THERMOSTATS AND THERMAL TRANSPORT IN SOLIDS

Similar documents
MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

TUTORIAL 6: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION

TUTORIAL 8: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION

Temperature and Pressure Controls

Temperature and Pressure Controls

Ab initio molecular dynamics and nuclear quantum effects

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014

Ab Ini'o Molecular Dynamics (MD) Simula?ons

What is Classical Molecular Dynamics?

F r (t) = 0, (4.2) F (t) = r= r a (t)

arxiv: v3 [cond-mat.mtrl-sci] 6 Feb 2017

Introduction to phonon transport

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

Gear methods I + 1/18

arxiv: v2 [cond-mat.mtrl-sci] 20 Oct 2016

Ab initio phonon calculations in mixed systems

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1

Energy and Forces in DFT

Set the initial conditions r i. Update neighborlist. r i. Get new forces F i

Optimization Methods via Simulation

THERMAL CONDUCTIVITY OF SILICON NANOSTRUCTURES CONTAINING IMPURITIES MICHAEL GIBBONS, B.S. A DISSERTATION PHYSICS

Langevin Dynamics in Constant Pressure Extended Systems

F(t) equilibrium under H 0

3.320 Lecture 23 (5/3/05)

4. The Green Kubo Relations

Non-equilibrium phenomena and fluctuation relations

Organization of NAMD Tutorial Files

Statistical Thermodynamics and Monte-Carlo Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany

Accelerated Quantum Molecular Dynamics

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

In-class exercises Day 1

Basics of Statistical Mechanics

Javier Junquera. Statistical mechanics

Introduction Statistical Thermodynamics. Monday, January 6, 14

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

Phonon wavefunctions and electron phonon interactions in semiconductors

Solid State Physics II Lattice Dynamics and Heat Capacity

Protein Dynamics, Allostery and Function


Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Heat conduction and phonon localization in disordered harmonic lattices

Statistical methods in atomistic computer simulations

G : Statistical Mechanics

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

Molecular Dynamics and Accelerated Molecular Dynamics

MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

Computing free energy: Replica exchange

Analysis of MD Results Using Statistical Mechanics Methods. Molecular Modeling

FUNDAMENTAL ISSUES IN NANOSCALE HEAT TRANSFER: FROM COHERENCE TO INTERFACIAL RESISTANCE IN HEAT CONDUCTION

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

arxiv: v1 [physics.chem-ph] 24 Apr 2018

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

CHAPTER V. Brownian motion. V.1 Langevin dynamics

Density functional theory and beyond: Computational materials science for real materials Los Angeles, July 21 August 1, 2014

Chemical reactions as network of rare events: Kinetic MonteCarlo

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Complementary approaches to high T- high p crystal structure stability and melting!

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES

of Long-Term Transport

Stochastic thermodynamics

Interface Resistance and Thermal Transport in Nano-Confined Liquids

424 Index. Eigenvalue in quantum mechanics, 174 eigenvector in quantum mechanics, 174 Einstein equation, 334, 342, 393

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

Exploring the anomalous behavior of metal nanocatalysts with finite temperature AIMD and x-ray spectra

Thermal transport from first-principles DFT calculations. Keivan Esfarjani MIT. Department of Mechanical Engineering. 5/23/2012 Phonon UWM 1

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

Analysis of the simulation

Long-Term Atomistic Simulation of Hydrogen Diffusion in Metals

arxiv: v1 [cond-mat.stat-mech] 7 Mar 2019

Collective Effects. Equilibrium and Nonequilibrium Physics

Statistical Mechanics

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

Statistical Mechanics and Thermodynamics of Small Systems

10. Zwanzig-Mori Formalism

Hands-on Workshop: First-principles simulations of molecules and materials: Berlin, July 13 - July 23, 2015

Biomolecular modeling I

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Lecture 11 - Phonons II - Thermal Prop. Continued

Numerical methods in molecular dynamics and multiscale problems

Collective Effects. Equilibrium and Nonequilibrium Physics

5.74 Introductory Quantum Mechanics II

Brownian motion and the Central Limit Theorem

Principles of Equilibrium Statistical Mechanics

Computing free energy: Thermodynamic perturbation and beyond

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

Brownian Motion and Langevin Equations

Green-Kubo formula for heat conduction in open systems

Boundary conditions for molecular dynamics

VIII.B Equilibrium Dynamics of a Field

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics

Molecular Dynamics Simulations

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Introduction to Simulation - Lectures 17, 18. Molecular Dynamics. Nicolas Hadjiconstantinou

1. Thermodynamics 1.1. A macroscopic view of matter

Electrical Transport in Nanoscale Systems

Classical Molecular Dynamics

Transcription:

Hands-On Tutorial Workshop, July 19 th 2011 THERMOSTATS AND THERMAL TRANSPORT IN SOLIDS Christian Carbogno FRITZ-HABER-INSTITUT DER MAX-PLANCK-GESELLSCHAFT, BERLIN - GERMANY

Hands-On Tutorial Workshop, July 19 th 2011 THERMOSTATS AND THERMAL TRANSPORT IN SOLIDS Christian Carbogno MATERIALS DEPARTMENT, UNIVERSITY OF CALIFORNIA SANTA BARBARA

MULTI-SCALE MODELING m space mm Microscopic Regime Macroscopic Regime µm nm Mesoscopic Regime time fs ps ns µs ms s hours, years

MULTI-SCALE MODELING m mm space Find appropriate links! Continuum Equations, Rate Equations and Finite Element Modeling µm nm Electronic Structure Theory ab initio Molecular Dynamics Master Equation (ab initio kinetic Monte Carlo) time fs ps ns µs ms s hours, years

MULTI-SCALE MODELING m mm space This talk: Ab initio bottom-up approach Continuum Equations, Rate Equations and Finite Element Modeling µm nm Electronic Structure Theory ab initio Molecular Dynamics Master Equation (ab initio kinetic Monte Carlo) time fs ps ns µs ms s hours, years

THERMODYNAMIC EQUILIBRIUM IN A NUTSHELL A classical system with N atoms, a Volume V and a Temperature T is described by its canonical partition function Z(T,V,N) viz. its Helmholtz Free Energy F(T,V,N). F (T,V,N) = k B ln (Z(T,V,N)) 1 = k B ln N! 3N exp H({x i}, {p i }) k B T {d 3 x i }{d 3 p i } Calculating the energy of all possible configurations {xi} is numerically unfeasible even for very small systems.

THERMODYNAMIC AVERAGE X T,V = 1 Z(T,V ) X exp H({x i}, {p i }) k B T {d 3 x i }{d 3 p i } Energy Generalized Configuration Coordinate

THERMODYNAMIC AVERAGE X T,V = 1 Z(T,V ) X exp H({x i}, {p i }) k B T {d 3 x i }{d 3 p i } exp H({x i},{p i }) k B T Z(T,V ) exp H({x i},{p i }) k B T Z(T,V ) Energy Generalized Configuration Coordinate

ERGODIC HYPOTHESIS All accessible micro-states are equiprobable over a long period of time: The Time Average is equal to the Ensemble Average! T X T,V = 1 T X(t) dt Energy 0 Generalized Configuration Coordinate

AB INITIO MOLECULAR DYNAMICS Electronic Structure Theory Code Input: Geometry, Species Output: total energy & forces Update geometry Iterative Approach: Explore the Dynamics of the Atoms!

AB INITIO MOLECULAR DYNAMICS Numerical Integration of the equations of motion L. Verlet, Phys. Rev. 159, 98 (1967). M I RI (t) = F I (R 1 (t),, R N (t)) Initial conditions have to be specified! The Verlet Algorithm conserves the number of particles!n, the volume V, and the energy E. Micro-canonical Ensemble

THE CANONICAL ENSEMBLE Conserved quantities: SYSTEM HEAT BATH Number of particles!n Volume V Average Temperature T Probability (a.u.) Maxwell-Boltzmann-Distribution T < T < T Kinetic Energy (a.u.) T = T (t) = σ 2 T = 2 T (t)2 3 N dof kinetic Energy 2 Ekin 3 k B N dof # deg. of freedom

I. Thermostats for the Canonical Ensemble: A Historical Overview

BERENDSEN THERMOSTAT H. J. C. Berendsen, et al. J. Chem. Phys. 81 3684 (1984). 1. Calculate instantaneous temperature T(t0) of the system

BERENDSEN THERMOSTAT H. J. C. Berendsen, et al. J. Chem. Phys. 81 3684 (1984). 1. Calculate instantaneous temperature T(t0) of the system 2. Rescale the velocities by λ = 1+ t T0 τ T 1 1/2 T (t) =T 0 +(T (t 0 ) T 0 )e t t 0 τ

BERENDSEN THERMOSTAT H. J. C. Berendsen, et al. J. Chem. Phys. 81 3684 (1984). Pros & Cons: Warning: Suppresses thermal fluctuations Warning: Does not sample the canonical ensemble Uncertainty: Sensitive on parameter τ Historically important!

ANDERSEN THERMOSTAT H. C. Andersen, J. Chem. Phys. 72, 2384 (1980). 1. Choose a random atom each ν th time step

ANDERSEN THERMOSTAT H. C. Andersen, J. Chem. Phys. 72, 2384 (1980). 1. Choose a random atom each ν th time step 2. Re-assign a random velocity from the Maxwell-Boltzmann Distribution Directly models the coupling to a heat bath through such scattering events!

ANDERSEN THERMOSTAT H. C. Andersen, J. Chem. Phys. 72, 2384 (1980). Pros & Cons: Accurate: Canonical ensemble in principle sampled Uncertainty: Sensitive on parameter ν Warning: Trajectories (Velocities) become discontinuous. Historically important!

LANGEVIN S STOCHASTIC DYNAMICS S. A. Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (1976). Augmented Equations of Motion: m i Ri = F i γ i Ṙ i + Φ i (t) Friction & Original system White Noise

LANGEVIN S STOCHASTIC DYNAMICS S. A. Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (1976). Augmented Equations of Motion: m i Ri = F i γ i Ṙ i + Φ i (t) Friction & Original system White Noise Friction cools, Noise heats the system: Φ i (t) Φ i (t ) =6k B T γ i δ(t t )

LANGEVIN S STOCHASTIC DYNAMICS S. A. Adelman and J. D. Doll, J. Chem. Phys. 64, 2375 (1976). Pros & Cons: Accurate: Canonical ensemble in principle sampled Accurate: Dynamic properties assessed accurately Uncertainty: Sensitive on parameter(s) γi Accurate, but there is no continuity of momentum!

NOSÉ-HOOVER THERMOSTAT S. Nosé, J. Chem. Phys. 81, 511 (1984) & W. G. Hoover, Phys. Rev. A 31, 1695 (1985). Augmented Hamiltonian: ε = i p 2 i 2m i + U r N + 1 2 Q η +3Nk BT η Original system Fictitious Oscillator

NOSÉ-HOOVER THERMOSTAT S. Nosé, J. Chem. Phys. 81, 511 (1984) & W. G. Hoover, Phys. Rev. A 31, 1695 (1985). Augmented Hamiltonian: ε = i p 2 i 2m i + U r N + 1 2 Q η +3Nk BT η Original system Fictitious Oscillator Explicit coupling to a heat bath! ṗ i = F i ηp i

NOSÉ-HOOVER THERMOSTAT S. Nosé, J. Chem. Phys. 81, 511 (1984) & W. G. Hoover, Phys. Rev. A 31, 1695 (1985). Pros & Cons: Accurate: Canonical ensemble sampled Convenient: Augmented Total Energy is conserved Warning: Trajectories still feel the harmonic oscillation. Sensitivity: Q has to be chosen with care Accurate, but Q has to be chosen with care!

BUSSI-DONADIO-PARRINELLO THERMOSTAT G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007). Combine concepts from velocity rescaling (fast!) with concepts from stochastic thermostats (accurate!). Target Temperature follows a Stochastic Diff. Eq.: dt = T T (t) dt τ +2 T (t)t N f dw (t) τ Berendsen thermostat White Noise

BUSSI-DONADIO-PARRINELLO THERMOSTAT G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007). Pros & Cons: Accurate: Canonical ensemble sampled Accurate: Dynamic properties assessed accurately Sensitivity: Almost independent from parameter τ Convenient: Pseudo-Hamiltonian is conserved Accurate & very promising, but also still topic of research!

CAVEAT: RARE EVENTS Simulating processes hindered by high energetic barriers can be extremely expensive with conventional MD. rare event Energy EBarrier Generalized Configuration Coordinate

CAVEAT: RARE EVENTS Possible routes: Simulating processes hindered by high energetic barriers can be extremely expensive with Molecular Dynamics. Simulated Annealing e.g., S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671 (1983). Accelerated Molecular Dynamics e.g., A. rare F. Voter, Phys. event Rev. Lett. 78, 3908 (1997). Bond Boost e.g., R. A. Miron, K. A. Fichthorn, Phys. Rev. Lett. 93, 128301 (2004). Energy Transition Path Sampling e.g., P. G. Bolhuis et al. Annu. Rev. Phys. Chem. 53, 291 (2002). Kinetic Monte Carlo EBarrier e.g., J. Rogal, K. Reuter, and M. Scheffler, Phys. Rev. B 77, 155410 (2008). Talk on Thursday 21 nd Generalized Configuration Coordinate

CAVEAT: RARE EVENTS Assess relative stability without simulating the rare event itself. rare event Energy EBarrier Generalized Configuration Coordinate

PHASE DIAGRAM OF ZrO2 Monoclinic Tetragonal Cubic 0 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K T < 1200 C Monoclinic Baddeleyite Structure

PHASE DIAGRAM OF ZrO2 Monoclinic Tetragonal Cubic 0 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K 1200 C < T < 2400 C Tetragonal P42/nmc Structure

PHASE DIAGRAM OF ZrO2 Monoclinic Tetragonal Cubic 0 K 500 K 1000 K 1500 K 2000 K 2500 K 3000 K T > 2400 C Cubic Fluorite Structure

II. The Harmonic Crystal

THE INTERATOMIC INTERACTION The total energy E is a 3N-dimensional surface E = V (R 1, R 2,, R N ) Static Equilibrium Position Total Energy E 0 R i Atomic Coordinate R i

THE INTERATOMIC INTERACTION The total energy E is a 3N-dimensional surface E = V (R 1, R 2,, R N ) Total Energy E Static Equilibrium Position 0 R i Harmonic Potential E(R 0 )+ 1 2 Taylor expansion: E Φ i,j ( R i )( R j ) i,j Only valid for small elongations! Atomic Coordinate R i

THE HARMONIC APPROXIMATION E ({R 0 + R}) E ({R 0 })+ i E R i R i + 1 R0 2 i,j 2 E R i R j R i R j R0 Static Equilibrium Energy Forces vanish at R0 Hessian Φij Determine harmonic force constants Φij: from DFT-Perturbation Theory S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) & S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001). from Finite Differences K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) & K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).

THE HARMONIC SOLID Periodic Boundary Conditions Reciprocal Space q R L D ij (q) = E N e i(q E N ) Mi M j Φ ij e y E N e x Eigenvalue problem: D(q) [ν(q)] = ω 2 (q) [ν(q)] Real space: Superposition of harmonic oscillations R = R 0 + s A s cos (φ s + ω s t) Mi ν s

THE HARMONIC APPROXIMATION 800 Phonon band structure & DOS 600 " (cm -1 ) 400 200 0! M X! Z R A g(") Tetragonal ZrO2, DFT

THE HARMONIC FREE ENERGY F ha (T ) = E({R 0 }) Static Equilibrium Energy + + dω g(ω) ω 2 Zero-point vibration dω g(ω) k B T ln 1 e ω k B T Thermally induced vibrations Specific heat (k B / ZrO 2 ) 10 8 6 4 2 0 0 500 1000 1500 2000 Temperature (K) Lattice Expansion! (1/K) 7e-05 6e-05 5e-05 4e-05 3e-05 2e-05 1e-05 0 0 500 1000 1500 2000 Temperature (K)!F = F tetr - F mono (ev /ZrO 2 ) 0.04 DFT 0.02 0.00 monoclinic baseline -0.02 experiment -0.04 ~ 1400-1500 K ~ 1650 K 0 500 1000 1500 2000 2500 3000 temperature (K)

THE HARMONIC FREE ENERGY F ha (T ) 10= E({R 0 }) Static Equilibrium Energy Specific heat (k B / ZrO 2 ) + 8 6 + 4 2 dω g(ω) ω 2 dω g(ω) k B T ln C V = T S T 1 e Thermally induced vibrations V = T Zero-point vibration 2 F (T ) T 2 ω k B T V 0 0 500 1000 1500 2000 Temperature (K)

THE HARMONIC FREE ENERGY Quasi-harmonic approximation: F ha (T ) 7e-05= E({R 0 }) Lattice Expansion! (1/K) 6e-05 5e-05 4e-05 3e-05 2e-05 1e-05 + + Compute F(T, V) by varying the lattice constants a dω g(ω) ω 2 dω g(ω) k B T ln Static Equilibrium Energy 1 e α(t )= 1 da Thermally a dtinduced vibrations Zero-point vibration ω k B T 0 0 500 1000 1500 2000 Temperature (K)

THE HARMONIC FREE ENERGY F ha Harmonic free energy difference: (T ) = E({R 0 })!F = F tetr - F mono (ev /ZrO 2 ) 0.04 + 0.02 + 0.00-0.02-0.04 DFT dω g(ω) ω 2 dω g(ω) k B T ln monoclinic baseline ~ 1650 K Static Equilibrium Energy 1 e Thermally induced vibrations experiment ~ 1400-1500 K Zero-point vibration ω k B T 0 500 1000 1500 2000 2500 3000 temperature (K)

THE CUBIC ZrO2 STRUCTURE K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). " (cm -1 ) 800 600 400 200 0-200! X W L! tetragonal cubic energy X 2 tetragonal cubic soft mode tetragonal elongation from equilibrium tetragonal X 2 X 2

THE CUBIC ZrO2 STRUCTURE K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). " (cm -1 ) 800 600 X 400 2 soft mode The Harmonic Approximation 200 does not hold in 0 tetragonal the case tetragonal elongation from equilibrium -200 of Soft Modes!! X W L! tetragonal cubic energy cubic tetragonal X 2 X 2

Pressure THERMODYNAMIC INTEGRATION J. G.Kirkwood, J. Chem. Phys, 3, 300 (1935). The absolute value of the Thermodynamic Potentials is not measurable, but their derivatives are, e.g., the pressure F (T,V ) p = V T F (V ) F (V 0 )= V pdv V0 V 0 V Free energy differences can be computed by integration along a thermodynamic path! Volume

THERMODYNAMIC INTEGRATION J. G.Kirkwood, J. Chem. Phys, 3, 300 (1935). Free energy differences can be computed by integration along a λ-parametrized path that connects two distinct systems. e.g., M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301(1990) & O. Sugino and R. Car, Phys. Rev. Lett. 74, 1823 (1995). 1 Uhyb (λ) F anh (T,V )=F DFT (T,V ) F har (T,V )= 0 dλ λ hyb

THERMODYNAMIC INTEGRATION J. G.Kirkwood, J. Chem. Phys, 3, 300 (1935). Free energy differences can be computed by integration along a λ-parametrized path that connects two distinct systems. e.g., M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301(1990) & O. Sugino and R. Car, Phys. Rev. Lett. 74, 1823 (1995). Complete free energy Harmonic reference free energy 1 F anh (T,V )=F DFT (T,V ) F har (T,V )= 0 dλ Uhyb (λ) λ hyb

THERMODYNAMIC INTEGRATION J. G.Kirkwood, J. Chem. Phys, 3, 300 (1935). Free energy differences can be computed by integration along a λ-parametrized path that connects two distinct systems. e.g., M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301(1990) & O. Sugino and R. Car, Phys. Rev. Lett. 74, 1823 (1995). 1 Uhyb (λ) F anh (T,V )=F DFT (T,V ) F har (T,V )= 0 dλ λ hyb Thermodynamic expectation value for the hybrid system U hyb (λ) =λ U DFT ab initio potential +(1 λ) U har harmonic potential

THERMODYNAMIC INTEGRATION J. G.Kirkwood, J. Chem. Phys, 3, 300 (1935). Molecular Dynamics for the hybrid system: B. Grabowski et al., Phys. Rev. B 79,134106 (2009). U hyb (λ) =λ U DFT ab initio potential +(1 λ) U har harmonic potential LDA, λ = 0.5, T = 2800 K 0.4 0.020 U (λ)/ λ hyb (ev/zro2) 0 5 10 MD simulation time (ps) 0.2 0.0-0.2 U hyb (λ)/ λ hyb (ev/zro2) 0 5 10 MD simulation time (ps) 0.015 0.010 0.005 0.000

CUBIC PHASE STABILITY!F = F cub - F tetra (ev /ZrO 2 ) 0.06 0.04 0.02 0.00-0.02 DFT tetragonal baseline Anharm. Free Energy experiment ~2600-2700 K Harm. Free Energy 2500 K 0 500 1000 1500 2000 2500 3000 temperature (K) Noticeable Anharmonic Effects for T > 1500 K!

III. Non-Equilibrium Thermodynamics

THERMAL CONDUCTIVITY Macroscopic Effect: Microscopic Nature: T J Can we calculate and understand the thermal Fourier s Law: J = κ T conductivity from first principles?

(A) BOLTZMANN TRANSPORT EQUATION R. Peierls, Ann. Phys. 395,1055 (1929). D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007). f(ω,q,t) Boltzmann Transport Equation f(ω,q,t+dt) Boltzmann-Peierls-Transport-Equation describes the evolution of the phonon phase space distribution f(ω,q,t).

(A) BOLTZMANN TRANSPORT EQUATION R. Peierls, Ann. Phys. 395,1055 (1929). D. A. Broido et al., Appl. Phys. Lett. 91, 231922 (2007). Single-mode relaxation time approximation f(x,p,t) κ s Boltzmann Transport c 2 s ω 2 s n s (n s + 1) τ s Equation f(x,p,t+dt) Group velocity Frequency Equilibrium population phonon lifetime? Boltzmann-Peierls-Transport-Equation describes the Harmonic phonon theory evolution of the phonon phase space distribution f(ω,q,t).

Phonon Lifetimes from First Principles from Density Functional Perturbation Theory J. Garg et al., Phys. Rev. Lett. 106, 045901 (2011). from fitting the forces in ab initio MD K. Esfarjani, and H. T. Stokes, Phys. Rev. B 77, 144112 (2008). from fitting the phonon line width determined via ab initio MD N. De Koker, Phys. Rev. Lett. 103,125902 (2009). All these approaches give very accurate results for good thermal conductors at low temperatures. Results are questionable at high levels of anharmonicity!

(B) NON-EQUILIBRIUM MD S. Stackhouse, L. Stixrude, and B. B. Karki, Phys. Rev. Lett. 104, 208501(2010). heat source Temperature gradient T Stationary heat flux J Thermal conductivity can be calculated by applying Fourier s Law. heat sink J = κ T

PROS & CONS Relatively easy implementation: Use standard thermostats for heat source & sink Modeling of the steady state Long simulation time needed for good statistics Heat source & sink create artifacts Large simulation cells needed Huge temperature gradient Possible undesired non-linear effects

FLUCTUATION-DISSIPATION THEOREM Brownian Motion: A. Einstein, Ann. Phys. 322, 549 (1905). The erratic motion of the particles is closely related to frictional force under perturbation. The fluctuations of the forces in thermodynamic equilibrium is related to the generalized resistance in non-equilibrium for linear dissipative systems. H. B. Callen, and T. A. Welton, Phys. Rev. 83, 34 (1951). Random walk in 2D

(C) GREEN-KUBO METHOD R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Japan 12,1203 (1957). Simulations of the thermodynamic equilibrium Information about non-equilibrium processes κ dτ J(0) J(τ) eq 0 The thermal conductivity is related to the autocorrelation function of the heat flux Si at 1000 K, Courtesy of P. Howell, Siemens AG

PROS & CONS Standard MD method No heat source & sink needed No temperature gradient needed Long simulation time Looks promising, but...

THE HEAT FLUX R. J. Hardy, Phys. Rev. 132,168 (1963). J(t) = d dt i r i (t)ε i (t) r i Position of atom i ε i Energy of atom i Energic contributions εi of the single atoms required! A partitioning of the total energy is ill-defined, cumbersome and error-prone! Green-Kubo Method hitherto only used with classical potentials!

LASER FLASH MEASUREMENTS W. J. Parker et al., J. Appl. Phys. 32,1679 (1961). heat diffusion T = Thot T = Tcold Heat Diffusion Equation: T (x, t) t + κ ρ c V 2 T (x, t) x 2 =0 Temperature T = T cold T = T eq Time Extract the thermal conductivity by fitting T(x,t)

(D) LASER FLASH METHOD T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009). hot SC cold supercell (1) Prepare two supercells: a small hot one and a large cold one.

(D) LASER FLASH METHOD T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009). Thermal Diffusion (1) Prepare two supercells: a small hot one and a large cold one. (2) Connect the two supercells and let the heat diffuse.

(1) SUPERCELL PREPARATION S. K. Estreicher, and T. M. Gibbons, Physica B 404, 4509 (2009). In the quasi-harmonic approximation, the positions ri and the velocities vi are related to the vibrational eigenfrequencies ωs and -vectors νs. R 0i + R i = + s A s (T ) cos (φ s + ω s t) Mi ν s V i = s A s (T ) sin (φ s + ω s t) Mi ω s ν s Maxwell-Boltzmann distributed amplitudes random phase harmonic approximation

(1) SUPERCELL PREPARATION S. K. Estreicher, and T. M. Gibbons, Physica B 404, 4509 (2009). Temperature Thot Minute Temperature Difference! Tcold t = 0 heat diffusion axis

(2) HEAT DIFFUSION T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009). Temperature Thot Tcold t > 0 heat diffusion axis

(2) HEAT DIFFUSION T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009). Monitor T (x, t) 450 during thermal equilibration Temperature (K) 400 350 300 250 200 0 1 2 time (ps)

(2) HEAT DIFFUSION T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009). Monitor T (x, t) 450 during thermal equilibration Temperature (K) 400 350 300 250 200 0 1 2 time (ps) Finite supercell size leads to large temperature fluctuations.

(2) HEAT DIFFUSION T. M. Gibbons and S. K. Estreicher, Phys. Rev. Lett. 102, 255502 (2009). 1 trajectory: 5 trajectories: 10 trajectories: 20 trajectories:! = 0.935 W/Km! = 1.428 W/Km! = 0.274 W/Km! = 0.274 W/Km Temperature (K) 450 400 350 300 250 200 0 1 2 time (ps) 0 1 2 time (ps) 0 1 2 time (ps) 0 1 2 time (ps) Fit to T (x, t) =T cold +(T final T cold ) n ( 1) n exp n2 π 2 κ t ρ C V W. J. Parker et al., J. Appl. Phys. 32,1679 (1961).

PROS & CONS Standard MD method No heat source & sink needed Minute temperature gradients Only applicable at low temperatures

(3) APPLICATION TO IMPURITIES IN SI T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev, B (accepted). Si192 supercell containing ~5.2% impurities How do the properties of the impurities affect the thermal conductivity of the system?

(C) APPLICATION TO IMPURITIES IN SI T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev, B (accepted). 28 Si Vacancies 56 Si Thermal conductivity can be controlled via the impurities mass!

(C) APPLICATION TO IMPURITIES IN SI T. M. Gibbons, By. Kang, S. K. Estreicher, and C. Carbogno, Phys. Rev, B (accepted). Iron Carbon Germanium 55 Fe 12 C 74 Ge Not all impurities are created equal!

CONCLUSION AND SUMMARY Molecular Dynamics: Application in Thermodynamics, Thermostats, and Caveats Harmonic Approximation: Basic concepts, Application: Heat Capacities & Lattice Expansion Thermodynamic Integration: Complete(!) Anharmonic Free Energy from First Principles Non-equilibrium dynamics: Thermal Conductivity from First Principles