TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

Similar documents
Lower bound on the extragalactic magnetic field

Multi-Messenger Astonomy with Cen A?

UHECRs sources and the Auger data

Charged Cosmic Rays and Neutrinos

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

The Secondary Universe

Cosmic Rays, Photons and Neutrinos

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Cosmogenic neutrinos II

A few grams of matter in a bright world

Secondary particles generated in propagation neutrinos gamma rays

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Gamma-ray echo (pair echo) from TeV sources and extragalactic magnetic fields

Ultra High Energy Cosmic Rays I

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

Ultra High Energy Cosmic Rays: Observations and Analysis

Cosmic Ray Astronomy. Qingling Ni

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Dr. Charles D. Dermer Naval Research Lab, Code 7653 Washington, DC USA

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Particle Acceleration in the Universe

VHE emission from radio galaxies

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Estimation of neutrino spectra from AGNs using measured VHE γ-ray spectra

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Extremely High Energy Neutrinos

An Auger Observatory View of Centaurus A

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

Ultrahigh Energy Cosmic Rays propagation II

Absorption and production of high energy particles in the infrared background

arxiv: v1 [astro-ph.he] 14 Jul 2017

High energy neutrino signals from NS-NS mergers

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

EBL Studies with the Fermi Gamma-ray Space Telescope

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Recent Observations of Supernova Remnants

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data

Higher Statistics UHECR observatories: a new era for a challenging astronomy

ULTRA-HIGH ENERGY COSMIC RAYS

UHECR autocorrelation function after Auger

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

High Energy Emission. Brenda Dingus, LANL HAWC

News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Observations of Active Galactic Nuclei at very high energies with H.E.S.S.

IMPACT OF OSCILLATIONS ON UHE NEUTRINO ASTRONOMY

Questions 1pc = 3 ly = km

VERITAS Observations of Starburst Galaxies. The Discovery of VHE Gamma Rays from a Starburst Galaxy

Ultra High Energy Cosmic Rays. UHECRs from Mildly Relativistic Supernovae

Fermi: Highlights of GeV Gamma-ray Astronomy

Cosmology and fundamental physics with extragalactic TeV γ-rays?

Revue sur le rayonnement cosmique

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

On the GCR/EGCR transition and UHECR origin

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg

Extragalactic Science with the CTA. A. Zech, LUTH

Galactic Sources with Milagro and HAWC. Jordan Goodman for the HAWC and Milagro Collaborations

Cosmic Ray Electrons and GC Observations with H.E.S.S.

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Resolving the Extragalactic γ-ray Background

Scientific Highlights from AGN Observations with the MAGIC Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Diffusive shock acceleration with regular electric fields

Constraints on Extragalactic Background Light from Cherenkov telescopes: status and perspectives for the next 5 years

A New Method for Characterizing Unresolved Point Sources: applications to Fermi Gamma-Ray Data

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

MULTIMESSENGER APPROACH:Using the Different Messengers

Extreme high-energy variability of Markarian 421

EeV Neutrinos in UHECR Surface Detector Arrays:

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Ultrahigh Energy cosmic rays II

Neutrino Astronomy fast-forward

A Multimessenger Neutrino Point Source Search with IceCube

Very High Energy gamma-ray radiogalaxies and blazars

Determining the TeV Gamma-Ray Emission Region in the Relativistic Jet of M87 using TeV and Radio Monitoring

Mass Composition Study at the Pierre Auger Observatory

Antimatter from Supernova Remnants

Detailed simulations of Fermi-LAT constraints on UHECR production scenarios

High energy neutrino production in the core region of radio galaxies due to particle acceleration by magnetic reconnection

Mattia Di Mauro. Fermi-LAT point source population studies and origin of the Fermi-LAT gamma-ray background. Trieste, May, 3, 2016

Ultra- high energy cosmic rays

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

Investigation on mass composition of UHE cosmic rays using CRPropa 2.0

Diagnostics of Leptonic vs. Hadronic Emission Models for Blazars Prospects for H.E.S.S.-II and CTA Markus Böttcher North-West University

The Extreme Universe Rene A. Ong Univ. of Michigan Colloquium University of California, Los Angeles 23 March 2005

Cosmological Evolution of Blazars

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Ultrahigh Energy Cosmic Rays from Tidal Disruption Events: Origin, Survival, and Implications

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

An AstroParticle perspective for SKA and CTA

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

arxiv: v1 [hep-ph] 13 Oct 2010

Very High Energy monitoring of the radio galaxy M87 with MAGIC during a low emission state between 2012 and 2015

Transcription:

Gamma-rays from CR sources Michael Kachelrieß NTNU, Trondheim []

TeV gamma-rays from UHECR sources 22 radio 20 18 log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR 12 10 kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G pc Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 2 / 34

TeV gamma-rays from UHECR sources during propagation: cosmogenic photons in sources: Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 3 / 34

TeV gamma-rays from UHECR sources during propagation: cosmogenic photons in sources: galactic CR sources GRB: large redshift time-delay UHECR photons makes direct correlation impossible for small EGMF: auto-correlation n GRB τṅ GRB <n AGN Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 3 / 34

TeV gamma-rays from UHECR sources during propagation: cosmogenic photons in sources: galactic CR sources GRB: large redshift time-delay UHECR photons makes direct correlation impossible for small EGMF: auto-correlation n GRB τṅ GRB <n AGN AGN: jets: small densities, B core: high B, large UV and IR densities, τ pγ 1 Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 3 / 34

HESS observations of M87: A ) -1 s -12 10 6 Feb. 2005 March 2005 April 2005 May 2005-2 Φ(E>730GeV) (cm 4 2 B ) -1 s -2 Φ(E>730GeV) (cm 0 1.5 1.0 0.5 0.0 09/Feb -12 ) 10 16/Feb 09/Mar H.E.S.S. average H E G R A 16/Mar Chandra (HST-1) Chandra (nucleus) 30/Mar 2003 06/Apr 2004 2005 04/May 2006 11/May Date 12/1998 12/2000 12/2002 12/2004 12/2006 Date -12 10 40 20 0-1 s -2 f(0.2-6 kev) (erg cm Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 4 / 34

HESS observations of M87: A ) -1 s -12 10 6 Feb. 2005 March 2005 April 2005 May 2005-2 Φ(E>730GeV) (cm 4 2 B ) -1 s -2 Φ(E>730GeV) (cm 0 1.5 1.0 0.5 0.0 09/Feb -12 ) 10 16/Feb 09/Mar 16/Mar 30/Mar 06/Apr H.E.S.S. 2005 40 fast average variability excludes acceleration along kpc jet H E G R A acceleration Chandra (HST-1) in hot 2003 spots marginally okay Chandra (nucleus) favors acceleration close to SMBH 2004 04/May 2006 11/May Date 12/1998 12/2000 12/2002 12/2004 12/2006 Date -12 10 20 0-1 s -2 f(0.2-6 kev) (erg cm Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 4 / 34

HESS & Veritas observations of M87: A ) -1 s -12 10 6 Feb. 2005 March 2005 April 2005 May 2005-2 Φ(E>730GeV) (cm 4 2 B ) -1 s -2 Φ(E>730GeV) (cm 0 1.5 1.0 0.5 0.0 09/Feb -12 ) 10 16/Feb 09/Mar 16/Mar 30/Mar 06/Apr H.E.S.S. 2005 40 fast average variability excludes acceleration along kpc jet H E G R A acceleration Chandra (HST-1) in hot 2003 spots marginally okay Chandra (nucleus) favors acceleration close to SMBH 2004 04/May 2006 11/May Date 12/1998 12/2000 12/2002 12/2004 12/2006 Date -12 10 20 0-1 s -2 f(0.2-6 kev) (erg cm Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 4 / 34

Outline of the talk 1 Introduction 2 Gamma-rays produced in UHECR sources How do get multi TeV gamma-rays out off AGN cores: electromagnetic cascades in UHECR sources 3 Cosmogenic fluxes: Cosmogenic neutrino limits from Fermi-LAT Cosmogenic photons: diffuse flux Secondary photons from CR point sources 4 Lower limit on EGMF using gamma-rays 5 Summary Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 5 / 34

Outline of the talk 1 Introduction 2 Gamma-rays produced in UHECR sources How do get multi TeV gamma-rays out off AGN cores: electromagnetic cascades in UHECR sources 3 Cosmogenic fluxes: Cosmogenic neutrino limits from Fermi-LAT Cosmogenic photons: diffuse flux Secondary photons from CR point sources 4 Lower limit on EGMF using gamma-rays 5 Summary Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 5 / 34

Outline of the talk 1 Introduction 2 Gamma-rays produced in UHECR sources How do get multi TeV gamma-rays out off AGN cores: electromagnetic cascades in UHECR sources 3 Cosmogenic fluxes: Cosmogenic neutrino limits from Fermi-LAT Cosmogenic photons: diffuse flux Secondary photons from CR point sources 4 Lower limit on EGMF using gamma-rays 5 Summary Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 5 / 34

Outline of the talk 1 Introduction 2 Gamma-rays produced in UHECR sources How do get multi TeV gamma-rays out off AGN cores: electromagnetic cascades in UHECR sources 3 Cosmogenic fluxes: Cosmogenic neutrino limits from Fermi-LAT Cosmogenic photons: diffuse flux Secondary photons from CR point sources 4 Lower limit on EGMF using gamma-rays 5 Summary Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 5 / 34

Astrophysical sources Centaurus A Multi-messenger astronomy with Cen A? + 2 events correlated with Cen A within 3.1 + more events close-by [Gorbunov et al. 07, Fargione 08, Rachen 08 ] + general correlation with AGN confusion with LSS? no confirmation by HiRes tension to PAO chemical composition E max for most AGN (incl. Cen A) high enough? correlations with AGN: independent/additional evidence? Cen A closest AGN good test case for multi-messenger astronomy: accompanying γ-ray and neutrino fluxes? Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 6 / 34

Astrophysical sources Centaurus A Results for acceleration close to the core: α =1.2 log 10 (E 2 Φ/eV km -2 yr -1 ) 18 17 16 15 C G R O FERM I H E S S γ total ne utrinos initia l protons P AO fina l protons 14 γ 13 8 10 12 14 16 18 20 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 7 / 34

Astrophysical sources Centaurus A Results for acceleration close to the core: α =2 19 log 10 (E 2 Φ/eV km -2 yr -1 ) 18 17 16 15 C G R O FERM I initia l protons fina l protons H E S S γ P AO total ne utrinos promising test case for HESS / FERMI γ γ-ray spectrum rather insensitive to α 14 8 10 12 14 16 18 20 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 7 / 34

Astrophysical sources HESS observations of Cen A Centaurus A no variability Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 8 / 34

Astrophysical sources HESS observations of Cen A Centaurus A no variability consistent with point source Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 8 / 34

Astrophysical sources HESS observations of Cen A Centaurus A no variability consistent with point source HE emission from central region (1 1.1 kpc) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 8 / 34

Astrophysical sources Centaurus A Comparison to recent HESS and FERMI observations log 10 (E 2 Φ/eV km -2 yr -1 ) 20 19 18 17 16 broken Fermi initial protons final protons α=2 P AO H E S S α=1.2 15 γ γ 14 8 1 0 1 2 1 4 1 6 1 8 2 0 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 9 / 34

Astrophysical sources Centaurus A Comparison to recent HESS and FERMI observations log 10 (E 2 Φ/eV km -2 yr -1 ) 20 19 18 17 16 15 broken Fermi shape and normalization okay TeV γ-ray and neutrino source initial protons final protons α=2 P AO H E S S α=1.2 γ γ 14 8 1 0 1 2 1 4 1 6 1 8 2 0 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 9 / 34

Astrophysical sources Electromagnetic cascades in the source Regenerating TeV photons: a) (isotropic) source injection spectrum F γ (E) 1/E 2 E 2 F(E ) 10 12 14 16 18 20 log10(e /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 10 / 34

Astrophysical sources Electromagnetic cascades in the source Regenerating TeV photons: a) (isotropic) source : thin above 10 16 ev, ultra-rel. regime E 2 F(E ) E γε γ m 2 e 10 12 14 16 18 20 log10(e /ev ) ultra-rel. regime Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 10 / 34

Astrophysical sources Electromagnetic cascades in the source Regenerating TeV photons: b) on EBL photons above 10 14 ev cascade on EBL E 2 F(E ) 10 12 14 16 18 20 log10(e /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 11 / 34

Astrophysical sources Electromagnetic cascades in the source Regenerating TeV photons: b) on EBL photons above 10 14 ev cascade on EBL : fill up GeV TeV range E 2 F(E ) 10 12 14 16 18 20 log10(e /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 11 / 34

Astrophysical sources Electromagnetic cascades in the source Regenerating TeV photons: b) on EBL photons above 10 14 ev cascade on EBL : fill up GeV TeV range E 2 F(E ) main criteria: L UHE, not shape evidence for acceleration to UHECRs? however: anisotropic UV field complicates picture already in source 10 12 14 16 18 20 log10(e /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 11 / 34

Astrophysical sources Electromagnetic cascades in the source Regenerating TeV photons: collinear regime log 10 τ γγ 4 3 2 1 0-1 -2-3 isotropic anisotropic -4 8 1 0 1 2 1 4 1 6 1 8 2 0 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 12 / 34

Astrophysical sources Electromagnetic cascades in the source Regenerating TeV photons: decaying muons log 10 (l/pc) 2 1 0-1 -2-3 -4-5 R 1 l int, U V l int, IR no cutoff l dec,µ l int, IR cutoff -6 12 13 14 15 16 17 18 19 20 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 13 / 34

Astrophysical sources Regenerating TeV photons: log 10 (l/pc) 2 1 0-1 -2-3 -4-5 R 1 l int, U V Electromagnetic cascades in the source adding IR l int, IR no cutoff l dec,µ l int, IR cutoff -6 12 13 14 15 16 17 18 19 20 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 13 / 34

Astrophysical sources adding IR from a compact source: Electromagnetic cascades in the source log 10 (E 2 Φ/eV km -2 yr -1 ) 20 19 18 17 Fermi E max = 10 20 ev E max = 10 19 ev E max = 10 18 ev H E S S 16 R IR = 1 pc 15 8 9 1 0 1 1 1 2 1 3 1 4 1 5 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 14 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos Photon and neutrino production relatively tight connected: protons: p + γ3k { p + π 0 p + 2γ n + π + p + 2e ± +4ν Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 15 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos Photon and neutrino production relatively tight connected: protons: p + γ3k { p + π 0 p +2γ n + π + p +2e ± +4ν nuclei: A + γ3k (A 1) + n (A 1) + p + e + ν e connection to UHECRs looser Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 15 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos Photon and neutrino production relatively tight connected: protons: p + γ3k { p + π 0 p +2γ n + π + p +2e ± +4ν nuclei: A + γ3k (A 1) + n (A 1) + p + e + ν e cascade limit: [Berezinsky, Smirnov 75 ] all energy in γ and e ± cascades below 100 GeV Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 15 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos Photon and neutrino production relatively tight connected: protons: p + γ3k { p + π 0 p +2γ n + π + p +2e ± +4ν nuclei: A + γ3k (A 1) + n (A 1) + p + e + ν e cascade limit: [Berezinsky, Smirnov 75 ] all energy in γ and e ± cascades below 100 GeV K(E/ε X ) 3/2 at E ε X J γ (E) = K(E/ε X ) 2 at ε X E 0 at E > ε a Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 15 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos Photon and neutrino production relatively tight connected: protons: p + γ3k { p + π 0 p +2γ n + π + p +2e ± +4ν nuclei: A + γ3k (A 1) + n (A 1) + p + e + ν e cascade limit: all energy in γ and e ± cascades below 100 GeV [Berezinsky, Smirnov 75 ] Fermi-LAT measurement of EGRB: ω cas > 4π de EI ν (E) 4π c E 0 c E 0I ν (>E 0 ) < 6 10 7 ev/cm 3 Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 15 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Comparison of Monte Carlo and analytical estimate 1e+15 100M pc E -3/2 1e+14 E 2 *J(E ) 1e+13 1e+12 1e+11 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12 1e+13 1e+14 1e+15 E /ev Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 16 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Comparison of Monte Carlo and analytical estimate 1e+15 100M pc 1000M pc E -3/2 E -1.9 1e+14 E 2 *J(E ) 1e+13 1e+12 1e+11 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12 1e+13 1e+14 1e+15 E /ev Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 16 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Fermi-LAT vs. UHECR data: [Berezinsky et al. 10 ] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 17 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Fermi-LAT vs. UHECR data: [Berezinsky et al. 10 ] integrating EJ(E) gives bound ω cas < 6 10 7 ev/cm 3 Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 17 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos [Berezinsky et al. 10 ] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 18 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos [Ahlers et al. 10 ] E min = 10 19 ev HiRes (3 x ) RICE ( e,µ, ) BAIKAL ( e,µ, ) Auger (3 ) AMANDA (3 µ) AMANDA ( e,µ, ) ANITA ( e,µ, ) IceCube (5, 1yr) 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 E [GeV] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 18 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos MainEdifference: min = 10 19 evexpected IceCube sensitivity end of exp. sensitivity for 1/E 2 flux: 10 17 vs. 10 19 ev overall sensitivity of IceCube HiRes (3 x ) RICE ( e,µ, ) BAIKAL ( e,µ, ) Auger (3 ) AMANDA (3 µ) AMANDA ( e,µ, ) ANITA ( e,µ, ) IceCube (5, 1yr) 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 E [GeV] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 18 / 34

Cosmogenic fluxes Neutrino limits from the EGRB Cascade limit for cosmogenic neutrinos MainEdifference: min = 10 19 evexpected IceCube sensitivity end of exp. sensitivity for 1/E 2 flux: 10 17 vs. 10 19 ev overall sensitivity of IceCube HiRes (3 x ) RICE ( e,µ, ) BAIKAL ( e,µ, ) Auger (3 ) AMANDA (3 µ) AMANDA ( e,µ, ) ANITA ( e,µ, ) All plots for proton primaries IceCube (5, 1yr) for nuclei reduced neutrino fluxes... 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 13 10 14 E [GeV] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 18 / 34

Cosmogenic fluxes Diffuse photons Cosmogenic photons [Hooper, Taylor, Sarkar 10 ] photon fra ction 10 0 10-1 10-2 10-3 10-4 10-5 10-6 E max,z =(Z/26)x10 21 ev α=2.0 B<3 pg P rotons Iron 1 8.2 1 8.4 1 8.6 1 8.8 1 9 1 9.2 1 9.4 1 9.6 1 9.8 2 0 log 10 E nergy [ev ] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 19 / 34

Cosmogenic fluxes Diffuse photons Cosmogenic photons [Hooper, Taylor, Sarkar 10 ] photon fraction 10 0 10-1 10-2 10-3 10-4 10-5 10-6 E max,z =(Z/26)x10 21 ev α=2.0 B<3 pg P rotons Iron 18.2 18.4 18.6 18.8 19 19.2 19.4 19.6 19.8 20 log 10 E nergy [ev ] A>1: photons suppressed by factor 10 compared to protons even proton: requires sensitivity improved by 100 large E max and small α helps... Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 19 / 34

Cosmogenic fluxes Diffuse photons Cosmogenic photons [Hooper, Taylor, Sarkar 10 ] photon fra ction 10 0 10-1 10-2 10-3 10-4 10-5 E max,z =(Z/26)x10 22 ev α=2.0 B<3 pg P rotons Iron 10-6 1 8.2 1 8.4 1 8.6 1 8.8 1 9 1 9.2 1 9.4 1 9.6 1 9.8 2 0 log 10 E nergy [ev ] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 19 / 34

Cosmogenic fluxes Diffuse photons Cosmogenic photons: dependence on α [Gelmini, Kalashev, Semikoz 05 ] 100 10 j(e ) E 2 [ev cm -2 s -1 sr -1 ] 1 0.1 1.5 2.0 2.0 1.5 0.01 2.7 2.7 0.001 1e+19 1e+20 1e+21 E [ev ] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 20 / 34

Cosmogenic fluxes Secondary photons from point sources Secondary photons from CR point sources for d<few 10 Mpc: UHE photons survive [Taylor et al. 09 ] 10000 1000 protons E max =10 20 ev E max =10 21 ev Auger data (2007) R ate (>E ) [yr -1 ] 100 10 1 0.1 0.01 photons S ource at 3.8 M pc α=2 0.001 0.0001 18 18.5 19 19.5 20 20.5 21 21.5 22 log 10 E [ev ] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 21 / 34

Cosmogenic fluxes Secondary photons from point sources Secondary photons from CR point sources for d<few 10 Mpc: UHE photons survive [Taylor et al. 09 ] non-observation is no constraint, but observation identifies close source Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 21 / 34

Cosmogenic fluxes Secondary photons from point sources Secondary photons from CR point sources for d<few 10 Mpc: UHE photons survive [Taylor et al. 09 ] larger distance: UHE photons cascade down in TeV range [Essey et al. 10 ] universal shape, depending only on EBL and z 10 2 10 1 10 8 G ev 10 10 G ev 10 11 G ev 10 0 E 2 dn /de, ev cm -2 s -1 10-1 10-2 10-3 10-4 10-5 10-6 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 E, G ev Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 21 / 34

Cosmogenic fluxes Secondary photons from point sources Secondary photons from CR point sources for d<few 10 Mpc: UHE photons survive [Taylor et al. 09 ] larger distance: UHE photons cascade down in TeV range [Essey et al. 10 ] universal shape, depending only on EBL and z 10 2 10 1 10 8 G ev 10 10 G ev 10 11 G ev 10 0 E 2 dn /de, ev cm -2 s -1 10-1 10-2 10-3 10-4 10-5 10-6 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 E, G ev large luminosities Leff 10 47 10 49 erg/s in UHECR relatively small EGMFs in voids, B < 10 14 G Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 21 / 34

Gamma-rays and the EGMF Gamma-rays and extragalactic magnetic fields (EGMF) Origin of seed for EGMF is mysterious Seed required as input for EGMF simulations Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 22 / 34

Gamma-rays and the EGMF Gamma-rays and extragalactic magnetic fields (EGMF) Origin of seed for EGMF is mysterious Seed required as input for EGMF simulations Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 22 / 34

Gamma-rays and the EGMF Gamma-rays and extragalactic magnetic fields (EGMF) Origin of seed for EGMF is mysterious Seed required as input for EGMF simulations Observations only in clusters, synchrotron halo: B (0.1 1) µg Faraday rotation: B (1 10) µg Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 22 / 34

Gamma-rays and the EGMF Gamma-rays and extragalactic magnetic fields (EGMF) Origin of seed for EGMF is mysterious Seed required as input for EGMF simulations Observations only in clusters, synchrotron halo: B (0.1 1) µg Faraday rotation: B (1 10) µg Aharonian, Coppi, Völk 94: Pair halos around AGNs Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 22 / 34

Gamma-rays and the EGMF Gamma-rays and extragalactic magnetic fields (EGMF) Origin of seed for EGMF is mysterious Seed required as input for EGMF simulations Observations only in clusters, synchrotron halo: B (0.1 1) µg Faraday rotation: B (1 10) µg Aharonian, Coppi, Völk 94: Pair halos around AGNs Plaga 95: EGMFs deflect and delay cascade electrons search for delayed echoes of multi-tev AGN flares/grbs Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 22 / 34

Gamma-rays and the EGMF Observer misaligned with jet: [Neronov et al. 10 ] e + e e+ e O jet 0 obs O ext probability for misalignement p ϑ obs most blazars viewed with ϑ obs ϑ jet Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 23 / 34

Gamma-rays and the EGMF Observer misaligned with jet: [Neronov et al. 10 ] e + e e+ e O jet 0 obs O ext probability for misalignement p ϑ obs most blazars viewed with ϑ obs ϑ jet halos are not symmetric Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 23 / 34

Gamma-rays and the EGMF Observer misaligned with jet: [Neronov et al. 10 ] e + e e+ e O jet 0 obs O ext probability for misalignement p ϑ obs most blazars viewed with ϑ obs ϑ jet halos are not symmetric time-delay is function of ϑ, [ ][ ] T delay (ϑ) 3 10 6 (ϑobs +Θ jet ) ϑ yr 5 5 Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 23 / 34

Gamma-rays and the EGMF Asymmetric halos around TeV blazars ( GeV jets ): 0.001 0.01 0.1 1 ϑ obs =0 ϑ obs =3 ϑ obs =6 ϑ obs =9 Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 24 / 34

Gamma-rays and the EGMF GeV jets : B dependence 0.001 0.01 0.1 10 17 G 10 16 G 10 15 G 10 14 G 1 Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 25 / 34

Gamma-rays and the EGMF GeV jets : time dependence of flares 0.001 0.01 0.1 1 0 <T delay < 10 5 yr 3 10 6 yr< T delay < 10 7 yr Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 26 / 34

Gamma-rays and the EGMF Lower limit on EGMF: choose blazar: large z, stationary, low GeV, high multi-tev emission Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 27 / 34

Gamma-rays and the EGMF Lower limit on EGMF: choose blazar: large z, stationary, low GeV, high multi-tev emission TeV photons cascade down: small EGMF: fill up GeV range large EGMF: deflected outside, isotropized Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 27 / 34

Gamma-rays and the EGMF Lower limit on EGMF: [F. Tavecchio et al. 10, A. Neronov, I. Vovk 10 ] Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 28 / 34

Gamma-rays and the EGMF Lower limit on EGMF: [F. Tavecchio et al. 10, A. Neronov, I. Vovk 10 ] B > 10 15 G some dependence on ϑ jet Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 28 / 34

Gamma-rays and the EGMF Lower limit on EGMF: [F. Tavecchio et al. 10, A. Neronov, I. Vovk 10 ] B > 10 15 G some dependence on ϑ jet no simulation of elmag. cascade with B what happens for structured B? Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 28 / 34

Gamma-rays and the EGMF Lower limit on EGMF: [MK, Ostapchenko, Tomàs ] log 10 (E 2 F/erg cm -2 s -1 ) -11-12 -13-14 Fermi 10-16 G 10-15 G 5 10-15 G 10-14 G 5 10-14 G H E S S 7 8 9 10 11 12 13 14 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 29 / 34

Gamma-rays and the EGMF Lower limit on filling factor: [MK, Ostapchenko, Tomàs 10 ] model filaments by a top-hat: B = 10 10 G B =0 10 Mpc Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 30 / 34

Gamma-rays and the EGMF Lower limit on filling factor: [MK, Ostapchenko, Tomàs 10 ] log 10 (E 2 F/erg cm -2 s -1 ) -11-12 -13-14 Fermi 0.10 0.25 0.50 0.75 0.90 H E S S 7 8 9 10 11 12 13 14 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 31 / 34

Gamma-rays and the EGMF Lower limit on filling factor: [MK, Ostapchenko, Tomàs 10 ] log 10 (E 2 F/erg cm -2 s -1 ) -11-12 linear filling factor > 50% Fermi H E S S 0.10-13 0.25 mainly 3-step cascade: γ e ± γ 0.50 photon mean free path D γ (E) 1000 50 0.75 Mpc 0.90 electron mean free path D e (E) few kpc -14 7 8 9 10 11 12 13 14 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 31 / 34

Gamma-rays and the EGMF Lower limit on filling factor: [MK, Ostapchenko, Tomàs 10 ] log 10 (E 2 F/erg cm -2 s -1 ) -11-12 linear filling factor > 50% Fermi H E S S 0.10-13 0.25 mainly 3-step cascade: γ e ± γ 0.50 photon mean free path D γ (E) 1000 50 0.75 Mpc 0.90 electron mean free path D e (E) few kpc -14 electrons are created everywhere and feel B only close to interaction point 7 8 9 10 11 12 13 14 log 10 (E /ev ) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 31 / 34

Gamma-rays and the EGMF EGMF in voids already observed? [Ando, Kusenko 10 ] stack 170 brightest AGN Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 32 / 34

Gamma-rays and the EGMF EGMF in voids already observed? [Ando, Kusenko 10 ] stack 170 brightest AGN search for excess over PSF Rel. DEC (deg) C ounts M ap (3-10 G ev ) Rel DEC (deg) M odel M ap (3-10 G ev ) 0.5 0.5 0 0-0.5-0.5 0.5 0 Rel. RA (deg) 359.5 0.5 0 R el R A (deg) 359.5 10 20 30 40 50 60 (counts) 10 20 30 40 50 (counts) Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 32 / 34

Gamma-rays and the EGMF EGMF in voids already observed? [Ando, Kusenko 10 ] stack 170 brightest AGN search for excess over PSF Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 32 / 34

Gamma-rays and the EGMF EGMF in voids already observed? [Ando, Kusenko 10 ] stack 170 brightest AGN search for excess over PSF Rel. DEC (deg) Counts Map (3-10 GeV ) Rel DEC (deg) M odel M ap (3-10 G ev ) 0.5 0.5 0 0-0.5-0.5 0.5 0 359.5 0.5 0 359.5 Rel. RA (deg) R el R A (deg) 10 20 30 40 50 60 (counts) 10 20 30 40 50 (counts) explained by B 10 15 G(λ B /1 kpc) 1/2 and λ B < 10 100 kpc Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 32 / 34

Gamma-rays and the EGMF EGMF in voids already observed? [Ando, Kusenko 10 ] stack 170 brightest AGN search for excess over PSF Rel. DEC (deg) Counts Map (3-10 GeV ) Rel DEC (deg) M odel M ap (3-10 G ev ) 0.5 0.5 0 0-0.5-0.5 0.5 0 359.5 0.5 0 359.5 Rel. RA (deg) R el R A (deg) 10 20 30 40 50 60 (counts) 10 20 30 40 50 (counts) lower limit B > 5 10 15 G requires λ B < 0.1 kpc Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 32 / 34

Gamma-rays and the EGMF EGMF already observed? Probably not... [Neronov et al. 10 ] point source Crab shows the same halo as stacked AGN: Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 33 / 34

Gamma-rays and the EGMF EGMF already observed? Probably not... [Neronov et al. 10 ] point source Crab shows the same halo as stacked AGN: tail of PSF wrong (?), difference between front and back photons Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 33 / 34

Summary Gamma-rays and the EGMF multi-tev photons from AGN cores require photons in KN regime HE muons hadronic models Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 34 / 34

Summary Gamma-rays and the EGMF multi-tev photons from AGN cores require photons in KN regime HE muons hadronic models secondary photons: chemical composition TeV sources?? Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 34 / 34

Summary Gamma-rays and the EGMF multi-tev photons from AGN cores require photons in KN regime HE muons hadronic models secondary photons: chemical composition TeV sources?? cascade limit from Fermi data reduced by factor 7 Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 34 / 34

Summary Gamma-rays and the EGMF multi-tev photons from AGN cores require photons in KN regime HE muons hadronic models secondary photons: chemical composition TeV sources?? cascade limit from Fermi data reduced by factor 7 lower limit on EGMF in voids B > 10 15 G Michael Kachelrieß (NTNU Trondheim) Gamma-rays from CR sources TeV Particle Astrophysics 10 34 / 34