Failure Prediction by Means of Cepstral Analysis and Coherence Function between Thrust Force and Torque Signals

Similar documents
Wear State Recognition of Drills Based on K-means Cluster and Radial Basis Function Neural Network

In-Process Chatter Detection in Surface Grinding

Research Article The Microphone Feedback Analogy for Chatter in Machining

Design and analysis of a piezoelectric film embedded smart cutting tool

Rigid Part Mating. Goals of this class

Chapter 3. Experimentation and Data Acquisition

Filtration of Feedback Signal to Human Operator in Active Sensory Feedback System

Monitoring of tool wear and surface roughness in endmilling for intelligent machining

DYNAMIC ISSUES AND PROCEDURE TO OBTAIN USEFUL DOMAIN OF DYNAMOMETERS USED IN MACHINE TOOL RESEARCH ARIA

HELICAL BUCKLING OF DRILL-STRINGS

Drilling Mathematical Models Using the Response Surface Methodology

Committee Draft No. 99 To be combined with T-150 as a method B. Determination of Natural Frequency and Flexural Modulus by Experimental Modal Analysis

AN OPERATIONAL ANALYSIS TECHNIQUE FOR THE MIMO SITUATION BASED ON CEPSTRAL TECHNIQUES

Condition Monitoring of Single Point Cutting Tool through Vibration Signals using Decision Tree Algorithm

Simulation, Prediction and Compensation of Transient Thermal Deformations of a Reciprocating Linear Slide for F8S Motion Error Separation

INVESTIGATION OF FRICTION HYSTERESIS USING A LABORATORY- SCALE TRIBOMETER

Modeling and Estimation of Grinding Forces for Mono Layer cbn Grinding Wheel

Development of a diagnosis technique for failures of V-belts by a cross-spectrum method and a discriminant function approach

An Analysis Technique for Vibration Reduction of Motor Pump

ACCELEROMETER BASED IN SITU RUNOUT MEASUREMENT OF ROTORS

Influence of electromagnetic stiffness on coupled micro vibrations generated by solar array drive assembly

Multilevel Analysis of Continuous AE from Helicopter Gearbox

Optimization of Process Parameters in CNC Drilling of EN 36

Module 2 Mechanics of Machining. Version 2 ME IIT, Kharagpur

Structural Dynamic Behavior of a High-Speed Milling Machine

CHAPTER 4 FAULT DIAGNOSIS OF BEARINGS DUE TO SHAFT RUB

Spiralling in BTA deep-hole drilling How to model varying frequencies

LIFE PREDICTION OF BEARING USING ACCELERATED LIFE TEST COUPLED WITH ANALYSIS

1 General introduction

Process optimization of PCB Micro-Drilling Process

MATHEMATICAL MODEL FOR DRILLING CUTTING FORCES OF 40CrMnMoS8-6 STEEL

Cepstral Deconvolution Method for Measurement of Absorption and Scattering Coefficients of Materials

VIBRATION RESPONSE OF AN ELECTRIC GENERATOR

Locating Leaks in Underground Water Pipes Using the Complex Cepstrum

MODELLING OF TOOL LIFE, TORQUE AND THRUST FORCE IN DRILLING: A NEURO-FUZZY APPROACH

FULL SPECTRUM ANALYSIS IN JOURNAL BEARING DIAGNOSTICS

Vibration modelling of machine tool structures

CHAPTER 6 FAULT DIAGNOSIS OF UNBALANCED CNC MACHINE SPINDLE USING VIBRATION SIGNATURES-A CASE STUDY

EFFECT OF FEED RATE ON THE GENERATION OF SURFACE ROUGHNESS IN TURNING

Veveri 331/95, Brno, Czech Republic

Application of Classical and Output-Only Modal Analysis to a Laser Cutting Machine

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO

DYNAMICS OF CONTROLLED BOUNDARY LAYER SEPARATION

Tool Wear Monitoring by Design of Experiments (DOE) for Drilling

PERFORMANCE EVALUATION OF OVERLOAD ABSORBING GEAR COUPLINGS

Mitigation of Diesel Generator Vibrations in Nuclear Applications Antti Kangasperko. FSD3020xxx-x_01-00

VOL. 11, NO. 2, JANUARY 2016 ISSN

Thermocouple Dynamic Errors Correction for Instantaneous Temperature Measurements in Induction Heating. Krzysztof Konopka 1

Rotational Motion. Figure 1: Torsional harmonic oscillator. The locations of the rotor and fiber are indicated.

Calculation of spatial sound intensity distribution based on synchronised measurement of acoustic pressure

Experimental Investigation and Analysis of Machining Characteristics in Drilling Hybrid Glass-Sisal-Jute Fiber Reinforced Polymer Composites

Proceedings of the 2013 ASME International Manufacturing Science and Engineering Conference MSEC2013 June 10-14, 2013, Madison, Wisconsin, USA

Department of Mechanical FTC College of Engineering & Research, Sangola (Maharashtra), India.

Signals and Spectra - Review

MODELLING OF VIBRATION WITH ABSORBER

Modal Analysis Technique for Anisotropic Composite Laminates

first name (print) last name (print) brock id (ab17cd) (lab date) A friendly reminder: Is this your scheduled experiment? See the previous page.

Optimization Of Process Parameters In Drilling Using Taguchi Method

Noise and Vibration of Electrical Machines

Dynamic Analysis of a cylindrical cam and Follower using Finite Element Analysis

String tyre model for evaluating steering agility performance using tyre cornering force and lateral static characteristics

Parameters Optimization of Rotary Ultrasonic Machining of Glass Lens for Surface Roughness Using Statistical Taguchi s Experimental Design

Improved Holt Method for Irregular Time Series

ACOUSTIC EMISSION SOURCE DETECTION USING THE TIME REVERSAL PRINCIPLE ON DISPERSIVE WAVES IN BEAMS

Finite Element Analysis of Piezoelectric Cantilever

Vibration based Fatigue Damage Assessment of Cantilever Beams

Selected characteristics of vibration signal at a minimal energy consumption for the rock disintegration

Dynamic Tests on Ring Shear Apparatus

Rotational Motion Control Design for Cart-Pendulum System with Lebesgue Sampling

EXPERIMENTAL INVESTIGATION OF HIGH SPEED DRILLING OF GLASS FIBER REINFORCED PLASTIC (GFRP) COMPOSITE LAMINATES MADE UP OF DIFFERENT POLYMER MATRICES

ABSOLUTE AND RELATIVE VIBRATION INCONSISTENCIES IN DYNAMIC ANALYSIS OF HIGH POWER TURBOGENERATOR ROTATING SYSTEM

Damage detection using output-only measurement by indirect approach

Comparison of LQR and PD controller for stabilizing Double Inverted Pendulum System

Research on Service Life Prediction Model of Thrust Needle Bearing

Modelling of lateral-torsional vibrations of the crank system with a damper of vibrations

Control of Chatter using Active Magnetic Bearings

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

Transformation of Data for Statistical Processing

Teacher s notes 19b An investigation into the energy changes occurring in a pendulum swing

Signal representations: Cepstrum

SIMULATION FOR INSTABLE FLOATING OF HYDRODYNAMIC GUIDES DURING ACCELERATION AND AT CONSTANT VELOCITY 1. INTRODUCTION

Study of Rupture Directivity in a Foam Rubber Physical Model

New concept of a 3D-probing system for micro-components

Application of Taguchi method in optimization of control parameters of grinding process for cycle time reduction Snehil A. Umredkar 1, Yash Parikh 2

PROGRESS IN DEVELOPMENT OF CALIBRATION SYSTEMS FOR ANGULAR VIBRATION PICKUPS

EXPERIMENTAL DETERMINATION OF DYNAMIC CHARACTERISTICS OF STRUCTURES

Automatic chatter detection in grinding

Cyclic Variation of Residual Stress Induced by Tool Vibration in Machining Operations

Research on Dynamic Calibration of Piezo-two-dimensional Force Sensor

DETECTION AND ANALYSIS OF AZIMUTHAL ROTATING MODES IN A CENTRIFUGAL IMPELLER SUMMARY INTRODUCTION BACKGROUND

The Effect of Coolant in Delamination of Basalt Fiber Reinforced Hybrid Composites During Drilling Operation

Vibration Suppression of a 2-Mass Drive System with Multiple Feedbacks

OPTIMIZATION ON SURFACE ROUGHNESS OF BORING PROCESS BY VARYING DAMPER POSITION

Side-View Mirror Vibrations Induced Aerodynamically by Separating Vortices

VMS-GeoMil. Background

Process Damping Coefficient Identification using Bayesian Inference

FORCES, VIBRATIONS AND ROUGHNESS PREDICTION IN MILLING USING DYNAMIC SIMULATION

Coupling System for Ultra Precision Machining

Use of Full Spectrum Cascade for Rotor Rub Identification

CONCEPTION OF UNIVERSAL EXTENSOMETRIC CUTTING DYNAMOMETER

Transcription:

Journal of Mechanical Engineering and Automation 01, (6): 108-113 DOI: 10.593/j.jmea.01006.01 Failure Prediction by Means of Cepstral Analysis and Coherence Function between Thrust Force and Torque Signals Igor Vilček 1, Jozef Kováč, Jaroslava Janeková,* 1 The Institute of Technology and Business in České Budějovice, Czech Republic Faculty of Mechanical Engineering, Technical University of Kosice, Kosice, Slovakia Abstract Requirements for fleible manufacturing have been increasing in the last years. In order to insure effective operation of epansive manufacturing equipment, which has to run automatically and unattended, tool monitoring is important. Therefore, the essential problem to be overcome to achieve the full potential of unmanned machining is the development of effective and reliable sensors system to monitor the process and corrective actions in case abnormal operation. The ultimate goal of the development of such production equipment is to enhance the overall economic of the manufacturing process. Even when there are at present many monitoring systems commercially available in the market for turning processes, serious difficulties still remain to be solved to apply monitoring systems successfully in machining centres. Being these difficulties mainly related with the limited accessibility to the rotating tool for sensing purposes in tool driven machining processes. Therefore, the primary objective of this paper assess the feasibility of using force signal analysis as means for monitoring tool condition in drilling Keywords Failure Prediction, Monitoring, Drilling, Cutting Forces, Manufacturing, Coherence Function 1. Introduction After consulting the available literature it is obvious, that only some features of static force component are proposed for drill wear monitoring. The really important task in such roughing drilling operations is to avoid catastrophic failure. It is desirable to make the most of the economic use of the cutting tool without reaching catastrophic failure. Traditionally, the usual approach to tool condition monitoring in drilling was to detect breakage as fast as possible and avoid overloads in the machine tool. These strategies are not enough to ensure the optimum economic performance of the machining process. With increasing wear in the twist drill margin wear causes the increase of the frictional forces between the margin and machined holes wall and leads to torsion vibrations in the cutting tool. This in turn will cause further tool wear and vibrations. If the cyclic process continues - catastrophic failure will occur at a short time. At the moment when these torsion vibrations appear, it is the appropriate time for drill bit change, since from this point on, wear increases rapidly due to the phenomenon of torsion vibrations. * Corresponding author: jaroslava.janekova@tuke.sk (Jaroslava Janeková) Published online at http://journal.sapub.org/jmea Copyright 01 Scientific & Academic Publishing. All Rights Reserved Quante et al.[9] recognized the importance of sensing vibrations in the twist drill for wear monitoring as a mean to overcome the difficulties of the slight sensitivity of the static component of the thrust force to wear. They proposed the use of the distance sensor without contact measuring deflections of the drill in a plane normal to the drill ais. A synchronization device was attached to the spindle emitting 56 pulses per revolution. The signal of the distance sensor was high pass filtered at 60 Hz to avoid the effect of the spindle speed frequency at 1 Hz. An increase ranging 5 to 8 times in the signal for a worn drill with respect to the initial value when sharp was reported. The advantage of the system is that since it senses without contact at the tool shank, as was the case with the eddy current torque sensors proposed by Brinksmeier[1], it can be applied to almost any eisting machine tool without structural changes. The sensors are epensive and do not interfere with machining process. El-Wardany et al.[] presented a study on monitoring tool wear and failure in drilling using vibration signature analysis techniques. Discriminate features sensitive to tool wear and breakage were developed in both in time and frequency domain. In the time domain a monitoring feature based on calculating the kurtosis value of both the transverse and thrust vibration for on line detection of drill breakage was reported. This paper presented Failure prediction for drilling small diameters.

109 Journal of Mechanical Engineering and Automation 01, (6): 108-113. Eperimental Set-up A series of drilling eperiments were carried out on a FV 5 CNC A that is a vertical console milling machine equipped with continuous control, used for milling operations, drilling, finishing thread cutting and more technological operations. Control system is etended by Heidenhain company. Eperiments were performed using carbide twist drill bits of diameters 1.5 mm,. mm,.8 mm and 4.5 mm. The work materials are X4CrNiMo16-5 and AK1Ni a disk of 100 mm in diameter and 0 mm in thickness. Thrust force and torque generated by the drilling process were measured by means of a Kistler four-component piezoelectric dynamometer type 97. The signals were amplified by charge amplifiers Vibrometer AG type T A-3/C with two individual channels. The amplified signals were sampled using a data acquisition card on the hard disk of the computer for further analysis. The schematic diagram o f the eperimental setup is shown Figure 1. Figure 1. Eperiment al syst em set up[1] 3. Software Used for Eperiments Figure. Eperimental data etracted from program Editace [1] For data acquisition the software Matlab with Real Time Toolbo was used in order to sample cutting force signals from dynamometer. The sampled data were saved on the hard disk of the computer for further processing and analysis. For the analysis a program called Editace was used (Figure ). This program is based on Matlab and is able to import the sampled data. It was used for the first time at the Czech Technical University in Prague by Mr. Vilcek, Madl and Novak[9],[11]. The measured signal can be displayed and edited, unwanted parts of the signal can be deleted, and zero can be adjusted. It is possible to compute basic statistical parameters of the selected part of the signal and also to perform regression analysis and fit a curve. The advantage of this program is that it is very user friendly and easy to work with. 4. Failure Prediction by Means of Cepstral Analysis Harmonics of the basic rotational frequency in fact dominates the spectrum when instability prior to failure is reached. The stronger the unstable wear phenomenon the larger the effect of harmonics. This can be early observed in the power spectral density plots for the both torque signals. Therefore, an effective strategy for twist drill failure prediction would be to detect the occurrence of harmonics and to determine them by cepstral analysis. The cepstrum, strictly speaking power cepstrum, was defined as the power spectrum of the logarithm of the power spectrum[9]. If the forward Fourier transform of a time function f (t) is denoted by: F ( t F { f ( t) } ) = (1) then, the power spectrum may be represented by: and cepstrum: C F ( f ) F ( f ) = () ( ) F{ log[ F ( f )]} τ (3) = The independent variable τ of the cepstrum is called Quefrency, though it has the dimensions of time. The characteristic feature of the cepstrum is its ability to detect and give a measure of phenomena which ehibits periodicity in the spectrum, such as harmonics. In particular, in comple signals containing a miture of different families of harmonics, the separation of the various periodicities is greatly facilitated by performing the second Fourier transform to obtain the cepstrum. A point about which different opinions eist is whether the second Fourier transform should be forward or inverse transform. But in fact it is not important, since the result is identical ecept for a scaling factor. In case an inverse Fourier transform is used, for the sake of consistency, the cepstrum is represented by: C ( τ ) = F { [ ( )]} 1 log F f (4) It can be noticed that as the unstable phase begins and harmonics arise, peak in the cepstrum appears at a quefrency of 50 msec. The stronger the intensity of the instability generated by the catch and release wear mechanis m, the

Igor Vilček et al.: Failure Prediction by Means of Cepstral Analysis and 110 Coherence Function between Thrust Force and Torque Signals larger the peak in the cepstrum plot. This peak at a quefrency of 50 msec. Represents a fluctuation in the spectrum characterised by large number of harmonics components with a spacing equal 1/ 60 msec = 16.6 Hz. Figure 4. Power cepstrum of torque signal for the first hole (up) and for the last hole before failure (down) for diameter 4.5 mm Figure 3. Power cepstrum of thrust force for the first hole (up) and for the last hole before failure (down) for diameter 4.5 mm Figure 5. Power spectrum density estimate of thrust force for the first hole (up) and for the last hole before failure (down) for diameter 4.5 mm

111 Journal of Mechanical Engineering and Automation 01, (6): 108-113 Evaluation of the power cepstrum of thrust force and power cepstrum of torque signal (Figures 3 and 4) as well as power spectrum density of thrust force and power spectrum density of torque signal (Figures 5 and 6) was carried out for 4.5 mm diameter drill Poldi HSS CSN 111 from steel Gr. 1043 ASTM A510. The eperiment was carried out the way when the holes were drilled one after another in series (each series had 5 holes), the time interval between each drilled hole was 0 seconds. Each figure contains two graphs, the first shows the start of the machining process, and the second the moment before the tool destruction. the validity of the assumption that both signals results from the same particular generating mechanism or source. The coherence function γ y (f) is defined by: F ( f ) y γ ( f ) = y ; 0 F ( f ) F ( f ) ( f ) 1 y yy γ (5) where: F y (f) and F yy (f) are the power spectra of each signal, also called often autospectra and F y (f) is the cross spectrum. The cross spectrum F yy (f) of f (t) and f y (t) is the forward Fourier transform of the cross correlation function R y (τ), which is, in turn, defined by the equation: R y T 1 T ( τ ) = f ( t) f ( t + τ )dt lim T T y (6) and gives a measure of the etent to which two signals correlate with each other as a function of the time displacement between them. The cross spectrum can alternatively be obtained from the individual Fourier spectra F (f) and F y (f) as follows: F ( f ) = F ( f ) F ( f ) y y (7) where: F *(f) is the comple conjugate of F (f). Figure 6. Power spectrum density estimate of torque signal for the first hole (up) and for the last hole before failure (down) for diameter 4.5 mm 5. Failure Prediction by Means Coherence Function between Thrust Force and Torque Signals There is approach presented for catastrophic failure prediction, based on the detection of that specific wear mechanism that has been mentioned before, which occurs in the third stage of tool life, called stage of final accelerated wear. The coherence function indicates the etent to which two signals are correlated with each other. In other words, it could be said that the coherence function gives a measure of Figure 7. The course of coherence function during the first hole (up) and during drilling the last hole before the destruction of the tool (down)

Igor Vilček et al.: Failure Prediction by Means of Cepstral Analysis and 11 Coherence Function between Thrust Force and Torque Signals Therefore, three cases are possible. The coherence function can be zero, one or greater than zero and less than the unity. In case γ y (f)=0 for all frequencies both signals are completely uncorrelated. In case γ y (f)=1 for all frequencies both signals are completely correlated. If γ y (f) is between zero and one for all frequencies one or more of the following conditions eist: a) even when both signals y(t) and (t) are caused partially by the same phenomenon or generating source, each is also caused in part by the other phenomena which affect it individually but does not affect the other signal, b) etraneous noise is present in the measurements, c) bias errors are spectral estimation. A method is presented for prediction of catastrophic failure in drilling, based on the detection of a specific wear mechanism operating at the end of tool life when severe wear is present and leading unavoidably to catastrophic failure. Eample of a Coherence function, during the first hole (up) and during drilling the last hole before the destruction of the tool (down) for 4.5 mm diameter, is shown in Figure 7. 6. Wear Mechanism at the End of Drilling Life mechanism operating at the end of tool life when severe wear is present and leading unavoidably to catastrophic failure. The basic characteristic of this wear mechanis m is that it ecites highly torsional vibrations of the cutting tool. The proposed method relies in detecting the rise of harmonics in the spectrum of torque signal when the wear mechanism begins to operate by means of the cepstral analysis. Contribution of the work is the proposal to prevent the destruction of twist drills with small diameters in the machining process. Proposed method of vibration measurement tools is for small diameter drills. Designing a program in the Matlab for monitoring power spectrum density estimate of thrust force and torque. Detailed mapping of wear drills with small diameters and their behaviour in the mach ining process. Based on the research we recommend monitoring tools to use miniature piezoelectric force sensor in the system of machine tool work piece. REFERENCES [1] E. O. Brinksmeier, Prediction of tool fracture in drilling, Annals of the CIRP, 1990, Vol. 39, No. I, pp. 97-100. [] R. R. EI-Wardany, D. Gao and M. A. Elbestawi, Tool condition monitoring in drilling using vibration signals analysis, International Journal of Machine Tools and Manufacture, 1996, Vol. 36, No.6, pp. 687-711. [3] C. Y. Jiang, Y. Z. Zhang and H. J. Xu, In-Process Monitoring of Tool Wear Stage by the Frequency Band-Energy Method, Annals of the CIRP, 1987, Vol. 36, No. 1, pp. 45-48. [4] W. König, K. Kutzner and U. Schehl, Tool Monitoring of Small Drills with Acoustic Emission, International Journal of Machine Tools and Manufacture, 199, Vol.3, No.4, pp. 487-493. [5] L. C. Lee, K. S. Lee and C. S. Gan, On the Correlation Between Dynamic Cutting Force and Tool Wear, International Journal of Machine Tools and Manufacture, 199, Vol.9, No.3, pp. 95-303. Figure 8. Eample of the drill destruction of machined material X4CrNiMo16-5[1] With increasing wear in the twist drill margin wear causes the increase of the frictional forces between the margin and machined hole wall and lead to torsional vibrations in the cutting tool. This in turn cause further tool wear and vibrations. If the cyclic process continues catastrophic failure will be short time. At the moment when these torsional vibrations appear, it is the appropriate time for drill bit change, since from this point on, wear increases rapidly due to the phenomenon of torsional vibrations. 7. Conclusions A method is presented for prediction of catastrophic failure in drilling, based on the detection of a specific wear [6] J. Mádl and L. Tesner, Tool Wear Monitoring in Machining, In. International Congress of Machine Tools, Automation and Robotics in Mechanical Engineering, Praha 5. 6. 6. 1996, pp. 169-175. [7] J. Mádl, New Aspects in Monitoring and Control of Machining Processes, Eight World Congress on the Theory of Machines and Mechanisms, August 6-31, 1991, Prague, Czechoslovakia, pp. 47-49. [8] P. Novák and J. Mádl, Effective evaluation of measured dynamic values of cutting forces and torques, Manufacturing Technology, 001. ISSN 11386. [9] F. Quante, H. Fehrnbach and H. E. Meir, Automathische iiberwachung rotierender werkzeuge mit abstands - und schwingungssensoren in der spanabhebenden fertigung, Technisches Messen, 1983, 50. Jahrgangn, Heft 10, pp. 367-371. [10] R. B. Randall, Application of B & K equipment to frequency analysis, Bruiel and Kjaer Information, 1977, Denmark.

113 Journal of Mechanical Engineering and Automation 01, (6): 108-113 [11] I. Vilček and J. Mádl, Monitoring Tool Conditions for Drilling, In: Proceedings of the 1th International Conference on Fleible Automation & Intelligent Manufacturing. München: Oldenbourg, Wissenschaftsverlag, 00, pp. 95-300. ISBN 3-486-7036-. [1] I. Vilček, J. Kováč and J. Janeková, Failure prediction by means of cepstral analysis and coherence function between thrust force and torque signals, In: IEEE International Symposium on Assembly and Manufacturing: Proceedings: 5th-7th of May 011, Tampere, Finland. pp. 1-4. ISBN 978-1-6184-343-8.