On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

Similar documents
Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals

On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

The Hadamard s inequality for quasi-convex functions via fractional integrals

Hermite-Hadamard type inequalities for harmonically convex functions

arxiv: v1 [math.ca] 28 Jan 2013

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Bulletin of the. Iranian Mathematical Society

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Hermite-Hadamard Type Inequalities for the Functions whose Second Derivatives in Absolute Value are Convex and Concave

Some new integral inequalities for n-times differentiable convex and concave functions

Hermite-Hadamard and Simpson-like Type Inequalities for Differentiable p-quasi-convex Functions

New general integral inequalities for quasiconvex functions

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

RIEMANN-LIOUVILLE FRACTIONAL SIMPSON S INEQUALITIES THROUGH GENERALIZED (m, h 1, h 2 )-PREINVEXITY

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

Generalized Hermite-Hadamard Type Inequalities for p -Quasi- Convex Functions

NEW HERMITE HADAMARD INEQUALITIES VIA FRACTIONAL INTEGRALS, WHOSE ABSOLUTE VALUES OF SECOND DERIVATIVES IS P CONVEX

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR

Some inequalities of Hermite-Hadamard type for n times differentiable (ρ, m) geometrically convex functions

Integral inequalities for n times differentiable mappings

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-convex FUNCTIONS. 1. Introduction. f(a) + f(b) f(x)dx b a. 2 a

Research Article On The Hadamard s Inequality for Log-Convex Functions on the Coordinates

On some refinements of companions of Fejér s inequality via superquadratic functions

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

An inequality related to η-convex functions (II)

Research Article On Hermite-Hadamard Type Inequalities for Functions Whose Second Derivatives Absolute Values Are s-convex

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-1 Yıl:

Some New Inequalities of Simpson s Type for s-convex Functions via Fractional Integrals

The Hadamard s Inequality for s-convex Function

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

Properties and integral inequalities of Hadamard- Simpson type for the generalized (s, m)-preinvex functions

ON COMPANION OF OSTROWSKI INEQUALITY FOR MAPPINGS WHOSE FIRST DERIVATIVES ABSOLUTE VALUE ARE CONVEX WITH APPLICATIONS

HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE (α, m)-convex

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Journal of Inequalities in Pure and Applied Mathematics

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

Some Improvements of Hölder s Inequality on Time Scales

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Improvement of Ostrowski Integral Type Inequalities with Application

On some inequalities for s-convex functions and applications

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

INEQUALITIES FOR GENERALIZED WEIGHTED MEAN VALUES OF CONVEX FUNCTION

Improvements of the Hermite-Hadamard inequality

QUADRATURE is an old-fashioned word that refers to

CERTAIN NEW HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA FRACTIONAL INTAGRALS

A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL. 1. Introduction. f(x)dx a

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Hadamard-Type Inequalities for s Convex Functions I

Journal of Inequalities in Pure and Applied Mathematics

Asymptotic behavior of intermediate points in certain mean value theorems. III

WENJUN LIU AND QUÔ C ANH NGÔ

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

A General Dynamic Inequality of Opial Type

On the Co-Ordinated Convex Functions

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

Calculus of variations with fractional derivatives and fractional integrals

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

DEFINITE INTEGRALS. f(x)dx exists. Note that, together with the definition of definite integrals, definitions (2) and (3) define b

Improvement of Grüss and Ostrowski Type Inequalities

Generalized Hermite-Hadamard type inequalities involving fractional integral operators

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

Relative Strongly h-convex Functions and Integral Inequalities

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

A New Generalization of Lemma Gronwall-Bellman

S. S. Dragomir. 2, we have the inequality. b a

Properties of Jensen m-convex Functions 1

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

On New Inequalities of Hermite-Hadamard-Fejér Type for Harmonically s-convex Functions via Fractional Integrals

Integral inequalities

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

CLASSROOM NOTE Some new mean value theorems of Flett type

A generalized Lyapunov inequality for a higher-order fractional boundary value problem

CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS. 1. Introduction

arxiv:math/ v2 [math.ho] 16 Dec 2003

Bounds for the Riemann Stieltjes integral via s-convex integrand or integrator

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

Research Article Moment Inequalities and Complete Moment Convergence

The inequality (1.2) is called Schlömilch s Inequality in literature as given in [9, p. 26]. k=1

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS IN CERTAIN MEAN VALUE THEOREMS. II

Transcription:

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey On New Ineulities of Hermite-Hdmrd-Fejer Type for Hrmoniclly Qusi-Convex Functions Vi Frctionl Integrls Mehmet Kunt * nd İmdt İşcn Deprtment of Mthemtics, Fculty of Sciences, Krdeniz Technicl University, 68, Trzon, Turkey. Deprtment of Mthemtics, Fculty of Sciences nd Arts, Giresun University, 8, Giresun, Turkey. mkunt@ktu.edu.tr, imdt.iscn@giresun.edu.tr Astrct In this pper, some Hermite-Hdmrd-Fejer type integrl ineulities for hrmoniclly usi-convex functions in frctionl integrl forms re otined. Keywords: Hermite-Hdmrd ineulity, Hermite-Hdmrd-Fejer ineulity, Riemnn-Liouville frctionl integrl, Hrmoniclly usi-convex function.. Introduction Let f: I R R e convex function defined on the intervl I of rel numers nd, I with <. The ineulity f + ) f)+f) fx)dx is well known in the literture s Hermite-Hdmrd s ineulity 5. The most well-known ineulities relted to the integrl men of convex function f re the Hermite Hdmrd ineulities or their weighted versions, the so-clled Hermite- Hdmrd-Fejér ineulities. In 4, Fejér estlished the following Fejér ineulity which is the weighted generliztion of Hermite-Hdmrd ineulit ): Theorem. Let f:, R e convex function. Then the ineulity f + ) gx)dx f)+f) fx)gx)dx gx)dx ) holds, where g:, R is nonnegtive,integrle nd symmetric to + )/. For some results which generlize, improve, nd extend the ineulities ) nd ) see, 6, 7, 6, 8. Following definitions nd mthemticl preliminries of frctionl clculus theory re used further in this pper. Definition.. Let f L,. The Riemnn-Liouville integrls J + f nd J f of oder > with re defined y J + fx) = x Γ) x t) ft)dt, nd J fx) = Γ) x t x) ft)dt, x > x < ) 35

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey respectively, where Γ) is the Gmm function defined y Γ) = J + fx) = J fx) = fx). e t t dt nd Becuse of the wide ppliction of Hermite-Hdmrd type ineulities nd frctionl integrls, mny reserchers extend their studies to Hermite-Hdmrd type ineulities involving frctionl integrls not limited to integer integrls. Recently, more nd more Hermite-Hdmrd ineulities involving frctionl integrls hve een otined for different clsses of functions; see 3, 8, 9, 7, 9,. Definition.. A function f: I, ), ) is sid to e hrmoniclly usiconvex, if xy f ) sup{fx), fy)} tx + t)y for ll x, y I nd t,. In, İşcn gve definition of hrmoniclly convex functions nd estlished following Hermite-Hdmrd type ineulity for hrmoniclly convex functions s follows: Definition 3. Let I R\{} e rel intervl. A function f: I R is sid to e hrmoniclly convex, if f xy tx+ t)y ) tfy) + t)fx) 3) for ll x, y I nd t,. If the ineulity in 3) is reversed, then f is sid to e hrmoniclly concve. Theorem.. Let f: I R\{} R e hrmoniclly convex function nd, I with <. If f L, then the following ineulities holds: f + ) fx) x f)+f) dx. 4) In 4 Ltif et. l. gve the following definition: Definition 4. A function g:, R\{} R is sid to e hrmoniclly symmetric with respect to + if gx) = g + ) x holds for ll x,. In Chn nd Wu represented Hermite-Hdmrd-Fejer ineulity for hrmoniclly convex functions s follows: Theorem 3. Let f: I R\{} R e hrmoniclly convex function nd, I with <. If f L, nd g:, R\{} R is nonnegtive, integrle nd hrmoniclly symmetric with respect to +, then f + ) gx) x dx fx)gx) x dx f)+f) gx) x dx. 5) In 3, Kunt nd İşcn presented, respectively, Hermite-Hdmrd ineulity in frctionl integrl forms for hrmoniclly convex functions, Hermite-Hdmrd-Fejer ineulity in frctionl integrl forms for hrmoniclly convex functions s follows: Theorem 4. Let f: I, ) R e function such tht f L,, where, I with <. If f is hrmoniclly convex function on,, then the following ineulities for 36

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey frctionl integrls hold: f ) Γ+) + J + ) { + +J + f h)/) f h)/) } f)+f) 6) with > nd hx) = /x, x,. Theorem 5. Let f:, R e hrmoniclly convex function with < nd f L,. If g:, R is nonnegtive, integrle nd hrmoniclly symmetric with respect to, then the following ineulities for frctionl integrls holds: + f + ) J + J + + f)+f) + g h)/) + J + fg h)/) + J + J + + g h)/) + J + g h)/) fg h)/) with > nd hx) = /x, x,. g h)/) 7) Lemm. 3. Let f: I, ) R e differentile function on I such tht f L,, where, I nd <. If g:, R is integrle nd hrmoniclly symmetric with respect to, then the following eulity for frctionl integrls holds: + f + ) J + J + + = Γ) + g h)/) + J + fg h)/) + J + + + t g h)/) fg h)/) s ) g h)s)ds) f h) t)dt 8) t s) g h)s)ds) f h) t)dt with > nd hx) = /x, x,. In this pper, we hve some Hermite-Hdmrd-Fejer type integrl ineulities for hrmoniclly usi-convex functions in frctionl integrl forms.. Min results Throughout this section, we tke g = sup t, gt), for the continuous function g:, R. Theorem 6. Let f: I, ) R e differentile function on I such tht f L,, where, I nd <. If f is hrmoniclly usi-convex on,, g:, R is continuous nd hrmoniclly symmetric with respect to, then the following ineulity + for frctionl integrls holds: 37

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey f + ) J + g h)/) + J + g h)/) + J + fg h)/) + J + fg h)/) + g ) Γ+) ) C )sup{f ), f )} 9) where C ) = u u + u)) du with < nd hx) = /x, x,. Proof. From Lemm we hve u) u + u)) du f + ) J + g h)/) + J + g h)/) + J + fg h)/) + J + fg h)/) + Γ) g Γ) = g Γ) + + + t + + + t s ) g h)s)ds) f h) t)dt t t s) g h)s)ds) f h) t)dt s ) ds) f h) t)dt t ) Setting t = u+ u) s) ds) f h) t)dt t f ) dt t t) t f t ) dt, nd dt = ) du gives f + ) J + g h)/) + J + g h)/) + J + fg h)/) + J + fg h)/) + g ) Γ+) ) u u+ u)) f ) du u+ u) ) u) u+ u)) f ) du u+ u) 38

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey Since f is hrmoniclly usi-convex on,, we hve f ) u+ u)t sup{f ), f )} ) If we use.3) in.), we hve f + ) J + g h)/) + J + g h)/) + J + fg h)/) + J + fg h)/) + g ) Γ + ) ) u u + u)) sup{f ), f )}du u) u + u)) sup{f ), f )}du g ) Γ + ) ) sup{f ), f )} Since u u+ u)) C ) = du u u+ u)) u) u+ u)) du du ) u) u+ u)) If we use 3) in ) we hve 9). This completes the proof. Corollry. In Theorem 6; du 3) ) If we tke = we hve the following Hermite-Hdmrd-Fejer ineulity for hrmoniclly usi-convex functions which is relted to the left-hnd side of 5): f + ) gx) x dx fx)gx) dx g ) C )sup{f ), f )}, x ) If we tke gx) = we hve following Hermite-Hdmrd ineulity for hrmoniclly usi-convex functions in frctionl integrl forms which is relted to the left-hnd side of 6): Γ + ) f ) + J + f h) ) + ) +J + f h) { ) } ) C )sup{f ), f )}, 3) If we tke = nd gx) = we hve the following Hermite-Hdmrd type ineulity for hrmoniclly usi-convex functions which is relted to the left-hnd side of 4): f + ) fx) x dx )C )sup{f ), f )}. 39

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey Theorem 7. Let f: I, ) R e differentile function on I such tht f L,, where, I nd <. If f,, is hrmoniclly usi-convex on,, g:, R is continuous nd hrmoniclly symmetric with respect to, then the + following ineulity for frctionl integrls holds: f) + f) J /+ J /+ g h)/) + J / fg h)/) + J / fg h)/) g h)/) g ) Γ+) ) C )sup{f ), f ) } 4) where C ) is the sme in Theorem 6, > nd hx) = /x, x,. Proof. Using ), power men ineulity nd the hrmoniclly usi-convexity of f, it follows tht f + ) J + g h) + ) + J + g h) ) J + fg h) ) + J + fg h) ) + g ) Γ + ) ) g ) Γ + ) ) g ) Γ + ) ) + u u + u)) du) u + u)) f ) du u + u) u) u + u)) f u + u) ) du u u u + u)) du) + u) u + u)) du) u u + u)) f u + u) ) du) u) u + u)) du) u) u + u)) f u + u) ) du) u u + u)) sup{f ), f ) }du) u) u + u)) sup{f ), f ) }du) 3

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey = g ) Γ + ) ) sup{f ), f ) } u u + u)) du = g ) Γ+) ) C )sup{f ), f ) }. This completes the proof. Corollry. In Theorem 7; u) u + u)) du ) If we tke = we hve the following Hermite-Hdmrd-Fejer ineulity for hrmoniclly usi-convex functions which is relted to the left-hnd side of 5): f + ) gx) x dx fx)gx) dx x g ) C )sup{f ), f ) }, ) If we tke gx) = we hve following Hermite-Hdmrd ineulity for hrmoniclly usi-convex functions in frctionl integrl forms which is relted to the left-hnd side of 6): Γ + ) f ) + J + f h) ) + ) +J + f h) { ) } ) C )sup{f ), f ) }, 3) If we tke = nd gx) = we hve the following Hermite-Hdmrd ineulity for hrmoniclly usi-convex functions which is relted to the left-hnd side of 4): f + ) fx) x dx )C )sup{f ), f ) } We cn stte nother ineulity for > s follows: Theorem 8. Let f: I, ) R e differentile function on I such tht f L,, where, I nd <. If f, >, is hrmoniclly usi-convex on,, g:, R is continuous nd hrmoniclly symmetric with respect to, then the + following ineulity for frctionl integrls holds: f) + f) J g h) + ) + J g h) ) J fg h) + ) + J fg h) ) g ) Γ+) ) C p ) + C 3 p ) sup{f ),f ) } u where C ) = p du, C u+ u)) 3) = p /x, x, nd /p + / =. u) p u+ u)). 5) p du, with >, hx) = 3

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey Proof. Using ), Hölder s ineulity nd the hrmoniclly usi-convexity of f, it follows tht f + ) J + g h)/) + J + g h)/) + J + fg h)/) + J + fg h)/) + g ) Γ + ) ) g ) Γ + ) ) u p u + u)) + u + u)) f ) du u + u) u) u + u)) f u + u) ) du p du) u) p du) u + u)) p g ) Γ + ) ) u p u + u)) + p p du) u) p du) u + u)) p = g ) Γ + ) ) Since u p u+ u)) p du) p p p p + u f u + u) ) du) f u + u) ) du) sup{f ), f ) }du) sup{f ), f ) }du) sup{f ), f ) } u) p du) p u+ u)) 6) p u C ) = p u+ u)) p du 7) C 3 ) = u) p u+ u)) p du 8) If we use 7) nd 8) in 6), we hve 5). This completes the proof. Corollry 3. In Theorem 8; ) If we tke = we hve the following Hermite-Hdmrd-Fejer ineulity for hrmoniclly usi-convex functions which is relted to the left-hnd side of 5): 3

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey f + ) gx) x dx fx)gx) dx x g ) C p ) + C p 3 ) sup{f ), f ) } ) If we tke gx) = we hve following Hermite-Hdmrd ineulity for hrmoniclly usi-convex functions in frctionl integrl forms which is relted to the left-hnd side of 6): f Γ + ) ) + ) { J + + +J + f h)/) f h)/) } ) C p ) + C p 3 ) sup{f ), f ) } 3) If we tke = nd gx) = we hve the following Hermite-Hdmrd ineulity for hrmoniclly usi-convex functions which is relted to the left-hnd side of 4): f + ) fx) x dx References ) C p ) + C p 3 ) sup{f ), f ) } M. Bomrdelli nd S. Vrošnec, Properties of h-convex functions relted to the Hermite Hdmrd Fejér ineulities, Computers nd Mthemtics with Applictions 58 9), 869 877. F. Chen nd S. Wu, Fejer nd Hermite-Hdmrd type ineulities for hrmoniclly convex functions, Jurnl of pplied Mthemtics, volume 4, rticle id:38686. 3 Z. Dhmni, On Minkowski nd Hermite-Hdmrd integrl ineulities vi frctionl integrtion, Ann. Funct. Anl. ) ), 5-58. 4 L. Fejér, Uerdie Fourierreihen, II, Mth. Nturwise. Anz Ungr. Akd., Wiss, 4 96), 369-39, in Hungrin). 5 J. Hdmrd, Étude sur les propriétés des fonctions entières et en prticulier d une fonction considérée pr Riemnn, J. Mth. Pures Appl., 58 893), 7-5. 6 İ. İşcn, New estimtes on generliztion of some integrl ineulities for s-convex functions nd their pplictions, Int. J. Pure Appl. Mth., 864) 3), 77-746. 7 İ. İşcn, Some new generl integrl ineulities for h-convex nd h-concve functions, Adv. Pure Appl. Mth. 5) 4), -9. doi:.55/pm-3-9. 8 İ. İşcn, Generliztion of different type integrl ineulitiesfor s-convex functions vi frctionl integrls, Applicle Anlysis, 3. doi:.8/368.3.85785. 9 İ. İşcn, On generliztion of different type integrl ineulities for s-convex functions vi frctionl integrls, Mthemticl Sciences nd Applictions E-Notes, ) 4), 55-67. İ. İşcn, S. Wu, Hermite-Hdmrd type ineulities for hrmoniclly convex functions vi frctionl integrls, Appl. Mth. Comput., 38 4) 37-44. İ. İşcn, Hermite-Hdmrd type ineulities for hrmoniclly convex functions, Hcet. J. Mth. Stt., 43 6) 4), 935-94 A. A. Kils, H. M. Srivstv, J. J. Trujillo, Theory nd pplictions of frctionl differentil eutions. Elsevier, Amsterdm 6). 3 M. Kunt, İ. İşcn, On new ineulities of Hermite-Hdmrd-Fejer type for hrmoniclly convex functions,., 33

X th Interntionl Sttistics Dys Conference ISDC 6), Giresun, Turkey vi frctionl integrls, RGMIA Reserch Report Collection, 85), Article 9, 7 pp. 4 M. A. Ltif, S. S. Drgomir nd E. Momonit, Some Fejer type ineulities for hrmoniclly-convex functions with pplictions to specil mens, RGMIA Reserch Report Collection, 85), Article 4, 7 pp. 5 A. P. Prudnikov, Y. A. Brychkov, O. J. Mrichev, Integrl nd series, Elementry Functions, vol., Nuk, Moscow, 98. 6 M.Z. Sr ky, On new Hermite Hdmrd Fejér type integrl ineulities, Stud. Univ. Bes-Bolyi Mth. 573) ), 377 386. 7 M.Z. Sr ky, E. Set, H. Yld z nd N. Bsk, Hermite-Hdmrd s ineulities for frctionl integrls nd relted frctionl ineulities, Mthemticl nd Computer Modelling, 579) 3), 43-47. 8 K.-L. Tseng, G.-S. Yng nd K.-C. Hsu, Some ineulities for differentile mppings nd pplictions to Fejér ineulity nd weighted trpezoidl formul, Tiwnese journl of Mthemtics, 54) ), 737-747. 9 J. Wng, X. Li, M. Fec kn nd Y. Zhou, Hermite-Hdmrd-type ineulities for Riemnn-Liouville frctionl integrls vi two kinds of convexity, Appl. Anl., 9) ), 4-53. J. Wng, C. Zhu nd Y. Zhou, New generlized Hermite-Hdmrd type ineulities nd pplictions to specil mens, J. Ineul. Appl., 335) 3), 5 pges. T. Y. Zhng, A. P. Ji, F. Qi, Integrl ineulities of Hermite-Hdmrd type for hrmoniclly usi-convex functions. Proc. Jngjeon Mth. Soc.,63) 3), 399-47. 34