Electrochromic Materials and their Characterization by Solar Radiation Glazing Factors for Smart Window Applications

Similar documents
Glazing selection for solar design

Nanotechnology Applied in the Future Thermal Insulation Materials for Buildings

Solar Radiation 230 BTU s per Hr/SF. Performance Glazing Coatings, Layers & Gases

ME 476 Solar Energy UNIT TWO THERMAL RADIATION

Design strategy for Low e windows with effective insulation

Chapter 11 FUNDAMENTALS OF THERMAL RADIATION

Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance

TECHNICAL COMMITTEE of the EU Cool Roofs Council

EXPERIMENTAL DETERMINATION OF SPECTRAL AND ANGULAR DEPENDENT OPTICAL PROPERTIES OF INSULATING GLASSES

CAE 331/513 Building Science Fall 2016

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy

Effect of Sky Conditions on Light Transmission Through a Suspended Particle Device Switchable Glazing

Bjørn Petter Jelle ab. SINTEF Building and Infrastructure, NO-7465 Trondheim, Norway.

Effect of Installing a Curved Venetian Blind to the Glass Window on Heat Transmission

Section 7. Temperature Measurement

Fundamental Concepts of Radiometry p. 1 Electromagnetic Radiation p. 1 Terminology Conventions p. 3 Wavelength Notations and Solid Angle p.

Lecture 2 Blackbody radiation

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect

The energy performance of an airflow window

HIGHLY INSULATING AEROGEL GLAZING

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2

INTRODUCTION TO MICROWAVE REMOTE SENSING - II. Dr. A. Bhattacharya

Declarations of equivalence of Verosol sun screens. SilverScreen and EnviroScreen

MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects. Conduction Thermal system components

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law

Appendix 5.A11: Derivation of solar gain factors

9/12/2011. Training Course Remote Sensing - Basic Theory & Image Processing Methods September 2011

Chapter Seven. Solar Energy

Advanced Heat and Mass Transfer by Amir Faghri, Yuwen Zhang, and John R. Howell

Illumination, Radiometry, and a (Very Brief) Introduction to the Physics of Remote Sensing!

ATMOS 5140 Lecture 7 Chapter 6

Radiation from planets

Winter Night. Thermos 6mm Outdoors # #

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy.

TRANSPARENT INNOVATIVE MATERIALS: ENERGETIC AND LIGHTING PERFORMANCES EVALUATION

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

Electrochromic / Tinted Glazing:

INTRODUCTION Radiation differs from conduction and convection in that it does not require the presence of a material medium to take place.

Material and Design Requirements for Advanced Concentrators

TIR100-2 Measurement of Thermal Emissivity

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 10: The Greenhouse Effect. Section Table and Group

EXPERIMENT NO. 4. Thermal Radiation: the Stefan-Boltzmann Law

KEYWORDS Glazing; Window; Low E; Teflon; U-value; Shading Coefficient INTRODUCTION

Introduction to Infrared Radiation.

Introduction to Electromagnetic Radiation and Radiative Transfer

INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS

SIMULATED THERMAL PERFORMANCE OF TRIPLE VACUUM GLAZING. Yueping Fang, Trevor J. Hyde, Neil Hewitt

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION

Light is an electromagnetic wave (EM)

Radiation Heat Transfer. Introduction. Blackbody Radiation. Definitions ,

Chapter 1. Blackbody Radiation. Theory

Observation of Atomic Spectra

ABSTRACT INTRODUCTION OPTICAL CALCULATIONS

Introduction to Photovoltaics

Cool Roofs Standards & the ECRC Product Rating Program

Thermal Systems Design MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects

11. Advanced Radiation

Spectral and photopic studies for high intensity discharge (HID) lamps

Lecture 2: principles of electromagnetic radiation

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

Heat transfer and thermally induced stresses in window glass coated with optically active nano-particles

NO. 13, LIGHT BULB: NUMERICAL AND EXPERIMENTAL EVALUATION OF THE EFFICIENCY. Reza Montazeri Namin a Alireza Tahmaseb Zadeh b

Grade 8 Science: Unit 3-Optics Chapter 4: Properties of Light

Lecture 2 Global and Zonal-mean Energy Balance

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Determination of Stefan-Boltzmann Constant.

PRINCIPLES OF REMOTE SENSING. Electromagnetic Energy and Spectral Signatures

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Third generation solar cells - How to use all the pretty colours?

Radiation Heat Transfer. Introduction. Blackbody Radiation

Calculating the heat transfer coefficient of frame profiles with internal cavities

INTRODUCTION TO MICROWAVE REMOTE SENSING. Dr. A. Bhattacharya

Photolithography II ( Part 1 )

In class quiz - nature of light. Moonbow with Sailboats (Matt BenDaniel)

EVOLUTION OF STARS HERTZSPRUNG-RUSSELL DIAGRAM

Heat Transfer. Phys101 Lectures 33, 34. Key points: Heat as Energy Transfer Specific Heat Heat Transfer: Conduction, Convection, Radiation.

Technical Data Sheet - Planibel

Tutorials. W.Theiss Hard- and Software for Optical Spectroscopy Dr.-Bernhard-Klein-Str. 110, D Aachen Wolfgang Theiss

ATM S 111: Global Warming Solar Radiation. Jennifer Fletcher Day 2: June

THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL PARTITIONS. Agnieszka A. Lechowska 1, Jacek A. Schnotale 1

Satellite Type Estination from Ground-based Photometric Observation

Thermal Radiation By: Prof. K M Joshi

Lecture 6. Rapid Thermal Processing. Reading: Chapter 6

Electromagnetic Waves

5. Light-matter interactions: Blackbody radiation

CAE 463/524 Building Enclosure Design Fall 2012

Natté COLLECTION CLARITY & COMFORT GLASSFIBRE OF = 1-10% COPACO NATTÉ

Chapter 4. Spectroscopy. Dr. Tariq Al-Abdullah

Thermal conversion of solar radiation. c =

Measurement method for the proficiency testing program

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Fundamentals of light

Fundamentals of light

Increased thermal induced climatic load in insulated glass units

Integrating the Solar Spectrum

Working of a SUNLUX SUNSCREEN

Transcription:

Electrochromic Materials and their Characterization by Solar adiation Glazing Factors for Smart Window Applications Bjørn Petter Jelle ab, Tao Gao c, Yingpeng Zhen b and Arild Gustavsen c a SINTEF Building and Infrastructure, Department of Materials and Structures, NO-7465 Trondheim, Norway. b Norwegian University of Science and Technology (NTNU), Department of Civil and Transport Engineering, NO-749 Trondheim, Norway. c Norwegian University of Science and Technology (NTNU), Department of Architectural Design, History and Technology, NO-749 Trondheim, Norway. A Workshop of Building Efficiency, Peder Sather Center for Advanced Study, University of California Berkeley, Berkeley, U.S.A., 5 September, 04.

Electrochromic windows (ECWs) egulates solar radiation by application of an external voltage. May decrease heating, cooling and electricity loads in buildings. Dynamic and flexible solar radiation control. May be characterized by a number of solar radiation glazing factors.

Glass - Solar adiation Solar Spectrum 80-3000 nm Solar Ultraviolet (UV) 80-380 nm Visible Light (VIS) 380-780 nm Near Infrared (NI) 780-3000 nm AM0 (outer space) AM (earth s surface, the sun 30º above the horizon) Molecular absorption (in O, O 3, H O and CO ) edrawn from: A.L. Fahrenbruch and.h. Bube, Fundamentals of solar cells. Photovoltaic solar energy conversion, pp. 6-3, Academic Press, 983. Glass A Marvellous Material 3

Glass Solar adiation Window Panes Solar adiation through Window Panes and other Glass Structures T() + A() + () = (00 %) and E() = A() Incident Light A E = A T T + A + = T T A T A T T T T T A T A T and so on T A T A T T T T T T 4

Solar adiation through Window Panes and other Glass Structures T T A T A T T T T T A T A T and so on Single Glass Pane T( ) ( ) T T A T A T T T T T T int ext Two-Layer Window Pane ext T( ) int ( ) TT ( ) b Three-Layer Window Pane T( ) ( ) ( ) [ 3b b b T b T b T T ][ b b T 3 T [ b [ ][ T3 [ 3 b [ b 3 ][ b ] T b 3 b 3 ] T ] T b b T ] T 3 T ] T 3 3 b b 3 3 b 5

Solar adiation Glazing Factors Generally, the most important solar radiation glazing factors are: Ultraviolet Solar Transmittance, T uv Visible Solar Transmittance, T vis Solar Transmittance, T sol Solar Material Protection Factor, SMPF Solar Skin Protection Factor, SSPF External Visible Solar eflectance, vis,ext Internal Visible Solar eflectance, vis,int Solar eflectance, sol Solar Absorbance, A sol Emissivity, Solar Factor, SF Colour endering Factor, CF 6

Glass Solar adiation Window Panes Solar adiation through Window Panes and other Glass Structures The Solar Transmittance (T sol ) is given by the following expression: T sol 500nm T( )S 300nm 500nm S 300nm S = relative spectral distribution of solar radiation T() = spectral transmittance of the glass = wavelength = wavelength interval S values at different wavelengths are given in a table 7

Solar adiation Glazing Factor Definitions Ultraviolet Solar Transmittance (T uv ) T uv 380nm 300nm 380nm T( )S S 300nm Visible Solar Transmittance (T vis ) (Light Transmittance) T vis 780nm 380nm 780nm T( )D D 380nm V( ) V( ) Solar Transmittance (T sol ) T sol 500nm T( )S 300nm 500nm S 300nm 8

Solar adiation Glazing Factor Definitions Solar Material Protection Factor (SMPF) SMPF df 600 nm 300 nm 600 nm T( )C C 300 nm S S Solar Skin Protection Factor (SSPF) B. P. Jelle, A. Gustavsen, T.-N. Nilsen and T. Jacobsen, Solar Material Protection Factor (SMPF) and Solar Skin Protection Factor (SSPF) for Window Panes and other Glass Structures in Buildings, Solar Energy Materials & Solar Cells, 9, 34-354, 007. SSPF F sd 400nm 300nm 400nm T( )E E 300nm S S 9

Solar adiation Glazing Factor Definitions External Visible Solar eflectance ( vis,ext ) (External Light eflectance) 780nm Internal Visible Solar eflectance ( vis,int ) (Internal Light eflectance) vis,ext ext 380nm 780nm 380nm ( )D D V( ) V( ) Solar eflectance ( sol ) vis,int 780 nm int 380 nm 780 nm 380 nm ( )D D V( ) V( ) sol 500nm ext 300nm 500nm 300nm ( )S S 0

Solar adiation Glazing Factor Definitions Solar Absorbance (A sol ) A sol T sol sol 500nm T( )S 300nm 500nm S 300nm 500nm ext 300nm 500nm 300nm ( )S S B. P. Jelle, Solar adiation Glazing Factors for Window Panes, Glass Structures and Electrochromic Windows in Buildings - Measurement and Calculation, Solar Energy Materials and Solar Cells, 6, 9-33, 03.

Solar adiation Glazing Factor Definitions Emissivity () Specular I reflectance measurements c 30 corr n n c corr ( n ) c corr n ( i ) n 30 i Heat flow meter measurements 4T (q 3 m tot T q d tot T) T Total hemispherical emissivity (Hemispherical reflectometer and integrating over the hemisphere) / 0 t ( ) sin cos d d t (,, ) 0 ( )P(, T)d 0 P(, T)d P 8hc (, T) 5 hc /( kt (e ) )

Solar adiation Glazing Factor Definitions Solar Factor (SF) Total Solar Energy Transmittance Solar Heat Gain Coefficient (SHGC) g-value SF = T sol + q i q i = secondary heat transfer factor towards the inside Colour endering Factor (CF) Further details in ISO/FDIS 9050:003(E), ISO 09:994(E), EN-ISO 6946:996 and EN 40:998 E CF a 00 800 8 i i i =00-4.6E i = specific colour rendering index E * * * * * * i (U t,i U r,i ) (Vt,i Vr,i ) (Wt,i Wr,i ) = total distortion of colour i 3

where = wavelength (nm) Solar adiation Glazing Factor Definitions = wavelength interval (nm) T() = spectral transmittance of the glass ext () = external spectral reflectance of the glass int () = internal spectral reflectance of the glass n = average spectral reflectance calculated by summation of spectral reflectance values at 30 distinct wavelengths and divided by 30 as shown in Eq.0 above i = wavelength and i values for the 30 wavelengths are given in ISO 09:994(E) and EN 898:00 E S = relative spectral distribution of ultraviolet solar radiation or solar radiation (ISO/FDIS 9050:003(E), ISO 9845-:99(E)) D = relative spectral distribution of illuminant D65 (ISO/FDIS 9050:003(E), ISO 056:999(E)) V() = spectral luminous efficiency for photopic vision defining the standard observer for photometry (ISO/FDIS 9050:003(E), ISO/CIE 057:99(E)) S values at different wavelengths for ultraviolet solar radiation or solar radiation are given in ISO/FDIS 9050:003(E) D V() values at different wavelengths are given in ISO/FDIS 9050:003(E) df = CIE damage factor (ISO/FDIS 9050:003(E), CIE No 89/3:990) C = e -0.0 ( given in nm) C S values at different wavelengths are given in ISO/FDIS 9050:003(E) F sd = skin damage factor (ISO/FDIS 9050:003(E), McKinlay and Diffey 987) E = CIE erythemal effectiveness spectrum E S values at different wavelengths are given in ISO/FDIS 9050:003(E) q tot = total heat flow density between two parallel, flat infinite isothermal surfaces (W/m ) (EN 946-:999 E, EN 946-3:999 E) = thermal conductivity of the medium separating the two surfaces (W/(mK)) = air = 0.04396( + 0.00305 -.8 0-6 ) (W/(mK)) (values accurate to 0.6 % between = 0ºC and = 70ºC) ( given in ºC) (EN 946-:999 E, EN 946-3:999 E) = (T m - 73.5 K)ºC/K (ºC) T m = mean temperature of the two surfaces (K) T = temperature difference between the two surfaces (K) d = distance between the two surfaces (m) = k 4 /(60ħ 3 c ) = Stefan-Boltzmann s constant 5.67 0-8 W/(m K 4 ) 4 ( )P(, T)d 0 (,, ) (Surface Optics Corporation 009) t 0 P(, T)d P 8hc (, T) = Planck s function (Surface Optics Corporation 009) 5 hc /( kt (e ) ) = hemispherical reflectance T = temperature (K) and are integrating angles over the hemisphere h = Planck s constant 6.63 0-34 Js k = Boltzmann s constant.38 0-3 J/K c = velocity of light 3.00 0 8 m/s T sol = solar transmittance (Eq.3) A sol = q i + q e (A sol from Eq.9) q i = secondary heat transfer factor towards the inside q e = secondary heat transfer factor towards the outside (complete details for calculation of SF given in ISO/FDIS 9050:003(E), with additions in ISO 09:994(E) and EN-ISO 6946:996, note that and sol enter into q i in Eq., sol from A sol ) a = 8 8 i i = general colour rendering index (EN 40:998 E) i = 00-4.6E i = specific colour rendering index * * * * * * E i (U t,i U r,i ) (Vt,i Vr,i ) (Wt,i Wr,i ) = total distortion of colour i (complete details for calculation of CF given in EN 40:998 E)

Solar Factor (SF) for Single Glazing SF T sol q i T sol A sol h e h i h i T sol = solar transmittance (Eq. 3) sol = solar reflectance (Eq. 8) A sol = - T sol - sol = solar absorbance (Eq. 9 and Eq. 0) h e = 3 W/(m K) (Eq. 44, see applicable assumptions) h i 4.4 3.6 W /(m K) (Eq. 45, see applicable assumptions) 0.837 = corrected emissivity of the inside surface 5

Solar Factor (SF) for Double Glazing SF T sol q i T sol A sol, h h i e A sol, h e A sol, A sol, 500 nm b A 300 nm b 500 nm A S 300 nm T S = thermal conductance between the outer surface of the outer (first) pane and the innermost surface of the inner (second) pane A sol, 500 nm A T 300 nm b 500 nm S 300 nm S A = - T - A b = - T - b A = - T - 6

A A A SF sol, sol, sol,3 T sol Solar Factor (SF) for Triple Glazing q i T A T sol ( 300 nm A sol, A h sol, 500 nm b b 3 b 3 A 300 nm ( b )( b 3 ) T b 3 500 nm T A ( 500 nm S 300 nm ) T T 500 nm b 3 b 3 300 nm ( b )( b 3) T b 3 S T T 300 nm ) T T A 500 nm 3 300 nm ( b )( b 3 ) T b 3 500 nm S A A e S S 7 h i S A sol,3 h e A sol, A 3 sol,3 A sol,3 3 = thermal conductance between the outer surface of the outer (first) pane and the centre of the middle (second) pane 3 = thermal conductance between the centre of the middle (second) pane and the centre of the inner (third) pane A = - T - (Eq. 7) A b = - T - b (Eq. 7) A = - T - (Eq. 73) A b = - T - b A 3 = - T 3-3

Solar Factor (SF) for Multiple Glazing SF = T sol + q i q i A sol, A sol, A h e sol,3... A h sol,n i h e A sol, A sol,3 3... A... sol,n (n)n A sol,3... 3 A sol,n A sol,n (n)n U h e h i N h s M d m r m 8

Float Glass Solar adiation through Window Panes and other Glass Structures Transm. / Absorb. / eflect..0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 Float Glass Transmittance Absorbance eflectance Transmittance Absorbance eflectance 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) 9

Low Emittance Coated Glass Solar adiation through Window Panes and other Glass Structures Transm. / Absorb. / eflect..0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 Glass with Low Emittance Coating Absorbance eflectance Transmittance Transmittance Absorbance eflectance 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) 0

Dark Silver Coated Glass Solar adiation through Window Panes and other Glass Structures Transm. / Absorb. / eflect..0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 Silver Coated Glass eflectance Absorbance Transmittance Transmittance Absorbance eflectance 00 600 000 400 800 00 600 3000 3400 Wavelength (nm)

Float Low Emittance Dark Silver Solar adiation through Window Panes and other Glass Structures Transm. / Absorb. / eflect. Transm. / Absorb. / eflect..0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 Float Glass Transmittance Absorbance eflectance Transmittance Absorbance eflectance 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) Glass with Low Emittance Coating Absorbance eflectance Transmittance Transmittance Absorbance eflectance Transm. / Absorb. / eflect..0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 Silver Coated Glass eflectance Absorbance 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) Transmittance Transmittance Absorbance eflectance 00 600 000 400 800 00 600 3000 3400 Wavelength (nm)

Solar adiation Glazing Factors for Miscellaneous Glass (Float Low Emittance Dark Silver) Glass Configuration n T uv T vis T sol SMPF SSPF vis,ext vis,int sol A sol SF CF Float Glass G Low Emittance Glass LE/G Dark Silver Glass S/G 0.65 0.89 0.83 0.0 0.8 0.09 0.09 0.08 0.0 0.836 0.85 0.99 0.4 0.86 0.59 0.3 0.89 0.04 0.04 0.7 0.4 0.836 0.6 0.98 0.0 0.0 0.6 0.85 0.97 0.30 0.30 0.38 0.47 0.836 0.8 0.97 3

Solar adiation Glazing Factors for Miscellaneous Glass Solar adiation through Window Panes and other Glass Structures Glass Configuration n T uv T vis T sol SMPF SSPF vis,ext vis,int sol A sol SF CF Float Glass G Low Emittance Glass LE/G Dark Silver Glass S/G Float/Float G/A/G Float/LowE G/A/LE/G Float/Silver G/A/S/G LowE/LowE G/LE/A/LE/G LowE/Float G/LE/A/G Silver/Float G/S/A/G Silver/LowE G/S/A/LE/G Silver/Silver G/S/A/S/G Float/Float/Float G/A/G/A/G Float/Float/LowE G/A/G/A/LE/G Float/LowE/LowE G/A/LE/G/A/LE/G 0.65 0.89 0.83 0.0 0.8 0.09 0.09 0.08 0.0 0.836 0.85 0.99 0.4 0.86 0.59 0.3 0.89 0.04 0.04 0.7 0.4 0.836 0.6 0.98 0.0 0.0 0.6 0.85 0.97 0.30 0.30 0.38 0.47 0.836 0.8 0.97 0.50 0.80 0.69 0.3 0.87 0.6 0.04 0.3 0.7 0.836 0.76 0.97 0.3 0.77 0.50 0.4 0.9 0. 0.03 0.6 0.4 0.836 0.60 0.96 0.08 0.9 0.4 0.87 0.98 0.33 0.00 0.34 0.5 0.836 0.4 0.97 0. 0.74 0.43 0.48 0.94 0.09 0.0 0.6 0.3 0.836 0.5 0.95 0.3 0.77 0.50 0.4 0.9 0. 0.0 0.4 0.5 0.836 0.55 0.96 0.08 0.9 0.4 0.87 0.98 0.6 0.5 0.4 0.6 0.836 0. 0.97 0.05 0.8 0. 0.88 0.99 0.6 0.04 0.4 0.65 0.836 0.8 0.96 0.0 0.05 0.03 0.97.00 0.7 0.00 0.5 0.7 0.836 0.6 0.95 3 0.40 0.73 0.59 0.40 0.90 0. 0.7 0.7 0.4 0.836 0.68 0.96 3 0.6 0.69 0.44 0.48 0.93 0.8 0.0 0.5 0.3 0.836 0.55 0.95 3 0.8 0.66 0.37 0.54 0.95 0.5 0.09 0.9 0.34 0.836 0.50 0.94 4

Solar adiation Glazing Factors for Miscellaneous Glass Solar adiation through Window Panes and other Glass Structures Glass Configuration n T uv T vis T sol SMPF SSPF vis,ext vis,int sol A sol SF CF Float Glass G 0.65 0.89 0.83 0.0 0.8 0.09 0.09 0.08 0.0 0.836 0.85 0.99 Low Emittance Glass LE/G 0.4 0.86 0.59 0.3 0.89 0.04 0.04 0.7 0.4 0.836 0.6 0.98 Dark Silver Glass S/G 0.0 0.0 0.6 0.85 0.97 0.30 0.30 0.38 0.47 0.836 0.8 0.97 Float/Float G/A/G 0.50 0.80 0.69 0.3 0.87 0.6 0.04 0.3 0.7 0.836 0.76 0.97 Float/LowE G/A/LE/G 0.3 0.77 0.50 0.4 0.9 0. 0.03 0.6 0.4 0.836 0.60 0.96 Float/Silver G/A/S/G 0.08 0.9 0.4 0.87 0.98 0.33 0.00 0.34 0.5 0.836 0.4 0.97 LowE/LowE G/LE/A/LE/G 0. 0.74 0.43 0.48 0.94 0.09 0.0 0.6 0.3 0.836 0.5 0.95 LowE/Float G/LE/A/G 0.3 0.77 0.50 0.4 0.9 0. 0.0 0.4 0.5 0.836 0.55 0.96 Silver/Float G/S/A/G 0.08 0.9 0.4 0.87 0.98 0.6 0.5 0.4 0.6 0.836 0. 0.97 Silver/LowE G/S/A/LE/G 0.05 0.8 0. 0.88 0.99 0.6 0.04 0.4 0.65 0.836 0.8 0.96 Silver/Silver G/S/A/S/G 0.0 0.05 0.03 0.97.00 0.7 0.00 0.5 0.7 0.836 0.6 0.95 Float/Float/Float G/A/G/A/G 3 0.40 0.73 0.59 0.40 0.90 0. 0.7 0.7 0.4 0.836 0.68 0.96 Float/Float/LowE G/A/G/A/LE/G 3 0.6 0.69 0.44 0.48 0.93 0.8 0.0 0.5 0.3 0.836 0.55 0.95 Float/LowE/LowE G/A/LE/G/A/LE/G 3 0.8 0.66 0.37 0.54 0.95 0.5 0.09 0.9 0.34 0.836 0.50 0.94 LowE/LowE/LowE 3 0. 0.63 0.33 G/LE/A/LE/G/A/LE/G 0.59 0.97 0. 0.08 0.8 0.39 0.836 0.45 0.93 Silver/Float/Float G/S/A/G/A/G 3 0.06 0.7 0. 0.88 0.98 0.6 0.6 0.4 0.64 0.836 0.8 0.96 Silver/Float/LowE G/S/A/G/A/LE/G 3 0.04 0.6 0.09 0.89 0.99 0.6 0.5 0.4 0.66 0.836 0.5 0.95 Silver/LowE/LowE G/S/A/LE/G/A/LE/G 3 0.03 0.5 0.08 0.9 0.99 0.6 0.4 0.5 0.67 0.836 0.4 0.94 Silver/Silver/Silver G/S/A/S/G/A/S/G 3 0.00 0.0 0.0 0.99.00 0.7 0.6 0.5 0.74 0.836 0. 0.93 5

Float Glass Number of Window Panes Solar adiation through Window Panes and other Glass Structures Transmittance.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 Float Glass:, and 3 Layer Window Pane 3 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) 6

Smart Windows Electrochromic Window Configurations Applied voltage Applied voltage Glass PAMPS Glass Light Glass PAMPS Glass Light Indium-tin oxide Indium-tin oxide Indium-tin oxide Indium-tin oxide Polyaniline Tungsten oxide Polyaniline Tungsten oxide Prussian blue Prussian blue Window configuration ECW Window configuration ECW (PANI-PB multilayer) 7

Smart Windows Electrochromic Materials and Chemical eactions PANI, PB and WO 3 (transparent) WO 3 + (PANI)(yH + A - ) + (x-y)k Fe II [Fe(CN) 6 ] + (x-y)h + H x WO 3 + (PANI y+ )(A - ) y + (x-y)kfe III [Fe(CN) 6 ] + (x-y)k + (blue) Applied voltage y = x Glass PAMPS Glass Light PANI and WO 3 Indium-tin oxide Polyaniline Prussian blue Indium-tin oxide Tungsten oxide WO 3 + (PANI)(xH + A - ) H x WO 3 + (PANI x+ )(A - ) x (transparent) (blue) 8

Spectroscopical Data for Electrochromic Windows Applied voltage Window configuration ECW.0 PAMPS Glass Glass Light Indium-tin oxide Indium-tin oxide Polyaniline Tungsten oxide Prussian blue Transmittance 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 Glass/ITO/PANI/PB/PAMPS/WO 3 /ITO/Glass - 800 mv 0 mv + 00 mv + 500 mv + 800 mv +00 mv +400 mv 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) 9

Spectroscopical Data for Electrochromic Windows Window configuration ECW (PANI-PB multilayer) Applied voltage Glass Indium-tin oxide Polyaniline Prussian blue PAMPS Glass Light Indium-tin oxide Tungsten oxide Transmittance.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 Glass/ITO/PANI-PB/PAMPS/WO 3 /ITO/Glass - 800 mv +00 mv 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) 30

Spectroscopical Data for Electrochromic Windows Applied voltage Window configuration ECW3 Glass Indium-tin oxide PAMPS Glass Light Indium-tin oxide Polyaniline Tungsten oxide Prussian blue Transmittance.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 ECW3 Glass/ITO/PANI/PB/PAMPS/WO 3 /ITO/Glass - 800 mv 0 mv + 500 mv + 800 mv +400 mv 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) 3

Spectral Changes in Polyaniline (PANI) Transparent Yellow Green Blue Violet 0.4 PANI + 800 mv + 700 mv + 600 mv + 500 mv + 400 mv + 300 mv + 00 mv + 00 mv - 400 mv + 800 0. 0.0 0.8 + 300 + 00 + 400 0.6 0.4-400 400 500 600 700 0.6 + 00 + 500 + 600 + 700 + 800-400 + 00 0. 0.0 300 PANI 800 900 Wavelength (nm) PANI may exhibit many colours PANI doping: 000 log0(/t) ) Absorbance ( Absorbance (log0(i0/i)) 0.6 0.4 0. 0.0 0.8 0.6 0.4 0. 0.0 400 500 800 600 400 00 V) (m Wa 0 l 600 a vel ti n -00 eng 700 e 800 ot th -400 P (nm 900 ) edox processes Proton doping 3

Transmittance.0 0.9 Glass/ITO/PANI/PB/PAMPS/WO 3/ITO/Glass - 800 mv 0 mv 0.8 + 00 mv 0.7 + 500 mv + 800 mv 0.6 +00 mv 0.5 +400 mv 0.4 0.3 0. 0. 0.0 00 600 000 400 800 00 600 3000 3400 Solar adiation Modulation by ECWs Wavelength (nm) Transmittance 0 adjustable T A Transmittance 0 adjustable T Transmittance 0 adjustable T A T Wavelength Wavelength Wavelength Absorbance (A) egulating eflectance () egulating Combined A and egulating A adjustable Absorbance 0 adjustable eflectance 0 Absorbance, eflectance 0 adjustable A Wavelength Wavelength p =c / p = (c/q e )(m e 0 /n e ) / Wavelength 33

Solar adiation Glazing Factors for Electrochromic Windows Glass Configuration n T uv T vis T sol SMPF SSPF vis,ext vis,int sol A sol SF CF ECW (-800 mv) 0.3 0.78 0.74 0.43 0.93 0.09 0.09 0.08 0.8 0.836 0.79 0.98 ECW (0 mv) 0.3 0.77 0.7 0.43 0.93 0.09 0.09 0.08 0. 0.836 0.77 0.98 ECW (+00 mv) 0.4 0.75 0.68 0.44 0.93 0.09 0.09 0.08 0.4 0.836 0.74 0.99 ECW (+500 mv) 0.5 0.66 0.5 0.48 0.93 0.09 0.09 0.08 0.40 0.836 0.6 0.95 ECW (+800 mv) 0.6 0.47 0.36 0.54 0.9 0.09 0.09 0.08 0.56 0.836 0.5 0.8 ECW (+00 mv) 0.4 0.9 0.9 0.68 0.93 0.09 0.09 0.08 0.73 0.836 0.38 0.68 ECW (+400 mv) 0.3 0.7 0.7 0.7 0.93 0.09 0.09 0.08 0.75 0.836 0.37 0.68 ECW (-800 mv) 0.0 0.6 0.6 0.6 0.97 0.09 0.09 0.08 0.3 0.836 0.69 0.95 ECW (+00 mv) 0. 0.0 0.0 0.8 0.97 0.09 0.09 0.08 0.8 0.836 0.3 0.3 ECW3 (-800 mv) 0.08 0.69 0.67 0.59 0.97 0.09 0.09 0.08 0.5 0.836 0.74 0.96 ECW3 (+400 mv) 0. 0.09 0.08 0.83 0.97 0.09 0.09 0.08 0.84 0.836 0.30 0.59 34

Solar adiation Glazing Factors for Electrochromic Windows Glass Configuration n T uv T vis T sol SMPF SSPF vis,ext vis,int sol A sol SF CF ECW (-800 mv) 0.3 0.78 0.74 0.43 0.93 0.09 0.09 0.08 0.8 0.836 0.79 0.98 ECW (0 mv) 0.3 0.77 0.7 0.43 0.93 0.09 0.09 0.08 0. 0.836 0.77 0.98 ECW (+00 mv) 0.4 0.75 0.68 0.44 0.93 0.09 0.09 0.08 0.4 0.836 0.74 0.99 ECW (+500 mv) 0.5 0.66 0.5 0.48 0.93 0.09 0.09 0.08 0.40 0.836 0.6 0.95 ECW (+800 mv) 0.6 0.47 0.36 0.54 0.9 0.09 0.09 0.08 0.56 0.836 0.5 0.8 ECW (+00 mv) 0.4 0.9 0.9 0.68 0.93 0.09 0.09 0.08 0.73 0.836 0.38 0.68 ECW (+400 mv) 0.3 0.7 0.7 0.7 0.93 0.09 0.09 0.08 0.75 0.836 0.37 0.68 ECW (-800 mv) 0.0 0.6 0.6 0.6 0.97 0.09 0.09 0.08 0.3 0.836 0.69 0.95 ECW (+00 mv) 0. 0.0 0.0 0.8 0.97 0.09 0.09 0.08 0.8 0.836 0.3 0.3 ECW3 (-800 mv) 0.08 0.69 0.67 0.59 0.97 0.09 0.09 0.08 0.5 0.836 0.74 0.96 ECW3 (+400 mv) 0. 0.09 0.08 0.83 0.97 0.09 0.09 0.08 0.84 0.836 0.30 0.59 EC/Float (-) ECT/A/G 0.8 0.70 0.6 0.50 0.95 0.4 0.04 0. 0.6 0.836 0.67 0.99 EC/Float (+) ECC/A/G 0.8 0.5 0.5 0.75 0.95 0.09 0.04 0.08 0.77 0.836 0.5 0.67 EC/LowE (-) ECT/A/LE/G 0. 0.67 0.45 0.55 0.97 0. 0.03 0.3 0.3 0.836 0.55 0.99 EC/LowE (+) ECC/A/LE/G 0. 0.4 0. 0.78 0.97 0.09 0.03 0.09 0.80 0.836 0.9 0.68 EC/Float/Float (-) ECT/A/G/A/G 3 0.5 0.63 0.53 0.55 0.96 0.8 0.7 0.5 0.3 0.836 0.60 0.99 EC/Float/Float (+) ECC/A/G/A/G 3 0.4 0.4 0.3 0.78 0.96 0.09 0.7 0.08 0.79 0.836 0.0 0.67 EC/Float/LowE (-) ECT/A/G/A/LE/G 3 0.0 0.60 0.39 0.60 0.97 0.6 0.0 0. 0.39 0.836 0.50 0.98 EC/Float/LowE (+) ECC/A/G/A/LE/G 3 0.0 0.3 0.0 0.8 0.97 0.09 0.0 0.09 0.8 0.836 0.6 0.67 EC/LowE/LowE (-) 3 0.07 0.58 0.33 ECT/A/LE/G/A/LE/G 0.64 0.98 0.3 0.09 0.5 0.4 0.836 0.45 0.97 EC/LowE/LowE (+) 3 0.07 0. 0.08 ECC/A/LE/G/A/LE/G 0.83 0.98 0.09 0.09 0.09 0.83 0.836 0.4 0.67 EC/LowE/LowE (-) 3 0.03 0.46 0.6 ECT/A/LE/G/A/LE/G 0.74 0.99 0. 0.09 0. 0.5 0.836 0.37 0.96 EC/LowE/LowE (+) 3 0.03 0.07 0.04 ECC/A/LE/G/A/LE/G 0.89 0.99 0.09 0.09 0.08 0.87 0.836 0.0 0.30 35

Solar adiation Glazing Factor Modulation for Electrochromic Windows Glass Configuration n T uv T vis T sol SMPF SSPF vis,ext vis,int sol A sol SF CF ECW (-800 mv) ECW (+400 mv) ECW (-800 mv) ECW (+00 mv) ECW3 (-800 mv) ECW3 (+400 mv) EC/Float (-) ECT/A/G EC/Float (+) ECC/A/G EC/LowE (-) ECT/A/LE/G EC/LowE (+) ECC/A/LE/G EC/Fl /Fl ( ) 0.00 0.6 0.57-0.8 0.00 0.00 0.00 0.00-0.57-0.4 0.30-0.0 0.5 0.5-0. 0.00 0.00 0.00 0.00-0.5-0.38 0.64-0.04 0.60 0.59-0.4 0.00 0.00 0.00 0.00-0.59-0.44 0.37 0.00 0.55 0.47-0.5 0.00 0.05 0.00 0.04-0.5-0.4 0.3 0.00 0.53 0.34-0.3 0.00 0.0 0.00 0.4-0.48-0.36 0.3 36

Solar adiation Glazing Factor Modulation for Electrochromic Windows Glass Configuration n T uv T vis T sol SMPF SSPF vis,ext vis,int sol A sol SF CF ECW (-800 mv) ECW (+400 mv) ECW (-800 mv) ECW (+00 mv) ECW3 (-800 mv) ECW3 (+400 mv) EC/Float (-) ECT/A/G EC/Float (+) ECC/A/G EC/LowE (-) ECT/A/LE/G EC/LowE (+) ECC/A/LE/G EC/Float/Float (-) ECT/A/G/A/G EC/Float/Float (+) ECC/A/G/A/G EC/Float/LowE (-) ECT/A/G/A/LE/G EC/Float/LowE (+) ECC/A/G/A/LE/G EC/LowE/LowE (-) ECT/A/LE/G/A/LE/G EC/LowE/LowE (+) ECC/A/LE/G/A/LE/G EC/LowE/LowE (-) ECT/A/LE/G/A/LE/G EC/LowE/LowE (+) ECC/A/LE/G/A/LE/G 0.00 0.6 0.57-0.8 0.00 0.00 0.00 0.00-0.57-0.4 0.30-0.0 0.5 0.5-0. 0.00 0.00 0.00 0.00-0.5-0.38 0.64-0.04 0.60 0.59-0.4 0.00 0.00 0.00 0.00-0.59-0.44 0.37 0.00 0.55 0.47-0.5 0.00 0.05 0.00 0.04-0.5-0.4 0.3 0.00 0.53 0.34-0.3 0.00 0.0 0.00 0.4-0.48-0.36 0.3 3 0.0 0.49 0.40-0.3 0.00 0.09 0.00 0.07-0.47-0.40 0.3 3 0.00 0.47 0.9-0. 0.00 0.07 0.00 0.3-0.43-0.34 0.3 3 0.00 0.46 0.5-0.9 0.00 0.04 0.00 0.6-0.4-0.3 0.30 3 0.00 0.39 0. -0.5 0.00 0.0 0.00 0.4-0.35-0.7 0.66 37

ECW with Float Glass Number of Window Panes Applied voltage Window configuration ECW PAMPS Glass Glass Light Indium-tin oxide Indium-tin oxide Polyaniline Tungsten oxide Prussian blue.0 Transmittance 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. 0.0 ECW with Float Glass:, and 3 Layer Window Pane 3-800 mv +400 mv 3 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) 38

Solar adiation Glazing Factors Article addressing the solar radiation glazing factors 39

Properties, equirements and Possibilities Smart Windows A State-of-the-Art eview 40

Fenestration of Today and Tomorrow: A State-of-the-Art eview and Future esearch Opportunities 4

Commercial Electrochromic Windows Some Company Examples: SAGE Electrochromics (USA) EControl-Glas (Germany) GESIMAT (Germany) ChromoGenics (Sweden) 4

Commercial Electrochromic Windows Transparent Dark Intermediate 43

Commercial Electrochromic Windows Coloured Transparent 44

Commercial Electrochromic Windows Coloured Transparent 45

Commercial Electrochromic Windows Coloured Transparent 46

Commercial Electrochromic Windows Coloured Transparent 47

Commercial Electrochromic Windows 48

Commercial Electrochromic Windows Coloured Transparent 49

Conclusions Electrochromic Windows Enable a dynamic control of the solar radiation radiation throughput in windows. May readily be characterized by solar radiation glazing factors. Applied voltage.0 Transmittance 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0. 0. Glass/ITO/PANI/PB/PAMPS/WO 3 /ITO/Glass - 800 mv 0 mv + 00 mv + 500 mv + 800 mv +00 mv +400 mv Glass Indium-tin oxide PAMPS Glass Light Indium-tin oxide 0.0 00 600 000 400 800 00 600 3000 3400 Wavelength (nm) Polyaniline Prussian blue Tungsten oxide 50

Solar radiation dynamically controlled by electrochromic windows and characterized by solar radiation glazing factors 5