Capacitors. Example 1

Similar documents
Chapter 2: Capacitors And Dielectrics

Chapter 2: Capacitor And Dielectrics

General Physics II. Conducting concentric spheres Two concentric spheres of radii R and r. The potential difference between the spheres is

Electronics Capacitors

Capacitor Construction

Chapter 29. Electric Potential: Charged Conductor

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

Capacitance. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge.

AP Physics C. Electric Circuits III.C

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

Parallel Plate Capacitor, cont. Parallel Plate Capacitor, final. Capacitance Isolated Sphere. Capacitance Parallel Plates, cont.

TAP 126-4: Charging capacitors

[1] (b) Fig. 1.1 shows a circuit consisting of a resistor and a capacitor of capacitance 4.5 μf. Fig. 1.1

Look over. examples 1, 2, 3, 5, 6. Look over. Chapter 25 section 1-8. Chapter 19 section 5 Example 10, 11

Chapter 13. Capacitors

AP Physics C - E & M. Slide 1 / 39 Slide 2 / 39. Slide 4 / 39. Slide 3 / 39. Slide 6 / 39. Slide 5 / 39. Capacitance and Dielectrics.

As light level increases, resistance decreases. As temperature increases, resistance decreases. Voltage across capacitor increases with time LDR

DC Circuits. Circuits and Capacitance Worksheet. 10 Ω resistance. second? on the sodium is the same as on an electron, but positive.

Chapter 8. Capacitors. Charging a capacitor

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

shown in Fig. 4, is initially uncharged. How much energy is stored in the two capacitors after the switch S is closed for long time?

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

UNIT G485 Module Capacitors PRACTICE QUESTIONS (4)

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Version 001 CIRCUITS holland (1290) 1

Chapter 26. Capacitance and Dielectrics

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

CAPACITANCE. Figure 1(a). Figure 1(b).

AP Physics C Electricity & Magnetism Mid Term Review

Chapter 26. Capacitance and Dielectrics

Capacitance and Dielectrics

How many electrons are transferred to the negative plate of the capacitor during this charging process? D (Total 1 mark)

The Basic Capacitor. Water Tower / Capacitor Analogy. "Partnering With Our Clients for Combined Success"

Electric Potential Energy Chapter 16

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

Electricity and Magnetism. Capacitance

CIRCUIT ELEMENT: CAPACITOR

Definition of Capacitance

Chapter 26. Capacitance and Dielectrics

Lab 5 RC Circuits. What You Need To Know: Physics 212 Lab

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

104 Practice Exam 1-2/21/02

and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.

Capacitance and Dielectrics. Chapter 26 HW: P: 10,18,21,29,33,48, 51,53,54,68

The Capacitor. +q -q

On the axes of Fig. 4.1, carefully sketch a graph to show how the potential difference V across the capacitor varies with time t. Label this graph L.

Chapter 26. Capacitance and Dielectrics

Assessment Schedule 2016 Physics: Demonstrate understanding electrical systems (91526)

Capacitance. A different kind of capacitor: Work must be done to charge a capacitor. Capacitors in circuits. Capacitor connected to a battery

CAPACITORS / ENERGY STORED BY CAPACITORS / CHARGING AND DISCHARGING

Coulomb s constant k = 9x10 9 N m 2 /C 2

Fig. 1 Fig. 2. Calculate the total capacitance of the capacitors. (i) when connected as in Fig. 1. capacitance =... µf

Gurgaon TOPIC: ELECTROSTATIC Assignment 1 (2018)

Concept Question: Capacitors

Physics 212. Lecture 8. Today's Concept: Capacitors. Capacitors in a circuits, Dielectrics, Energy in capacitors. Physics 212 Lecture 8, Slide 1

ENGR 2405 Chapter 6. Capacitors And Inductors

IMPORTANT Read these directions carefully:

Physics 6B Summer 2007 Final

Capacitors are devices which can store electric charge. They have many applications in electronic circuits. They include:

PHYS 2135 Exam II March 20, 2018

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Circuits Capacitance of a parallel-plate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = cross-sectional area) Resistance : R = ρ L / A

MasteringPhysics: Assignment Print View. Problem 30.50

Capacitors. David Frazier and John Ingram

Capacitor Action. 3. Capacitor Action Theory Support. Electronics - AC Circuits

Capacitance, Resistance, DC Circuits

ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 JUNE 2011

Capacitance and capacitors. Dr. Loai Afana

5. In parallel V 1 = V 2. Q 1 = C 1 V 1 and Q 2 = C 2 V 2 so Q 1 /Q 2 = C 1 /C 2 = 1.5 D

Introduction to AC Circuits (Capacitors and Inductors)

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Compiled and rearranged by Sajit Chandra Shakya

Chapter 24: Capacitance and Dielectrics

Electric Charge and Electric field

CAPACITORS / CAPACITANCE ECET11

CLASS X- ELECTRICITY

Phys 2025, First Test. September 20, minutes Name:

Chapter 26 Direct-Current Circuits

Chapter 24: Capacitance and Dielectrics

Capacitors. The charge Q on a capacitor s plate is proportional to the potential difference V across the Q = C V (1)

Physics 2135 Exam 2 October 20, 2015

Physics 24 Exam 2 March 18, 2014

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Capacitive Touchscreen

WELCOME TO PERIOD 14. Homework Exercise #13 is due today. Watch video 3 Edison s Miracle of Light for class discussion next Tuesday or Wednesday.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Calculus Relationships in AP Physics C: Electricity and Magnetism

CLASS XII ELECTROSTATICS

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

University Physics (PHY 2326)

Physics 2401 Summer 2, 2008 Exam II

Trade of Electrician Standards Based Apprenticeship Capacitance Phase 2 Module No. 2.1 Unit No COURSE NOTES

not to scale Show that the potential difference between the plates increases to about 80 V. Calculate the energy that is now stored by the capacitor.

Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.

General Physics II (PHYS 104) Exam 2: March 21, 2002

UNIT 4:Capacitors and Dielectric

RC, RL, and LCR Circuits

Ch. 16 and 17 Review Problems

Chapter 6. Answers to examination-style questions. Answers Marks Examiner s tips

Homework. Reading: Chap. 29, Chap. 31 and Chap. 32. Suggested exercises: 29.17, 29.19, 29.22, 29.23, 29.24, 29.26, 29.27, 29.29, 29.30, 29.31, 29.

Transcription:

Physics 30AP Resistors and apacitors I apacitors A capacitor is a device for storing electrical charge that consists of two conducting objects placed near one another but not touching. A A typical capacitor consists of two parallel plates of area A separated by a small distance d. d If a voltage is applied to a capacitor, say by connecting the capacitor to a battery, it quickly, although not instantaneously, becomes charged. One plate acquires a negative charge and the other an equal amount of positive charge. The amount of charge acquired by each plate is found to be proportional to the potential difference: Q = V V The constant is called the capacitance. The units of capacitance are coulombs per volt or the unit called a farad (F). Most capacitors have a capacitance in the range of pf (picofarad = 0 - F) to F (microfarad = 0-6 F). The capacitance is a constant for a given capacitor, its value depends on the surface of the capacitor itself. For a parallel plate capacitor whose plates have an area A and are separated by a distance d of air, the capacitance is given by o A d This relationship makes sense since the larger the area the greater the charge that can be held and the smaller the separation the greater the attractive force between the charges on each plate. The constant o is the permittivity of free space and its value is o Example 8.85 x0 N m alculate the capacitance of a capacitor whose plates are 0 cm by 3.0 cm and are separated by a.0 mm air gap. What is the charge on each plate if the capacitor is connected to a V battery? The area A equals (0 x 0 - m) (3.0 x 0 - m) = 6.0 x 0-3 m 3 A 6.0 x0 m o 8.85 x0 = 53 pf d Nm 3.0 x0 m Q = V = (53 x 0 - F) ( V) = 6.4 x 0-0 R.L. & A.K. 3A - /4/04

II Electric energy storage A charged capacitor stores electrical charge. The energy stored in a capacitor will be equal to the work done by a battery to remove charge from one plate and add it to the other plate. When some charge is on each plate it requires work to add more charge of the same sign. The more charge that is on a plate, the more work must be done to add more. The work needed to add a small amount of charge q when there is a potential V across the plates is W = q V. Initially, when the capacitor is uncharged, little work is required to move the charge over. However, by the end of the charging process the work needed to add a charge q will be much greater because the voltage across the capacitor (V = Q/) is now large. The voltage across the capacitor acts against the voltage supplied by the battery. The voltage across the capacitor increases during the process from zero to its final value V f. Therefore, the work done will be equivalent to moving all of the charge Q at once across a potential difference and will be equal to the average potential difference during the process V avg = (0 V f )/ = V f /. Therefore Vf W Q Thus we can say that the energy stored in a capacitor is E = ½ Q V where V is the potential difference between the plates. Since Q = V we can also write E = ½ Q V = ½ V = ½ Q / Example A V battery is connected to a 0 F capacitor. How much electrical energy can be stored in the capacitor? E = ½ V = ½ (0 x 0-6 F)( V) =.4 x 0-3 J III ircuits containing capacitors Just as resistors can be placed in series or parallel in a circuit, so can capacitors. Rather than deriving the relations for capacitors in series and in parallel, the following rules are given. (For a derivation of the rules you are referred to Giancoli, st Edition, pp. 44-45.) The rules for potential difference relative to series and parallel circuits are not affected by the presence of capacitors, thus = 3 (parallel) 3 (series) Note that the form of the equations for capacitors in series or parallel are just the reverse of their counterparts for resistance. R.L. & A.K. 3A - /4/04

Example 3 Three capacitors have values of 0 F, 0 F and 50 F. What is their equivalent capacitance if they are hooked up (a) in series and (b) in parallel? (a) series 0 F = 5.9 F 0 F 50 F (b) parallel = 0 F 0 F 50 F = 80 F IV ircuits containing a resistor and a capacitor apacitors and resistors are often found together in a circuit. Let us analyze the circuit shown below R S V When the switch S is closed, current will immediately begin to flow through the circuit. Electrons will flow through the resistor R and accumulate on the upper plate of the capacitor, while electrons flow from the lower plate of the capacitor to the positive terminal of the battery. As the charge accumulates on the capacitor the current is reduced until eventually the voltage across the capacitor equals the emf of the battery and no further current flows. The potential difference across the capacitor increases gradually as shown in the graph. A useful number called the time constant of the circuit can be easily calculated. = R Voltage V across capacitor 0.63V = R The time constant is a measure of how quickly the capacitor becomes charged. Specifically it can be shown (using integral calculus) that the product of R gives the time it takes for the capacitor to reach 63 % of full voltage. If the resistance is low, the capacitor is charged very quickly. R Time 3R R.L. & A.K. 3A - 3 /4/04

Example 4 An R circuit contains a 0.60 M resistor and a 8.0 F capacitor. What is the time constant for the circuit? = R = (0.60 x 0 6 ) (8.0 x 0-6 F) = 4.8 s Lesson 3A Hand-in assignment Part A. alculate the capacitance of a capacitor whose plates are 90 cm x.5 cm and are separated by an air gap of 0.50 mm. What charge is on each plate if the capacitor is connected to a 9.0 V battery? (398 pf, 3.58 x 0-9 ). A 9.0 V battery is connected to a 40 F capacitor. How much electrical energy can be stored in the capacitor? (.6 x 0-3 J) 3. How much charge flows from a.0 V battery when it is connected to a.50 F capacitor? (3.0 x 0-5 ) 4. The two plates of a capacitor hold 500 and -500 respectively when the potential difference is 388 V. What is the capacitance? (3.86 x 0-6 ) 5. How strong is the electric field between the plates of a 0 F capacitor if they are.0 mm apart and each has a charge of 300? (7.5 x 0 3 V/m) 6. How much energy is stored by the electric field between two square plates, 0 cm on a side, separated by a 3.0 mm air gap? The charges of the plates (3.00 ) are equal and opposite. (0.3 J) 7. A parallel plate capacitor has a fixed charge Q. The separation of the plates is then doubled. By what factor does the energy stored in the electric field change? R.L. & A.K. 3A - 4 /4/04

Part B. Determine the capacitance of a single capacitor that will have the same effect as the combination in the diagram. All three capacitors have a capacitance of. (/3 ) 3. alculate the time constant for a circuit that has a 00 k resistor in series with a 3.0 F capacitor. (0.60 s) 3. Six.5 F capacitors are connected in parallel. What is the equivalent capacitance? What is their equivalent capacitance if connected in series? (9.0 F, 0.5 F) 4. A circuit contains a 3.0 F capacitor, however a technician decides that 4.0 F would be better. What size capacitor should be added and how should it be connected? 5. The capacitance of a portion of circuit is to be reduced from 3600 pf to 000 pf. What capacitance can be added to the circuit to produce this effect without removing anything from the circuit. How should the extra capacitor be connected? 6. Determine the equivalent capacitance of the circuit in the diagram. All three capacitors are 4.0 F. How much charge is stored on each capacitor when the voltage is 50 V? (0 m, 0 m, 0 m) 3 V 7. You are given three capacitors with capacitance of 000 pf, 5000 pf and 0.0 F and a supply of connecting wire. Using all three capacitors in a circuit, what is the maximum and minimum capacitance you can make? Draw the circuit diagram for each case. (.07 x 0-7 F,.4 x 0-9 F) R.L. & A.K. 3A - 5 /4/04

8. A 3.0 F capacitor and a 4.0 F capacitor are connected in series and this combination is connected in parallel with a.0 F capacitor. What is the net capacitance? If 50 V is applied across the entire network, calculate the voltage across each capacitor. (3.7 F, 50 V, 8.6 V,.4 V) 9. An artificial heart pacemaker is designed to operate at 70 beats per minute using a 7.0 F capacitor. What value of resistance should be used if the pacemaker is to fire when the voltage reaches 63% of maximum? (0. M) R.L. & A.K. 3A - 6 /4/04