Pseudo-Gap and its Collapse in hole doped Cuprates

Similar documents
F. Rullier-Albenque 1, H. Alloul 2 1

The High T c Superconductors: BCS or Not BCS?

Evidence for two distinct energy scales in the Raman spectra of. Abstract

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Photo-enhanced antinodal conductivity in the pseudogap state of high T c cuprates

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Surfing q-space of a high temperature superconductor

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

arxiv:cond-mat/ v1 [cond-mat.supr-con] 9 Jul 2001

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Can superconductivity emerge out of a non Fermi liquid.

requires going beyond BCS theory to include inelastic scattering In conventional superconductors we use Eliashberg theory to include the electron-

NMR studies of cuprates pseudogap, correlations, phase diagram: past and future?

A New look at the Pseudogap Phase in the Cuprates.

μsr Studies on Magnetism and Superconductivity

Q=0 Magnetic order in the pseudogap state of cuprates superconductors

Cuprates supraconducteurs : où en est-on?

High-T c superconductors

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

Impurity effects in high T C superconductors

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

The Hubbard model in cold atoms and in the high-tc cuprates

arxiv:cond-mat/ v1 8 Mar 1995

Resistivity studies in magnetic materials. Makariy A. Tanatar

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST

Quantum dynamics in many body systems

FROM NODAL LIQUID TO NODAL INSULATOR

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

The cuprate phase diagram: insights from neutron scattering and electrical transport. Mun Chan University of Minnesota, Minneapolis

The phase diagram: the pseudogap regime. of T c.

Unusual magnetic excitations in a cuprate high-t c superconductor

Fermi-surface-free superconductivity in underdoped (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ (Bi2201)

Universal T-linear resistivity and Planckian limit in overdoped cuprates

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

The Nernst effect in high-temperature superconductors

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

High temperature superconductivity - insights from Angle Resolved Photoemission Spectroscopy

O. Parcollet CEA-Saclay FRANCE

arxiv:cond-mat/ v2 [cond-mat.str-el] 20 Apr 2007

ARPES studiesof magneticphases in parents of iron-basedsuperconductors

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

A brief Introduction of Fe-based SC

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Superconductivity due to massless boson exchange.

Intrinsic tunnelling data for Bi-2212 mesa structures and implications for other properties.

Cuprate high-t c superconductivity: Insights from a model system 北京大学量子材料科学中心

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

Novel Magnetic Order and Excitations in the Pseudogap Phase of HgBa 2 CuO 4+

High Tc cuprates: Recent insights from X-ray scattering

What's so unusual about high temperature superconductors? UBC 2005

arxiv:cond-mat/ v2 [cond-mat.supr-con] 26 Jul 2006 Doping dependent optical properties of Bi 2 Sr 2 CaCu 2 O 8+δ

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

New insights into high-temperature superconductivity

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

Material Science II. d Electron systems

Metal-insulator transitions

Angle-Resolved Two-Photon Photoemission of Mott Insulator

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 May 1999

arxiv:cond-mat/ v1 8 Jun 2004

arxiv: v2 [cond-mat.supr-con] 13 Feb 2008

SUPPLEMENTARY INFORMATION

What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory

Universal scaling relation in high-temperature superconductors

Inelastic light scattering and the correlated metal-insulator transition

Citation PHYSICAL REVIEW LETTERS (2000), 85( RightCopyright 2000 American Physical So

Electron spectroscopy on high temperature superconductors and other novel materials. Gey Hong Gweon

Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Mapping the electronic structure of each ingredient oxide layer of high T c cuprate superconductors

CDWs in ARPES. A momentum space picture of Fermi surface instabilities in crystalline solids. Physics 250, UC Davis Inna Vishik

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations

ARPES study of many-body effects and electronic reconstructions in misfit cobaltates

ARPES investigation of the bad metallic behavior in Fe 1.06 Te

Topological order in the pseudogap metal

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

More a progress report than a talk

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

Superconductivity and spin excitations in orbitally ordered FeSe

SUPPLEMENTARY INFORMATION

Nernst effect in vortex-liquid state of cuprates

From the pseudogap to the strange metal

Spin dynamics in high-tc superconductors

arxiv: v1 [cond-mat.supr-con] 3 Aug 2016

Photoemission Studies of Strongly Correlated Systems

Oliver Portugall Laboratoire National des Champs Magnétiques Intenses (LNCMI) Toulouse & Grenoble, France

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates.

Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ

Quantum Melting of Stripes

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Density-matrix theory for time-resolved dynamics of superconductors in non-equilibrium

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Transcription:

Pseudo-Gap and its Collapse in hole doped Cuprates Alain Sacuto Laboratoire Matériaux et Phénomènes Quantiques Paris-Diderot University SQUAP team: Spectroscopy of QUAsi-Particules Team M. Cazayous Y. Gallais M.A. Méasson Paris, January, 5 Ph-D students S. Benhabib J. Buhot R. Grasset B. Loret P. Massat E. Riccardi C. Toulouse

Close collaborators Antoine Georges Collège de France Ecole Polytechnique Dorothée Colson SPEC, CEA, Saclay Marcello Civelli LPS, Orsay Indranil Paul MPQ, Paris Diderot Catherine Pépin, IPhT, CEA, Saclay Genda Gu Mat.Sc.Dpt. BNL

Hole-doped cuprate phase diagram T * T- dependence d Knight shift Tem mperatu ure AF state Pseudogap Loss of low energy states at the Fermi level T CDW Field Induced CO T Max c SC UD dome OD Max H. Alloul, et al. PRL 63 989 W. Warren et al. PRL 6 989..6.9. doping level p

signatures of the pseudogap In optical conductivity along the c axis Loss of QSP spectral weight UD- YBa Cu 3 O 67 6.7 Tc=63K in the ab-plane Loss of scattering rate UD-YBa Cu 3 O 6.6 Tc=58K 95K 5K 7K C. C.Homes et al. Physica C 54, 65, 995 A.V. Pushkov et al. J.Phys: Cond Matter 8, 49, 996 See also: RMP 77, 5, Basov, Timusk; RMP 83, Basov, Averiit, Van der Marel, Dressel and the Review of R. Lobo, The optical conductivity of HTS, Chap. 3, p. 3, Ed. X. G. Qiu, Woodhead Publishing, Oxford.

distincts signatures of the PG in Resistivity Loss of low energy spectral weight upturn in ρ c T* c-axis Bi- optimal doping Loss of scattering rate down shift in ρ ab T* ab plane H. Raffy et al. Physica C 46-6 857

distinct doping evolutions of T* along the c-axis and the ab-plane Bi- Bi- T* ab-plane T* c-axis T* ab-plane T* c-axis H. Raffy et al. Physica C 46-6 857 T. Usui et al. arxiv:44.4736v See also: T. Shibauchi et al. PRL 86, 5764, Does these distinct T*merge or correspond to distinct transitions at low temperature? ab-plane properties deduced from transport, optics, tunnelling... Suggest a QCP, p.9 in Bi- What can we learn from c-axis properties in Bi-?

Electronic Raman scattering on Bi- single crystals

Bi- Single Crystals. UD OD.3 Bi- T max c=9 K Bi Ca Ba Nor rmalized Susceptibilt ty. -.5 -. -.5 -. Bi- OD cyrstals: 5; 56; 58; 63; 7; 78; 83 UD crystals: 5; 68; 7; 78 before cleaving -.5 -.3 -.35 Single crystals from G. Gu and D. Colson OP 9 after cleaving 3 4 5 6 7 8 9 Temperature in K

Electronic Raman Scattering in the Normal/SC states Normal metal SC metal Cuprate Bi- ω i q i e-h ω s q s E F + γ γ +Δ k -Δ k Ra aman Inten nsity (arb,un nits) Tc=9 Δ K K 4 6 8 Raman Shift cm- Raman shift : ω R = ω i - ω s

Raman response for a «d-wave» gap in cuprates Δ( φ) cos( kx ) cos( ky) cos(φ ) Δ π/a k y φ π/a π/a. Bi- OP 9 Anti-Nodes Nodes B geometry B geometry k x π/a χ''(ω) arb. units.8.4 x.5 Anti-Nodal Region Nodal Region Raman vertices: γ AN or γ N. 4 6 8 Raman Shift cm- See RMP 79, 75, Hackl, Devereaux and Blanc et al. PRB 8, 4456, 9

Focus on the Anti-Nodal Raman response Raman vertex at the Anti-Nodes c-axis hopping γ AN ) ( cos( kx ) cos( ky ) t (k) Probing the QSP dynamic at the Anti-Nodes Corresponds to probing the QSP dynamic along the c-axis the Anti-Nodal Raman response should exhibit a loss of spectral weight as in c-axis optical conductivity

units ) in arb. χ''bg (ω 6 4 Electronic Raman response at the Anti-Nodes In underdoped cuprate. 9 3 5 4 5 5 75 6 7 5 χ' ' Bg ( Bi- UD 75 ω) Bi- UD 75 ω,t) dω ( ar rb. units) χ''bg (ω. 8 3. 3 4 5 6 7 8 9 Raman shift (cm-). Tc 75 χ ' ' B g ) ( ω dω T* > slope just above Tc UD 75. 3 Temperature (K) S. Benhabib, A.S, M.Civelli, I. Paul et al. arxiv:43.76, accepted in PRL 5 ROP 76, 5, 3. A.S. Y. Gallais, M. Cazayous, M. Méasson, D.Colosn et al.

K 9 K K 3K 5 4K 5 5K 75 6K 7K 5 8K 3K χ' ' B g Detection of the normal state Pseudogap ( ω ). χ '' B g ( ω ) dω χ' ' B g ( ω ) UD 75 T* UD 75. OD 7. T c 75.. 9K 8 9 3 4 5 5 6 65 6 7 9..9.8.7 χ ' ' B g ) > slope > Tc 74 ( ω dω T* OD 7. K 9K K K 3K 5K 4K 5 5K 6K 5 7K 3 8K K 85K K 9K 3K K 4K 5K 5K 5K 6K K 7K 5K 75K 3K. UD 85.3 UD 85 OD 6 9.9 Tc 85 T* 85. OD 8 OD 8 OD 5..9 Tc 8 > > T* 6 6K 6 8 4 5 6 4 8 6 8 3 4.3 9K 3 6 4 8 5 6 4 7 6 8 95 9 4 6 8 3 4 6 8 Raman shift (cm - ) Temperature (K) Raman shift (cm - ). Tc OD 6 6..8 6.6.4..9.8.7 < slope Tc OD 5 5.3 < 3 Temperature (K)

Ending Point of the normal state PG in Bi- from the Anti-Nodes Tempera ature (K K) 5 5 5 Tc This work. -. -.8 -.6 -.4 4 -....6..4 doping level p S. Benhabib, A.S. M.Civelli, I. Paul et al. arxiv:43.76, accepted in PRL 5 PG loss s of spe ctral we ight

Nebula of T* values from spectroscopy and transport on Bi- only rature in K Tempe 35 Tc Raman Bg Siham et al. T*ARPES (Vishik) T* Tun. BVB. (Dipasupil) 3 T* SIS/SNS (Myakawa-Ozyuzen) T Mag IN (Bourges-Sidis) T MNR K(Ishida) T*ARPES Pb: Bi (Vishik) 5 T*rho c (watanabe) T rho c (Raffy) T* ARPES ( Ding+Kanigel) T* ARPES (Chatterjee) T* MNR SLR (Ishida) Raman Bg Y:Bi (Opel) J 5 5...4.6.8...4 doping level p

Selection of T* from Anti-Nodes and C-axis 35 Temper rature in K 3 5 5 Tc T* Ram. our group T*ARPES (Vishik) T* Tun. BVB. (Dipasupil) il) T* SIS/SNS (Myakawa_Ozyuzen) T Mag NS (Bourges- Sids ) T*ARPES Bi_Pb (Vishik) T*rho c (watanabe). ending of PG 5...4.6.8...4 doping level p

What is happening at p=.?

Doping evolution of the A-Nodal/Nodal Raman responses SC state Normal state increase e nits) χ'' ν (ω) (arb.u UD 5 p=.9 T=K AN N OD 7 K UD 5 K OD 7. AN N AN N UD 7. OP 9.6 K K OD 63 K. OD 56 K UD 7 OP 9 K K.3 OD 63. OD 56 K AN N K K doping ω) (arb.units) χ'' ν (ω OD 78 K OD 5 K OD 78 K OD 5 K. >.3 3 4 3 4 5 6 3 4 3 4 5 6 Raman Shift (Δ unit) Raman Shift (Δ unit) Raman Shift (Δ unit) Raman Shift (Δ unit) S. Benhabib, A.S. M.Civelli, I. Paul et al. arxiv:43.76, accepted in PRL 5

Doping evolution of the A-N /N integrated intensity ratio Intens sity Ratios (I Bg /I Bg ) 6 5 4 3 I /I N (SC) I AN/I N (N) Bi- vhs p c =..8..6..4 doping level p S. Benhabib et al. arxiv:43.76 accepted in PRL 5

Doping evolution of the A-N /N integrated intensity ratio g(bg) (ω) N B 6 4 4 Inte ensity Rat tios (I Bg /I Bg ) 6 5 3 doping evolution of the AB band in Bi p=.6 Bg (AN) Bg (Nod.) - p=.6 p=. 4 I AN /I N (SC) I AN /I N (N) n π/a unit) 6 p=. Bg Bg AN PG depletion 6 p=.9 p=.9 4 Bg Bg ky (i - Node Bg ity ratio I Bg /I intensi AB (N) AB (SC) Bi- vhs p c =..8..6..4..8.6 4.4. -. -.4 -....4 energy (in t unit ) -3 - - 3 kx (in π/a unit).6.8...4.6 level of doping p doping level p PG dep letion Ma agnitude S. Benhabib et al. arxiv:43.76 accepted in PRL 5

Doping evolution of the A-N /N integrated intensity ratio g(bg) (ω) N B 6 4 4 Inte ensity Rat tios (I Bg /I Bg ) 6 5 3 doping evolution of the AB band in Bi p=.6 Bg (AN) Bg (Nod.) n π/a unit) - p=.6 6 p=. p=. 4 I AN /I N (SC) I AN /I N (N) Bg Bg 6 p=.9 p=.9 4 Bg Bg -.4 -....4 energy (in t unit ) ky (i - - AN Node -3 - - 3 Bg ity ratio I Bg /I intensi AB (N) AB (SC) Bi-.6.8...4.6 vhs p c =..8 kx (in. π/a unit).6 level of doping p..4 ARPES, A. Kaminski et al. PRB 73, 745,6 BB p=. AB doping level p

Doping evolution of the A-N /N integrated intensity ratio Inte ensity Rat tios (I Bg /I Bg ) 6 Bi-. 5.8 4 3 vhs PG depletion p c =..6 4.4...8..6..4 doping level p PG dep letion Ma agnitude The normal state pseudo gap disapears at the Lifshitz transition S. Benhabib et al. arxiv:43.76 accepted in PRL 5

How can we explain this coincidence? A-Node hole like Fermi surface electron like Fermi surface ky (in π/a unit t) ky (in π/a unit) - - p=.6 p=. A-Node We remove Quasi-particles from hot Regions associated to strong scattering (AF fluctuations, CDW Mott-related Physics ) So, we loose the PG -3 - - 3 k x (in π/a unit)

Does this Coincidence of the pseudogap closing with a Lifshitz transition is universal? T Bi- 9K T c SC T* vhs p C T LSCO 39K T c SC T* vhs T Bi- K T c SC p p p p C Our study Raman A. Ino et al. ARPES arxiv:43.76 PRB 65, 9454 The location of the PG collapse appears to be material dependent S. Benhabib, A.S, M.Civelli, I. Paul et al. arxiv:43.76 T* p C vhs A. Piriou et al. Tunnelling Nat. Comm. 9

Conclusions Probing the QSP at the Anti-Nodes in Bi- by Electronic Raman Scattering allows us to detect the loss of spectral weight due to the PG seen in c-axis data (optics, resistivity,sis) and reveal its collapse at p c =. (.9 detected from ab plane data ) This collapse occurs at a Lifshitz transition This demonstrates that the mecanism that gives rise to the normal state pseudogap at tthe Anti-Nodes tin is sensitive to the FS topology

Thank you!