applied as UV protective films

Similar documents
Supplementary Information

Supporting Information

Electronic supplementary information

Synthesis of 2 ) Structures by Small Molecule-Assisted Nucleation for Plasmon-Enhanced Photocatalytic Activity

Electronic Supplementary Information

Electronic Supplementary Information. Enhanced Photocatalytic/photoelectrocatalytic Activities

Controlled self-assembly of graphene oxide on a remote aluminum foil

Supporting Information. Graphene Oxide-Palladium Modified Ag-AgBr: A Novel Visible-Light- Responsive Photocatalyst for the Suzuki Coupling Reaction**

Supporting Information

Hydrogel Electrolytes Surface Modified Eggshell Membrane. Separators in All-Solid-State Supercapacitors with. Thickness Dependent Performances

enzymatic cascade system

Supporting Information for. Photoactive PANI/TiO 2 /Si Composite Coatings With 3D Bio-inspired. Structures

Electronic Supplementary Information. Facile Synthesis of Germanium-Graphene Nanocomposites. and Their Application as Anode Material for Lithium Ion

and their Maneuverable Application in Water Treatment

Novel fluorescent matrix embedded carbon quantum dots enrouting stable gold and silver hydrosols

Supporting Information

Electronic supplementary information. A longwave optical ph sensor based on red upconversion

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

Supplementary Information

dissolved into methanol (20 ml) to form a solution. 2-methylimidazole (263 mg) was dissolved in

Division of Fuel Cells, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi, 1295, Changning,

Synthesis of nano-sized anatase TiO 2 with reactive {001} facets using lamellar protonated titanate as precursor

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea

Multiply twinned Pt Pd nanoicosahedrons as highly active electrocatalyst for methanol oxidation

Supporting information

SUPPLEMENTARY INFORMATION

Supporting Information s for

Supporting Information for:

Supplementary Information:

Supporting Information

Fabrication of COF-MOF Composite Membranes and Their Highly. Selective Separation of H 2 /CO 2

A novel AgIO 4 semiconductor with ultrahigh activity in photodegradation of organic dyes: insights into the photosensitization mechanism

Supporting information

Immobilization of BiOX (X=Cl, Br) on activated carbon fibers as

The sacrificial role of graphene oxide in stabilising Fenton-like catalyst GO Fe 3 O 4

Electrogenerated Upconverted Emission from Doped Organic Nanowires

Supporting Information

1. Experimental section

Supporting Information:

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2008

Room-temperature method for coating ZnS shell on semiconductor quantum dots

Supporting Information

A stable dual-functional system of visible-light-driven Ni(II) reduction to a nickel nanoparticle catalyst and robust in situ hydrogen production

Supporting Information

Shape-selective Synthesis and Facet-dependent Enhanced Electrocatalytic Activity and Durability of Monodisperse Sub-10 nm Pt-Pd Tetrahedrons and Cubes

Supporting Information

Supporting Information. for. Gold Nanoparticles Supported on Alumina as a Catalyst for Surface Plasmon-Enhanced Selective Reductions of Nitrobenzene

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts

Supporting Information

Colloidal Particles with Complex Microstructures via Phase Separation in Swelled Polymer Microspheres

Facile synthesis of yolk-shell structured Si-C nanocomposites as anode for lithium-ion battery 1. Experimental 1.1 Chemicals

Electronic Supplementary Information (ESI) Tunable Phase and Visible-Light Photocatalytic Activity

Characterization of partially reduced graphene oxide as room

Supporting Information

Metal-organic frameworks (MOFs) as precursors towards TiO x /C. composites for photodegradation of organic dye

Sacrifical Template-Free Strategy

Trapping Lithium into Hollow Silica Microspheres. with a Carbon Nanotube Core for Dendrite-Free

Supplementary Information

Supporting Information

Supporting Information

Supporting Information

Preparation of One-dimensional ZnO/Bi2O3 Heterostructures Nanomaterial for Visible Light Photocatalysis

A metal ion triggered shrinkable supramolecular hydrogel and controlled release by an amphiphilic peptide dendron

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A.

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

Supplementary Information 1. Enhanced Solar Absorption, Visible-Light Photocatalytic and. Photoelectrochemical Properties of Aluminium-reduced

Shuo Li, Qidong Zhao, Dejun Wang and Tengfeng Xie *

Supporting Information

Beads-On-String-Shaped Poly(azomethine) Applicable for Solution Processing of Bilayer. Devices using a Same Solvent

Supporting Information. Photocatalytic Reduction of CO 2 to CO Utilizing a Stable and Efficient Hetero-Homogeneous Hybrid System

Supporting Information:

Supplementary Information for

Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Mechanically Strong and Highly Conductive Graphene Aerogels and Its Use as. Electrodes for Electrochemical Power Sources

Electronic Supplementary Information (ESI) for:

Supporting Information:

Electronic Supplementary Information

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

Supporting Information. For. Preparation and Characterization of Highly Planar Flexible Silver

Supporting Information

Construction of Superior Visible-Light-Driven Photocatalyst. Platform-Electron Withdrawing Unit Triadic Structure. Covalent Organic Framework

Supporting Information. hollow nanofibers: enhanced photocatalytic activity based on. highly efficient charge separation and transfer

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng

Supplementary Information. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable

Supplementary Information

Gravity driven separation of emulsified oil/water mixtures utilizing in-situ polymerized superhydrophobic and superoleophilic nanofibrous membranes

Supplementary Information

Confined Synthesis of CdSe Quantum Dots in the Pores of Metal-Organic Frameworks

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Supporting Information

Magnetic Janus Nanorods for Efficient Capture, Separation. and Elimination of Bacteria

A Highly Efficient Double-Hierarchical Sulfur Host for Advanced Lithium-Sulfur Batteries

Transcription:

Nanocomposite gels via in-situ photoinitiation and disassembly of TiO 2 -Clay composites with polymers applied as UV protective films Chuanan Liao, Qing Wu, Teng Su, Da Zhang, Qingsheng Wu and Qigang Wang* Department of Chemistry, Tongji University, Shanghai 200092, PR China Corresponding Author *E-mail: wangqg66@tongji.edu.cn. 1

Reagents and Materials TiO 2 nanoparticles solution were purchased from Dekedaojin (Beijing) Co., Ltd. Clay-NS (Laponite XLG) was purchased from Rockwood Ltd.. All organic reagents in analytical grade, including N, N-dimethylacrylamide (DMAA) and acetic acid (HAc), were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). All materials and reagents were used without further purification. Characterizations Elemental analysis: ICP analysis was performed on a Hitachi P4010 plasma spectrometer. The sample was prepared by dissolving 0.01 g dried sample of Micro-TCC into the mixed solution of 20 ml 20% H 2 SO 4 and 25 ml concentrated sulfuric acid by heating to 80 o C, then the obtained solution was cooled to room temperature and diluted to 100 ml before measurement. Mechanical analysis: Compressive measurements were performed on gels with a tensilecompressive tester (FR-108B, Farui Co.). A cylindrical gel sample with diameter of 16 mm and thick of about 6 mm was put on the lower plate and compressed by the upper plate connecting to a load cell (500 N), at a strain rate of 10 mm min-1. Tensile measurements were acquired using a gel sample with a dumbbell shape (20 mm 2 mm 2 mm). The ends of the samples were fixed in the clamps of the tensile-compressive tester and tested at a constant strain rate of 10 mm min -1. The work of extension W ex, which is used to characterize the toughness of the sample, was calculated from the area under the tensile stress-strain curve until fracture. XRD analysis: The samples are pretreated by freeze-drying and their XRD patterns were obtained on a Bruker Foucs D8 diffractometer with Cu Kα radiation. The wide X-ray powder 2

diffraction is tested from 10-70 o with the scanning rate of 0.1 sec step -1 and the increment of 0.02. And the small angle X-ray diffraction is performed from 0.6-2 o with the scanning rate of 0.5 degree min -1. Morphological analysis: The samples for SEM test is pretreated by freeze drying and gold sputtering and observed by a scanning electron microscope (Hitachi S-4800) at a voltage of 1kV. The Micro-TCC samples for TEM test is pretreated by freeze drying and measured by transmission electron microscopy (JEM-2100) at a 200 kv accelerating voltage. For the TEM test of nanocomposite hydrogels, the sample is pretreated through epoxy resin embedding and bio-cutting treatment. It is firstly cut to a cube shape of about 1 1 1 mm 3. The small piece of sample is soaped successively in 50% ethanol (15 min), 70% ethanol (15 min), 90% ethanol (15 min), a mixture of 1:1 90% ethanol and 90% acetone (30 min), a mixture of 1:1 90% acetone and entrapped liquid (12 h), and last in pure entrapped liquid (3 h) at room temperature, to replace the water in hydrogel with entrapped liquid. The treated sample is placed in an oven of 37 C for 12 h, 45 C for 12 h and 60 C for 48 h. Then several pieces with thickness of about 70 nm, are obtained using an ultramicrotome (Leica, German). The pieces of slice are dyed with 3% uranyl acetate. TEM pictures of bio-cutting samples were acquired by JEM-2010 transmission electron microscopy (TEM) at an accelerating voltage of 80 kv. EPR analysis: EPR measurement of the free radicals was conducted with an EPR Spectrometer (A300, Bruker). In a typical process, DMAA and Micro-TCC suspension (4%) are mixed in the same volume. The mixture was placed in the EPR Spectrometer and irradiated by ultraviolet light for 5 min. As for the signal of OH radical, TiO 2 solution (4%) and DMPO (dimethyl pyridine N-oxide, Electron capture agent) are mixed in the same volume. The mixture was placed in the EPR Spectrometer and irradiated by the ultraviolet light. 3

NMR for testing monomer conversion: All proton NMR spectra were obtained using a Bruker 400 MHz NMR spectrometer. Dioxane is used as internal standard material to calculate the remaining content of DMAA, as it is stable in the light-induced reaction and shows a single peak at 3.65 ppm. In a typical measurement, DMAA (300 mg, 3.026 mmol), 1,4-dioxane (33.3 mg, 0.378 mmol), Micro-TCC (200 mg) and D 2 O (9.4 g) were mixed under vigorous stirring to get a homogenous solution. 0.6 ml of the above solution in the NMR tubes were irradiated by the Xenon lamp (fixed 2.0 mw cm -2 intensity at 365 nm) for different time. UV protective test: The transmittance spectra of the TiO 2 -based nanocomposite film were measured in a Shimadzu UV-2700 UV-Vis spectrophotometer in the 200-800 nm range. The nanocomposite hydrogel films for the UV-Vis spectra experiments were fabricated by casting precursor solution onto quartz glass panels and being irradiated under UV light for hydrogelation. The thickness of the nanocomposite film is about 200 µm. The UPF values are calculated referring to GB/T 18830-2009: Textiles-Evaluation for solar ultraviolet radiation protective properties. Measurements were performed in a Shimadzu UV-2500 UV-Vis spectrophotometer using an integrating sphere and scanning between 290 and 400 nm with a 5- nm interval at room temperature. Refractive index test: The samples were placed in a spectrophotometer and the refractive index of the composites was measured by variable angle spectroscopy ellipsometry (VASE, J.A Woollam Co., Inc. W-VASE32TM) on a spin-coated sample on a Si wafer. 4

Figures Figure S1. Photographs of precipitation by adding TiO 2 -NP into Clay-NS. (a) TiO 2 nanoparticle dispersion in water (15 wt%). (b) Clay-NS solution (0.5 wt%). (c) Adding TiO 2 NPs dispersion (25 µl) and acetic acid (2.5 µl) into Clay-NS solution (3 ml). (d) the precipitation of Micro-TCC. Figure S2. Powder X-ray diffraction patterns for species in preparation of the TiO 2 -based nanocomposite hydrogel (a). SAXD pattern of Micro-TCC and the dried TiO 2 -based nanocomposite hydrogel (b). 5

Figure S3. Magnified SEM images of the micrometer-sized TiO 2 -Clay composite (Micro-TCC). Figure S4. TEM images of TiO 2 -NP the TiO 2 -based nanocomposite gel. Figure S5. SEM images of the translucent gel (a, with 4% Micro-TCC) and the white gel (b, with 10% Micro- TCC) (The scale bar is the same for (a) and (b)). 6

Figure S6. The EPR spectrum of the precursor solution of Micro-TCC and DMAA under UV irradiation. Figure S7. The change of UV adsorption of hydrogel after three swell-drying cycles. 7

Figure S8. The NMR spectra of the precursor under different reaction time and the conversion of the monomer DMAA. NMR spectra of the precursor containing 2% Micro-TCC and 3% DMAA under different reaction time: 0 min (a); 15 min (b); 30 min (c); 45 min (d); 60 min (e); the conversion of the monomer DMAA (f). 8

Figure S9. Comparison study of the compressive properties of gels with (3% Micro-TCC and 10% DMAA) and without clay (same content of TiO 2 and 10% DMAA, using N,N'-Methylenebisacrylamide as cross-linker). Figure S10. Comparison study of the compressive properties of gels with (3% Micro-TCC and 10% DMAA) and without TiO 2 (same content of clay and 10% DMAA, using 2,2-Diethoxy Acetophenone as photoinitiator). 9

Figure S11. Compressive properties of the TiO 2 -based hydrogels containing 2% Micro-TCC and different DMAA concentrations. Figure S12. Tensile properties of the selected TiO 2 -based nanocomposite hydrogels containing 2% Micro- TCC and 10% DMAA. 10

Figure S13. Optical images of the nanocomposite gels with water mixing solvent (1:1 volume ratio) of acetone, acetonitrile, and dimethylamide (A=acetone, AN=acetonitrile, DMF= dimethylformamide). Figure S14. UV absorption edge of the TiO 2 -NP. Figure S15. Effect of TiO 2 and clay to the UV absorption curves of the nanocomposite gels. 11