ON TOTALLY REAL SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD *

Similar documents
Einstein H-umbilical submanifolds with parallel mean curvatures in complex space forms

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21 (2005), ISSN

Jeong-Sik Kim, Yeong-Moo Song and Mukut Mani Tripathi

ON THE LOCAL VERSION OF THE CHERN CONJECTURE: CMC HYPERSURFACES WITH CONSTANT SCALAR CURVATURE IN S n+1

COMPLETE SPACELIKE HYPERSURFACES IN THE DE SITTER SPACE

SOME ALMOST COMPLEX STRUCTURES WITH NORDEN METRIC ON THE TANGENT BUNDLE OF A SPACE FORM

GEOMETRY OF GEODESIC SPHERES IN A COMPLEX PROJECTIVE SPACE IN TERMS OF THEIR GEODESICS

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

arxiv:math/ v1 [math.dg] 29 Sep 1998

1 Curvature of submanifolds of Euclidean space

Legendre surfaces whose mean curvature vectors are eigenvectors of the Laplace operator

CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN S 4

Complex and real hypersurfaces of locally conformal Kähler manifolds

LECTURE 9: MOVING FRAMES IN THE NONHOMOGENOUS CASE: FRAME BUNDLES. 1. Introduction

Metrics and Holonomy

arxiv: v1 [math.dg] 20 Dec 2016

GENERALIZED WINTGEN INEQUALITY FOR BI-SLANT SUBMANIFOLDS IN LOCALLY CONFORMAL KAEHLER SPACE FORMS

Published as: J. Geom. Phys. 10 (1993)

Changing sign solutions for the CR-Yamabe equation

Representation theory and the X-ray transform

Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane

Surfaces with Parallel Mean Curvature in S 3 R and H 3 R

5 Constructions of connections

GAUSS CURVATURE OF GAUSSIAN IMAGE OF MINIMAL SURFACES

Lagrangian Submanifolds with Constant Angle Functions in the Nearly Kähler S 3 S 3

Faculty of Engineering, Mathematics and Science School of Mathematics

BIHARMONIC SUBMANIFOLDS OF GENERALIZED COMPLEX SPACE FORMS 1. INTRODUCTION

4.7 The Levi-Civita connection and parallel transport

1 First and second variational formulas for area

PSEUDOHOLOMORPHICITY OF CLOSED MINIMAL SURFACES IN CONSTANTLY CURVED 4-SPACES

Hopf hypersurfaces in nonflat complex space forms

Section 2. Basic formulas and identities in Riemannian geometry

A study on hypersurface of complex space form

SUBTANGENT-LIKE STATISTICAL MANIFOLDS. 1. Introduction

The parallelism of shape operator related to the generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians

LAGUERRE CHARACTERIZATIONS OF HYPERSURFACES IN R n

SASAKIAN MANIFOLDS WITH CYCLIC-PARALLEL RICCI TENSOR

7 Curvature of a connection

η = (e 1 (e 2 φ)) # = e 3

SOME PROPERTIES OF COMPLEX BERWALD SPACES. Cristian IDA 1

UNIVERSITY OF DUBLIN

A brief introduction to Semi-Riemannian geometry and general relativity. Hans Ringström

ON THE GEOMETRY OF CONFORMAL FOLIATIONS WITH MINIMAL LEAVES

CLASSIFICATION OF MÖBIUS ISOPARAMETRIC HYPERSURFACES IN THE UNIT SIX-SPHERE

COMPLETE MINIMAL HYPERSURFACES IN S 4 (l) WITH CONSTANT SCALAR CURVATURE

Euler Characteristic of Two-Dimensional Manifolds

arxiv:math/ v1 [math.dg] 19 Nov 2004

Archivum Mathematicum

arxiv: v1 [math.dg] 22 Dec 2017

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE *

On some special vector fields

arxiv: v1 [math.dg] 21 Sep 2007

Доклади на Българската академия на науките Comptes rendus de l Académie bulgare des Sciences Tome 69, No 9, 2016 GOLDEN-STATISTICAL STRUCTURES

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

1 Introduction and preliminaries notions

A Brief Introduction to Tensors

Home Page. Title Page. Page 1 of 23. Go Back. Full Screen. Close. Quit. 012.jpg

SOME INDEFINITE METRICS AND COVARIANT DERIVATIVES OF THEIR CURVATURE TENSORS

ON THE GEOMETRY OF TANGENT BUNDLE OF A (PSEUDO-) RIEMANNIAN MANIFOLD

1. Geometry of the unit tangent bundle

Warped product submanifolds of Kaehler manifolds with a slant factor

A CHARACTERIZATION OF WARPED PRODUCT PSEUDO-SLANT SUBMANIFOLDS IN NEARLY COSYMPLECTIC MANIFOLDS

THE GEOMETRY OF B-FIELDS. Nigel Hitchin (Oxford) Odense November 26th 2009

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map

THE NULLITY SPACES OF CURVATURE-LIKE TENSORS

arxiv: v1 [math.dg] 28 Aug 2017

arxiv: v1 [math.dg] 25 Dec 2018 SANTIAGO R. SIMANCA

Boolean Inner-Product Spaces and Boolean Matrices

CHARACTERIZATION OF TOTALLY GEODESIC SUBMANIFOLDS IN TERMS OF FRENET CURVES HIROMASA TANABE. Received October 4, 2005; revised October 26, 2005

arxiv: v1 [math.dg] 1 Jul 2014

CR-submanifolds of Kaehlerian product manifolds

Mathematische Annalen

CHAPTER 1 PRELIMINARIES

Research Article A Note on Pseudo-Umbilical Submanifolds of Hessian Manifolds with Constant Hessian Sectional Curvature

Clifford Algebras and Spin Groups

MATH 4030 Differential Geometry Lecture Notes Part 4 last revised on December 4, Elementary tensor calculus

SOME ASPECTS ON CIRCLES AND HELICES IN A COMPLEX PROJECTIVE SPACE. Toshiaki Adachi* and Sadahiro Maeda

Stable minimal cones in R 8 and R 9 with constant scalar curvature

Pseudo-Riemannian Geometry in Terms of Multi-Linear Brackets

Riemannian geometry of the twistor space of a symplectic manifold

Qing-Ming Cheng and Young Jin Suh

NORMAL CURVATURE OF SURFACES IN SPACE FORMS

RIGIDITY OF MINIMAL ISOMETRIC IMMERSIONS OF SPHERES INTO SPHERES. Christine M. Escher Oregon State University. September 10, 1997

arxiv: v1 [math.dg] 2 Oct 2015

RICCI SOLITONS ON COMPACT KAHLER SURFACES. Thomas Ivey

On the 5-dimensional Sasaki-Einstein manifold

GENERALIZED QUATERNIONIC STRUCTURES ON THE TOTAL SPACE OF A COMPLEX FINSLER SPACE

Differential Geometry of Surfaces

THE VORTEX EQUATION ON AFFINE MANIFOLDS. 1. Introduction

NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS

Higher dimensional Kerr-Schild spacetimes 1

ON THE CLASSIFICATION OF HOMOGENEOUS 2-SPHERES IN COMPLEX GRASSMANNIANS. Fei, Jie; Jiao, Xiaoxiang; Xiao, Liang; Xu, Xiaowei

Geometrical study of real hypersurfaces with differentials of structure tensor field in a Nonflat complex space form 1

RIGIDITY OF STATIONARY BLACK HOLES WITH SMALL ANGULAR MOMENTUM ON THE HORIZON

Remarks on metallic warped product manifolds

On Null 2-Type Submanifolds of the Pseudo Euclidean Space E 5 t

ON SPACELIKE ROTATIONAL SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

THE SECTIONAL CURVATURE OF THE TANGENT BUNDLES WITH GENERAL NATURAL LIFTED METRICS

Choice of Riemannian Metrics for Rigid Body Kinematics

CRITICAL METRICS OF THE VOLUME FUNCTIONAL ON MANIFOLDS WITH BOUNDARY arxiv: v1 [math.dg] 9 Mar 2016

Transcription:

PORTUGALIAE MATHEMATICA Vol. 58 Fasc. 2 2001 Nova Série ON TOTALLY REAL SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD * Zhong Hua Hou Abstract: Let M m be a totally real submanifold of a nearly Kähler manifold M 2m. We prove an important relationship between the covariant differential of the second fundamental form of M m and that of the almost complex structure of M 2m. And we show an application to the pinching problem on the square of the length of the second fundamental form of M m. 0 Introduction Let M 2m, g, J be an almost Hermitian manifold with Riemannian metric g and almost complex structure J. M 2m is called a nearly Kähler manifold if the almost complex structure J satisfies gjx, JY = gx, Y and X JX = 0, for any tangent vector fields X and Y on M 2m. A Kähler manifold is a nearly Kähler manifold. The canonical example of non-kähler nearly Kähler manifold is the six dimensional standard unit sphere S 6. There are many other non-kähler nearly Kähler manifolds such as RP 7 RP 7, F 4 /A 2 A 2 and U4/U2 U1 U1 etc. A. Gray in [5] stated that a 3-symmetric space with a naturally reductive G-invariant pseudo-riemannian metric is a nearly Kähler manifold. Many interesting theorems about the topology and the geometry of nearly Kähler manifolds have been proved by many authors cf. e.g. [4], [6], [8], [10], [11] and [12] etc.. Received: June 29, 2000. 1980 Mathematics Subject Classification: Primary 53C42; Secondary 32v40. Keywords and Phrases: Nearly Kähler manifold; Totally real submanifold. * Work done under partial support by SRF for ROCS, SEM. * Work done under support by Fundação da Universidade de Lisboa through CMAF, FCT and Programa PRAXIS XXI.

220 ZHONG HUA HOU The geometry of submanifolds in an almost Hermitian manifold is a very active topic in the theory of submanifolds. There have been many results on geometry of submanifolds in a Kähler manifold. The theory of submanifolds in a nearly Kähler manifold say M 2m was studied by many authors. Let M m be a totally real submanifold of M 2m. Denote by A ξ the shape operator on the tangent bundle T M of M in the direction of a unit normal vector field ξ in the normal bundle NM. When M is a complex space form, Chen Ogiue [1] proved that A JX Y = A JY X, for any two vector fields X and Y tangent to M. Ejiri [3] showed that the same property holds for a 3-dimensional totally real submanifold in S 6. In section 1, we shall prove that the same property also holds for a totally real submanifold in a nearly Kähler manifold. We define a skew-symmetric tensor field G of type 1, 2 by GX, Y = X J Y, where X and Y are vector fields on M 2m and is the Levi Civita connection on M 2m. Ejiri [3] proved that, for a 3-dimensional totally real submanifold M 3 in S 6, GX, Y is orthogonal to M 3 for any vector fields X and Y tangent to M 3. By applying this fact, he proved that such M 3 is orientable and minimal. In section 2, we shall prove that, for any totally real submanifold M m in M 2m, GX, Y is orthogonal to M n for any vector fields X and Y tangent to M m. Denote by σ the second fundamental form of M m. We proceed to show an important relationship between σ and G. Precisely, we shall prove Proposition 1.4. Let M m be a Lagrangian submanifold of a nearly Kähler manifold M 2m, g, J. Let σ be the second fundamental form of M m. Define a skew-symmetric tensor field G of type 1, 2 by GX, Y = X J Y for any vector fields X and Y tangent to M m, where is the Levi Civita connection with respect to g. Then g σx, Y, Z, JW = g σx, Y, W, JZ + g σy, Z, GW, X g σy, W, GZ, X for any vector fields X, Y, Z and W tangent to M m. As an application, we shall prove a pinching theorem on the square of the length of the second fundamental form of a 3-dimensional totally real submanifold M 3 in S 6. Precisely, we shall prove the following

SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD 221 Proposition 2.1. Let M 3 be a closed 3-dimensional totally real submanifold of S 6. Denote by S the square of the length of the second fundamental form of M 3. If S < 5/2, then M 3 is totally geodesic. Remark 0.1. Simons [9] and Chern do Carmo Kobayashi [2] proved that, for a closed n-dimensional minimal submanifold M n in an n+p-dimensional unit sphere S n+p, M n is totally geodesic if S < n/2 1/p. Moreover S = n/2 1/p when and only when p = 1 or n = p = 2. A.M. Li and J.M. Li in [7] improved this result. They proved that if p 2 and S <2 n/3, then M n is totally geodesic. Moreover, S = 2 n/3 when and only when n = p = 2. Therefore we wonder whether or not this pinching constant could be improved when n 3 and p 2. Proposition 2.1 give an affirmative answer to this expectation because 5/2 > 2 = 3 2/3. 1 Geometry of totally real submanifolds in a nearly Kähler manifold Let M 2m, g, J be an almost Hermitian manifold with Riemannian metric g and almost complex structure J. Let {e 1, e 2,..., e 2m } be a local orthonormal frame field on the tangent bundle T M 2m. Let {ω 1, ω 2,..., ω 2m } be its coframe field and ω ab be the Levi Civita connection form associated with this coframe field. Then we have the Cartan structure equations: e a = ω ab e b ; ω ab + ω ba = 0 ; 1.1 dω a = ω ab ω b ; Ω ab + Ω ba = 0 ; dω ab = ω ac ω cb + Ω ab, where Ω ab is the curvature form. The almost complex structure J of M satisfies: 1 J : T x M Tx M is linear; 2 JJX = X; 3 gjx, JY = gx, Y ; for any X, Y in T x M. Under the above orthonormal frame field and associated coframe field, J can be expressed as J = J ab ω a e b. In this case, JX = J ab X a e b for any X = X a e a T x M. Moreover conditions 2 and 3 can be represented by 1.2 1.3 J ac J bc = δ ab, J ac J cb = δ ab,

222 ZHONG HUA HOU where δ ab is the Kronecker symbol. From 1.2 and 1.3 we have 1.4 J ab + J ba = 0. Put J = 1 2 J ab ω a ω b. From 1.4 it follows that J is a 2-form which is called the fundamental form associated the almost complex structure J. The covariant differential of J ab, say J ab,c, is defined to be 1.5 Jab := J ab,c ω c = dj ab + J cb ω ca + J ac ω cb. It follows from 1.3 that 1.6 J ae,c J eb + J ae J eb,c = 0. Definition 1.1. M 2m, g, J is called a nearly Kähler or Tachibana manifold if the covariant differential J of J satisfies X JX = 0 for any tangent vector X. to Remark 1.1. Equation X JX = 0 for any tangent vector X is equivalent 1.7 J ab,c + J ac,b = 0, for all a, b and c. Let M 2m, g, J be a nearly Kähler manifold. Let M m be a totally real submanifold, or a Lagrangian submanifold, of M 2m. Then it follows that the image of the tangent space T x M m under the mapping of the almost complex structure is the normal space N x M m, at every point x M n. From now on, we agree on the following index ranges: 1 a, b, c,... 2 m, 1 i, j, k,... m, and i = m + i for 1 i m. Choose {e 1, e 2,..., e m ; e 1, e 2,..., e m } to be a local orthonormal frame field of the tangent bundle T M 2m such that e i lies in T M m and e i = Je i lies in NM m, for all 1 i m. We call such a kind of frame an adapted frame field on M 2m. Let {ω 1, ω 2,..., ω m ; ω 1, ω 2,..., ω m } be the associated coframe field. Denote ω ab to be the associated Levi Civita connection form. Then J ab can be expressed as δ, a = i, b = j ; 1.8 J ab = δ, a = i, b = j ; 0, otherwise.

SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD 223 From 1.5 and 1.8, we infer 1.9 J i j = J = ω i j + ω, J = J i j = ω i j ω. Restricting 1.1 to M n, we get ω k = 0 for all k. The structure equations of M n are dω i = ω ω j ; Ω = ω ik ω k 1.10 j + Ω ; dω = ω ik ω kj + Ω ; Ω i j = ω i k ω kj + Ω i j dω ; i j = ω i k ω k j + Ω i j. From 1.1 we have the following relations: ω ω i = 0, dω = ω ik ω kj + ω il ω l j + Ω. Denote the curvature form Ω ab by 1.11 Ωab = 1 2 R abcd ω c ω d. By Cartan s lemma, we have 1.12 ω = h j ik ω k, h j ik = hj ki, hl k = h l ikj + R l k, where h l k is the covariant differential of hl defined by 1.13 h l = h l k ω k = dh l + h l kj ω ki + h l ik ω kj + h s ω s l. The second fundamental form σ and its covariant differential σ are defined by 1.14 σ = h k ω i ω j e k, σ = h k ω i ω j e k. From the first equation of 1.9 and 1.12 we derive 1.15 J,k = h j ik hi jk. It follows from 1.7 and 1.15 that 1.16 1.17 0 = J,k + J ik,j = h j ik + hk 2 h i kj, 0 = J jk,i + J ji,k = h k ji + h i jk 2 h j ik. From 1.16 and 1.17, we derive 1.18 h j ik = hi jk or J,k = h j ik hi jk = 0.

224 ZHONG HUA HOU It is known that the shape operator A ej of M m with respect to e j can be expressed as A ej e i = h j ik e k. From 1.18 we get the following Proposition 1.1. Let M m be a totally real submanifold of a nearly Kähler manifold M 2m. Denote by A ξ the shape operator of M m with respect to a normal vector field ξ of M m. Then 1.19 A JX Y = A JY X, for any two vector fields X and Y tangent to M m. Remark 1.2. When M 2m is chosen to be the 6-dimensional unit sphere S 6 and M n is a 3-dimensional totally submanifold of S 6, Ejiri [3] has proved 1.19 in different way. As an direct application of Proposition 1.1, we have the following Proposition 1.2. Let M m be a totally real submanifold of a nearly Kähler manifold M 2m. Let {e 1, e 2,..., e m } be a local orthonormal frame field on M m. Denote A i = h i jk to be the coefficient matrix of A e i for every i. Then 2 1.20 Tr A 2 i = Tr A i A j 2. i i,j Proof: 2 Tr A 2 i = i i,j h i sk h i kl h j lr hj rs = l,s h s ik h l ki h l jr h s rj = Tr A l A s 2. l,s We define a skew-symmetric tensor field G of type 1,2 by 1.21 GX, Y = X J Y, for any vector fields X, Y on M 2m. Then Ge a, e b = J ab,c e c for any a and b. Moreover it follows from 1.18 that 1.22 Ge i, e j = J,k e k NM m, for any i and j, which implies the following

SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD 225 Proposition 1.3. Let M m be a totally real submanifold of a nearly Kähler manifold M 2m. Define a skew-symmetric tensor field G of type 1, 2 by GX, Y = X J Y. Then GX, Y is normal to M for any two vector fields X and Y tangent to M m. Let us consider the behavior of hk l. From 1.9, 1.13 and 1.20 we infer h l = h l k ω k = dh l + h l kj ω ki + h l ik ω kj + h k ω k l = dh i lj + h k lj ω ki + h i lk ω kj + h i kj ω k l = dh i lj + h i lk ω kj + h k lj ω k i J k i + h i kj J k l + ω kl = dh i lj + h i kj ω kl + h i lk ω kj + h k lj ω k i hs lj J s i,k ω k + h i sj J s l,k ω k = h i lj + h i sj J s l,k ω k h s lj J s i,k ω k. After sorting the above equality, we get 1.23 h l k h i ljk = h s J s l,k h s lj J s i,k. It follows from 1.14, 1.22 and 1.23 that g σe k, e j, e i, e l = g σe k, e j, e l, e i + g σe j, e i, Ge l, e k 1.24 g σe j, e l, Ge i, e k. From 1.24 we have, for any X = X k e k, Y = Y j e j, Z = Z i e i and W = W l e l, g σx, Y, Z, JW = g σx, Y, W, JZ + g σy, Z, GW, X g σy, W, GZ, X. Therefore we get the following Proposition 1.4. Let M m be a Lagrangian submanifold of a nearly Kähler manifold M 2m, g, J. Let σ be the second fundamental form of M m. Define a skew-symmetric tensor field G of type 1, 2 by GX, Y = X J Y for any vector fields X and Y tangent to M m, where is the Levi Civita connection with respect to g. Then g σx, Y, Z, JW = g σx, Y, W, JZ + g σy, Z, GW, X 1.25 g σy, W, GZ, X, for any vector fields X, Y, Z and W tangent to M m. In the next section, we shall give an application to Proposition 1.4.

226 ZHONG HUA HOU 2 A pinching problem on totally real submanifolds in S 6 In this section, we proceed to show an application of Propositions 1.1 and 1.4 to the theory of submanifold. Suppose that M 2m is a nearly Kähler manifold of constant curvature 1. Then the curvature tensor of M 2m can be represented by 2.1 Rabcd = δ ad δ bc δ ac δ bd. In this case, we have from 1.12 that 2.2 h l k h l ikj = R l k = 0. It is known that the Laplacian of h α is 2.3 h l = h l kk = Tr A l, + A r A l A r Tr A l A r h r + Tr A r A l A r A l A r A r + A r A l A r A r A r A l + n h l Tr A l δ. Multiplying h l 2.4 i,j,l h l h l on both-sides of 2.3 and taking sum with i, j and l, we derive = h l n H l, + Tr A i TrA j A j A i + n S Tr A i 2 i,j { NA i A j A j A i + S i j 2}, where we denote S = i,j,k hk 2 the square of the length of the second fundamental form of M n, S i j = TrA i A j and NA i A j A j A i = TrA i A j A j A i 2. Assume that M m is minimal in M 2m. Then Tr A i = 0 for all i. And 2.4 becomes 2.5 i,j,k h k h k = n S i,j The Laplacian of S satisfies { NA i A j A j A i + S i j 2}. 2.6 1 2 S = i,j,k,l h l k 2 + i,j,k h k h k. From now on, we assume M to be the 6-dimensional unit sphere with the standard induced metric from 7-dimensional Euclidean space R 7. It is known that we can identify R 7 with the set of all purely imaginary Cayley numbers.

SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD 227 Then S 6 can be equipped with an almost complex structure by the cross product of Cayley numbers. Moreover S 6 is nearly Kählerian but non-kählerian. This enables us to study the pinching problem on the square of the length of the second fundamental form of 3-dimensional totally real submanifolds in S 6 in new viewpoint. The main technique is to give a lower estimate to the right-hand side of 2.6. Up to now, the best estimation on the second part of the right-hand side of 2.5 was given by A.M. Li and J.M. Li [7]. Lemma 2.1 Li s [7]. Let A 1, A 2,..., A p be symmetric n n-degree matrices, where p 2. Denote S αβ = TrA T αa β and S = S 11 + S 22 + + S pp. Then 2.7 { NA α A β A β A α + S αβ 2} 3 2 S2, α,β where the equality holds if and only if one of the following conditions holds: 1 A 1 = A 2 = = A p = 0; 2 Only two of A α s are different from zero. If we assume A 1 0, A 2 0 and A 3 = = A p = 0, then S 11 = S 22. Furthermore there exists an orthogonal n n-degree matrix U such that UA 1 U T = S 4 1 0 0 0 1., UA 2 U T = 0 0 S 4 0 1 0 1 0.. 0 0 In the rest of this section, we shall give a lower estimate to σ 2 = i,j,k,l hl k 2. It is easy to see that JGe i, e j lies in T x M 3 and is perpendicular to e i and e j for any i j. So we can choose e 1, e 2 and e 3 such that cf. Ejiri [3] 2.8 JGe 1, e 2 = e 3, JGe 2, e 3 = e 1, JGe 3, e 1 = e 2. It follows from 2.8 that 2.9 J 12,3 = J 23,1 = J 31,2 = 1; and J,k = 0, otherwise. Fixing e 1 and choosing e 2 and e 3 suitably, we can assume h 1 23 = 0. Denote 2.10 h 1 12 = x 1, h 1 13 = x 2, h 1 22 = x 3, h 1 33 = x 4, h 2 23 = x 5, h 2 33 = x 6.

228 ZHONG HUA HOU Then it follows from 1.18 that A i s can be expressed as x 3 x 4 x 1 x 2 A 1 = x 1 x 3 0, x 2 0 x 4 x 1 x 3 0 A 2 = x 3 x 1 x 6 x 5, 0 x 5 x 6 x 2 0 x 4 A 3 = 0 x 5 x 6. x 4 x 6 x 2 x 5 And the square of the length of σ, say S, is expressed as 2.12 S = 4 x 2 1 + x 2 2 + x 2 3 + x 2 4 + x 2 5 + x 2 6 + 2 x 3 x 4 + x 1 x 6 + x 2 x 5. Let us consider the representations of {h l k }. Put 2.13 h 1 123 = y 1, h 1 122 = y 2, h 1 133 = y 3, h 1 112 = y 4, h 1 233 = y 5, h 1 113 = y 6, h 1 223 = y 7. Since M 3 is minimal implies h l 11k + hl 22k + hl 33k = 0 for any k, we have 2.14 h 1 111 = y 2 y 3, h 1 222 = y 4 y 5, h 1 333 = y 6 y 7. So we have 2.15 h 1 k 2 i,j,k = i h 1 iii 2 + 3 h 1 i 2 + 6 h 1 123 2 = i j = 6 y 2 1 + 4 y 2 2 + y 2 3 + y 2 4 + y 2 5 + y 2 6 + y 2 7 + 2 y 2 y 3 + y 4 y 5 + y 6 y 7. On the other hand, it follows from 1.23 that 2.16 Putting h 2 111 = y 4 + x 2, h 2 112 = y 2, h 2 113 = y 1 + x 4, h 2 122 = y 4 y 5 + x 5, h 2 123 = y 7 + x 6, h 2 133 = y 5 x 2 x 5. 2.17 h 2 233 = y 8, h 2 223 = y 9, then we have 2.18 h 2 222 = y 2 y 8, h 2 333 = x 4 y 1 y 9.

SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD 229 Therefore we infer from 2.16, 2.17 and 2.18, 2.19 h 2 k 2 i,j,k = i h 2 iii 2 + 3 h 2 i 2 + 6 h 2 123 2 = i j = 4 y1 2 + 4 y2 2 + 4 y4 2 + 6 y5 2 + 6 y7 2 + 4 y8 2 + 4 y9 2 + 2 y 1 y 9 + 2 y 2 y 8 + 6 y 4 y 5 + 8 x 4 y 1 + 2 x 2 6 x 5 y 4 6 x 2 + 12 x 5 y 5 + 12 x 6 y 7 + 2 x 4 y 9 + 4 x 2 2 + 4 x 2 4 + 6 x 2 5 + 6 x 2 6 + 6 x 2 x 5. By the same procedure, we obtain 2.20 h 3 111 = y 6 x 1, h 3 112 = y 1 x 3, h 3 113 = y 3, h 3 122 = y 7 + x 1 + x 6, h 3 123 = y 5 x 5, h 3 133 = x 6 y 6 y 7, h 3 222 = y 9 + x 3, h 3 223 = y 8, h 3 233 = y 1 y 9, h 3 333 = y 3 y 8. Therefore we infer from 2.20 that 2.21 h 3 k 2 i,j,k = i h 3 iii 2 + 3 h 3 i 2 + 6 h 3 123 2 = i j = 6 y1 2 + 4 y3 2 + 6 y5 2 + 4 y6 2 + 6 y7 2 + 4 y8 2 + 4 y9 2 + 2 y 3 y 8 + 6 y 1 y 9 + 6 y 6 y 7 2 x 1 y 6 + 2 x 3 y 9 + 6 x 1 y 7 + 6 x 6 y 6 6 x 3 y 1 + 12 x 6 y 7 12 x 5 y 5 + 4 x 2 1 + 4 x 2 3 + 6 x 2 5 + 6 x 2 6 + 6 x 1 x 6. Denote F = σ 2. Then F = i,j,k,l h l k 2 = i,j,k h 1 k 2 + i,j,k h 2 k 2 + i,j,k h 3 k 2. It follows from 2.15, 2.19 and 2.21 that F = 16 y 2 1 + 8 y 2 2 + 8 y 2 3 + 8 y 2 4 + 16 y 2 5 + 8 y 2 6 + 16 y 2 7 + 8 y 2 8 + 8 y 2 9 2.22 + 2 y 2 y 3 + 2 y 2 y 8 + 2 y 3 y 8 + 8 y 1 y 9 + 8 y 4 y 5 + 8 y 6 y 7 + 8 x 4 6 x 3 y 1 + 2 x 2 6 x 5 y 4 6 x 2 + 24 x 5 y 5 + 6 x 6 2 x 1 y 6 + 6 x 1 + 24 x 6 y 7 + 2 x 4 + 2 x 3 y 9 + 4 x 2 1 + 4 x 2 2 + 4 x 2 3 + 4 x 2 4 + 12 x 2 5 + 12 x 2 6 + 6 x 1 x 6 + 6 x 2 x 5.

230 ZHONG HUA HOU It is not difficult to check that the only critical point of F with respect to y 1, y 2,..., y 9 is P 0 = y1 0, y0 2,..., y0 9, where y 0 1 = 1 4 x 3 x 4, y 0 2 = 0, y 0 3 = 0, 2.23 y 0 4 = 1 4 x 2, y 0 5 = 1 4 x 2 + 3 x 5, y 0 6 = 1 4 x 1, y 0 7 = 1 4 x 1 + 3 x 6, y 0 8 = 0, y 0 9 = 1 4 x 3. Furthermore we can see that P 0 is the minimum point of F. Substituting 2.23 into 2.22 and recalling 2.12, we obtain the minimum value of F : F min = 3 x 2 1 + 3 x 2 2 + 3 x 2 3 + 3 x 2 4 + 3 x 2 5 + 3 x 2 6 2.24 + 3 2 x 5x 2 + 3 2 x 6x 1 + 3 2 x 3x 4 = 3 4 S. Therefore we get the following lower estimate to σ 2 : 2.25 σ 2 = i,j,k,l h l k 2 3 4 S. It follows from 2.5, 2.6, 2.7 and 2.25 that 5 3.26 S 3 S 2 S. Inequality 3.26 implies the following Proposition 2.1. Let M 3 be a closed 3-dimensional totally real submanifold of S 6. Denote by S the square of the length of the second fundamental form of M 3. If S < 5/2, then M 3 is totally geodesic. ACKNOWLEDGEMENTS The author is very grateful to Professor A. Machado for his kind help and good advice. He would like to express his heartfelt gratitude to faculty and staffs of CMAF/UL for their hospitality during his stay and study in Portugal. And he wish to thank referee for his her earnest recommendation.

SUBMANIFOLDS IN A NEARLY KÄHLER MANIFOLD 231 REFERENCES [1] Chen, B.Y. and Ogiue, K. On totally real submanifolds, Trans. Amer. Math. Soc., 193 1974, 257 266. [2] Chern, S.S.; Carmo, M.P. and Kobayashi, S. Minimal submanifolds of a sphere with second fundamental form of constant length, in Functional Analysis and Related Fields Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968, Springer-Verlag, New York, 1970, 59 75. [3] Ejiri, N. Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc., 834 1981, 759 763. [4] Gray, A. Nearly Kähler Manifolds, J. Diff. Geom., 4 1970, 283 309. [5] Gray, A. Riemannian manifolds with geodesic symmetries of order 3, J. Diff. Geom., 7 1972, 343 369. [6] Gray, A. The Structure of Nearly Kähler Manifolds, Math. Ann., 223 1976, 233 248. [7] Li, A.M. and Li, J.M. An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math., 58 1992, 582 594. [8] Matsumoto, M. On 6-dimensional almost Tachibana space, Tensor, N. S., 23 1972, 250 252. [9] Simons, J. Minimal varieties in riemannian manifolds, Ann. of Math., 88 1968, 62 105. [10] Takamatsu, K. Some properties of 6-dimensional K-space, Kodai Math. Sem. Rep., 23 1971, 215 232. [11] Watanabe, Y. and Takamatsu, K. On a K-space of constant holomorphic sectional curvature, Kodai Math. Sem. Rep., 25 1973, 297 306. [12] Yamaguchi, S.; Chuman, G. and Matsumoto, M. On a special almost Tachibana space, Tensor, N. S., 24 1972, 351 354. Zhong Hua Hou, Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, Liaoning PEOPLE S REPUBLIC OF CHINA E-mail: zhhou@dlut.edu.cn and CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa PORTUGAL E-mail: zhhou@lmc.fc.ul.pt