16.com. 1876-610 011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the organizing committee of nd International Conference on dvances in Energy Engineering (ICEE). Open access under CC BY-NC-ND license. doi:10.1016/j.egypro.011.1.887

690 Wu Yahong et al.\ / Energy Procedia 14 (01) 689 694 1.1. Productivity well test analysis (1)Calculation of bottom-hole pressure from tubing pressure and casing pressure In the multi-phase vertical pipe flow, each fluid parameter and mixed density and flow velocity varies with pressure and temperature change, so pressure gradient along the pipe isn t a constant, which is normally calculated with iteration methods, i.e., depth iteration and pressure iteration.with respect to single flow, single-phase flow exists in the pipeline when wellhead pressure is greater than bubble-point pressure, BHP equation [1] in vertical pipeline flow is used. pwf = ph + pfr + pwh (1) Therefore, p H formula in single flow is: ph = ρlh = [ fw ρw + (1 fw) ρo] H () The last parameter P f isn t easy to determine, which can be obtained by calculating friction pressure from actual measurement of flowing pressure, and then calculating flowing pressure at other time with friction pressure. ()Productivity estimate of stable development Well productivity is associated with k, h, μ o, Δp and so on. Oil test production is a little different from stable production, difference varying with oil zone. The development practice also demonstrates that, even if they are in the same geological conditions, oil test production far larger than stable production, which indicates that stable production [] can only be obtained by adjusting oil test production during practical procedures. ccording to equation (3), the right-hand formula can be considered to be a constant in some oil test method and oil condition, i.e., equation (4): q re 1 = π (ln 0.75 + s) (3) Δp kh / μ rw q q / m p kh / μ = p kh / μ (4) Δ Δ d t where, subscript d denotes production phase, t denotes test phase. If depth change and other aspects are considered in a development block, the following can be acquired: q q = m1 + m Δp h Δp h (5) 1..Reserve estimate d (1)Material balance equation MBE can be established according to drive types, to estimate reservoir dynamic characteristics [3]. The equation is as follows: NPρo Ns = (6) _ ( pi pc ) t ()Modified volumetric approach This approach applies to all kinds of reservoirs, but the required reservoir static parameters have relatively large error, and drainage area can t be accurately calculated in particular. The volumetric approach can be modified with the following method with dynamic pressure data. t

Wu Yahong et al.\ / Energy Procedia 14 (01) 689 694 691 Single-well controlled reserve can be obtained in (7): N = o h ρo φ Soi / Boi (7) Considering different boundary shapes and oil well locations, when well is produced at the constant rate and becomes pseudo-steady-state flow, pressure performance can be used as follows [4] : 1.qoμoBo P = Pwf + ln + 0.3513+ 0.868S khρo Crw (8) When oil well reaches PSS at the constant rate, if the well is shut in, the bottom-hole pressure changes with shut-in time as follows: 1.q0μ0B0 kδts Pws = Pwf ( Δ= t 0) + lg + 0.868S khρo 13.5φμ0SoCtrw (9) When oil well is shut in, and bottom-hole pressure reaches formation pressure in the boundary range, (9) can get: 1.q0μ0B0 kδts P = Pwf ( Δ= t 0) + lg + 0.868S khρo 13.5φμ0SoCtrw (10) The subtraction of (8) and (10) can get: kδts log + 0.3513 = log 13.5 Crw φμocs t orw (11) The solution is: 3 3.6 10 Ck Δts o = φμocs t o (1) Substitute (1) in (7), OOIP equation is: 3 3.6 10 CkhΔtsρo N = μ CB (13).Sagizski reservoir early evaluation o t o This paper takes Sagizski reservoir -1 well for instance, and presents a reservoir early evaluation. This well lies in some salt eaves structure in Kazakhstan, with developed main faults in the west. This two flanks are controlled by boundary faults. The oil-bearing series belongs to Triassic reservoir. In the early oil test phase, the well flows naturally for 14 days, with cumulative oil production of 546.9 m3 and cumulative water production of 17.89 m3, which shows a high-capacity reservoir, and exhibits very good exploration prospects..1 nalysis of pressure build-up test From the pressure build-up well test of oil test layer at 111~110 m, and analysis of actual pressure loglog-derivative curves, we can find obviously that: well-bore storage effect is shown in the early-time region; radial flow occurs after 3 hours, and derivative curve goes up in the late-time region. In Fig. 1, pressure curve and derivative curve in LTR are not parallel, which indicates natural fractures are not developed. The interpretation demonstrates that, formation permeability is low, at 8.87 md; with skin of.5, wellbore completion degree is low with some contamination; target reservoir is at normal pressure system, with the matched extrapolation pressure of 11.46 MPa; there s plane difference in reservoir physical properties, with decreasing permeability, mobility ratio 1.66, and identical matched composite radius 16.6 m. Combining boundary effect which is shown from pressure derivative LTR, and structure

69 Wu Yahong et al.\ / Energy Procedia 14 (01) 689 694 map, we can select 10 intersection faults to match, which shows that, the two faults are east-side fault f4 and south-side fault F1 respectively, with the least fault distance 50 m, in accordance with geological exploration result. The well s west-side fault f5 parallels with f4, north-side geology pinchout forming trap, so the reservoir with the single well has diamond closed boundary. 10 1 0.1 1E-3 0.01 0.1 1 10 100 Log-Log plot: dp and dp' [atm] vs dt [hr] Fig. 1 log-log pressure-derivative match curves 0 0 40 60 80 100 10 140 160 0 Production pressure drop(mpa) 1 3 4 5 Daily oil production(m 3 ) Fig. IPR curve..nalysis of productivity test From -1 well natural flow production, analyses of flowing pressure and flowing temperature gradient test results, we observe that, no degassing phenomenon occurs at 1, 1.6, and 3 mm choke working routine, and it s single-phase oil flow in the formation. s exhibited in Table 1, as working routine increases (choke size increases), BHP decreases, daily production augments, and IPR curve is mainly a straight line (Fig. ), further confirming single-phase Darcy oil flow of producing fluid during system well test period. Table 1 Productivity data No. Choke size /mm Oil production / m 3 /d Water cut / % Mid-interval flowing pressure / MPa Production pressure difference / MPa PI / m 3 /dmpa 1 1.86 1. 10.388 0.78 9.31 1.6 55.99 1.4 9.7084 1.4596 38.36 3 85.85 0.18 7.8756 3.94 6.08 4 3 148.8 0.1 6.4444 4.736 31.50 Regression of productivity equation is: Q= 31.15 ΔP 0.0504 (14) ( ) P fr / MPa 10 9 8 7 6 5 4 3 1 0 0 1 3 4 5 Pwh / MPa Fig. 3 IPR curve Fig. 4 Friction pressure match curve

Wu Yahong et al.\ / Energy Procedia 14 (01) 689 694 693 With the plotted IPR curve (Fig. 3), the extrapolation reservoir pressure is 11.44 MPa. When BHP is less than 6.45 MPa, the straight line starts to bend, showing multi-phase flow will occur in this situation, which will influence single-well productivity. Consequently, the suggestion is to control BHP above 6.45 MPa while maintaining reservoir pressure during production..3 Calculation of reduced flowing pressure with ground data With insufficient wellbore gas parameters, since the well is produced at pwf>6.45mpa (single-phase Darcy s flow), we take the wellhead tubing pressure as the instance for study. The difficulty of this calculation rests with friction pressure Pf, so measured flowing pressure is used in turn to derive friction pressure, so as to match friction pressure equation (15): pfr = 6.5975 ln( pwh ) 0.1315 (15) Substitute measured flowing pressure in (15), we can get bottom-hole pressure pwf equation of -1 well: pwf = pwh + [ fw ρw + (1 fw) ρo ] H + 6.5975 ln( pwh ) 0.1315 (16) It s more accurate to use (16) to compute -1 well single-phase BHP, with the relative error at ±1%, as in Table : Choke size/ mm Flowing pressure/mpa Measured data Water cut/ % Table Data comparison Mid-interval flowing pressure/ MPa P H / MPa Calculated data Friction pressure/ MPa Mid-interval flowing pressure/ MPa Relative error/ % 1.8 1. 10.388 0.9440 6.6614 10.4054 0.17 1.6.6 1.4 9.7084 0.9443 6.175 9.7168 0.09.1 0.18 7.8756 0.94 4.7634 7.8057 0.89 3 1.8 0.1 6.4444 0.941 3.7464 6.4885 0.68 Wellhead tubing pressures are 1.76 MPa and 1.8 MPa respectively, when two extreme water-cut values, 0 and 100% are respectively used to calculate BHP at 6.5 MPa, so wellhead pressure should be above 1.8 MPa during -1 well production..4. Stable development productivity estimate From the corrections of specific productivity index m=0.7 and stable-development productivity equation in formation tests, we can get: Q = 8.47 Δ ( p 0.0581) (17) The selected measured tubing pressure.3 MPa and flowing pressure 8.6055 MPa, and calculated oil production 1.1 m3/d, and measured production 19.969 m3/d, relative error 6.3%, can relatively accurately reflect productivity of -1 well..5 eserve estimate From above analyses, the reservoir with -1 well is closed elastic-drive reservoir, with original static pressure 11.477 MPa at the oil interval of 111-110m, and cumulative oil production 546.9 m3 during formation test. fter 50-hour shut in, the reservoir recovers to stable average reservoir pressure of 10.598 MPa from pressure build-up test static pressure measurement. The well has already produced at the constant rate for 30 hours before shut-in. Due to diamond supply outer boundary for the well, shape

694 Wu Yahong et al.\ / Energy Procedia 14 (01) 689 694 factor of diamond boundary is C=7.1. So with modified volumetric approach and material balance equation respectively, at the oil interval of 111-110 m, the formation test control reserve is: Table 3 Single-well control reserve results pplied approaches Material balance equation Modified volumetric approach Reserve / 10 4 t 3.91 1.07 Through comparison, the reserve with modified volumetric approach is less than that of material balance equation, but both estimate approaches have solid theory basis, and are close to actual reserve, so the calculation results are fairly persuasive, which can act as significant basis for further rolling development. 3.Conclusions and Recommendations (1) The establishment of early dynamic evaluation approach of complex small-fault reservoir, with full reasonable oil test and production test data, can provide valid basis for reservoir development and deployment. () Development practice also demonstrates, formation test production is far larger than stable production, under the same geology condition. Target well stable productivity can be relatively accurately be computed through the correction of formation production; moreover, productivity estimate can also be obtained through the regression of multi-well data in different blocks. (3) Reduced bottom-hole pressure can be accurately calculated, with conveniently-measured in-situ wellhead tubing pressure, casing pressure and other ground data, convenient for oilfiled practical operations. (4) Estimate of single-well control reserve is a crucial issue. Required reservoir static parameters for volumetric approach calculation have much error, directly influencing the accuracy of reserve estimate. The reserve calculation by modified volumetric approach using dynamic pressure is less than that of material balance equation, but both approaches have solid theory basis, and are close to actual reserve, so their results are fairly persuasive, which can act as reference basis for development scheme adjustment. Nomenclature p i : static reservoir pressure, MPa; p _ : average reservoir pressure, MPa; p wf : bottom-hole following pressure, MPa; p fr : friction pressure, MPa; p wh : wellhead tubing pressure, MPa; p c :wellhead casing pressure, MPa; ρ l : single-phase liquid density in tubing, kg/m 3 ; ρ o : average surface oil density, g/cm 3 ; f : w water cut, %; H : well depth, m; N s : single-well control reserve, 10 4 t; N : original oil in place, 10 4 t; N p : cumulative oil production, m 3 ; C t : total compressibility, MPa -1 ; C : shape factor; Δ ts : shut-in time, hr; o : drainage area, km ; h : average effective depth, m; φ : average effective porosity, %; S oi :average oil saturaiton, %; B :oil formation volume factor. References oi [1] Zhang Qi. Production Engineering Principles and Design [M]. Dongying: China University of Petroleum Press, 000. 4~33. [] Fu Chunquan. Study of Proved Reserves Reservoir Engineering Evaluation Methods [D]. Daqing Petroleum College, 003. [3] Guo Fenzhuan, Tang Hai and Lu Dongliang, et.al. The Relationship of Stable Reservoir Pressure with Water Cut [J]. Petroleum Drilling and Production Techniques, 010,3 (): 51~53. [4] Dong Xianzhang, and Chen Yuanqian. General Formula and pplication Conditions in the Determination of Oil Well Control Reserve with Pressure Build-Up Curves [J]. CT PETROLEI SINIC, 1981, (1): 5~55.