Antimatter from Supernova Remnants

Similar documents
Dark Matter in the Universe

Antimatter spectra from a time-dependent modeling of supernova remnants

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

Cosmic Rays, Photons and Neutrinos

Subir Sarkar

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

Production of Secondary Cosmic Rays in Supernova Remnants

Neutrino Flavor Ratios as a Probe of Cosmic Ray Accelerators( 予定 ) Norita Kawanaka (UTokyo) Kunihito Ioka (KEK, Sokendai)

Charged Cosmic Rays and Neutrinos

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Dark Matter in the Universe

Acceleration Mechanisms Part I

Cosmic ray electrons from here and there (the Galactic scale)

Topics. 1. Towards a unified picture of CRs production and propagation: 2. AMS-02 good candidates for Dark Matter space search

Cosmic Pevatrons in the Galaxy

Evidence of Stochastic Acceleration of Secondary. Antiprotons by Supernova Remnants! Ilias Cholis, 08/09/2017

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

The role of ionization in the shock acceleration theory

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Particle Acceleration at Supernova Remnants and Supernovae

Cosmic ray escape from supernova remnants

Gamma ray emission from supernova remnant/molecular cloud associations

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Seeing the moon shadow in CRs

Questions 1pc = 3 ly = km

White dwarf pulsar as Possible Cosmic Ray Electron-Positron Factories

Diffusive shock acceleration with regular electric fields

Particle Acceleration in the Universe

Cosmic Rays 1. Introduction

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

UHECRs sources and the Auger data

Neutrino Signals from Dark Matter Decay

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Revue sur le rayonnement cosmique

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

Review of direct measurements of cosmic rays. Sources of Galactic cosmic rays APC, Paris - December 7-9, 2016

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC)

Neutrino Flavor Ratios Modified by Cosmic Ray Secondary- acceleration

1939 Baade&Zwicky 1949 Fermi 1977 (Krymski; Axford; Bell; Blandford & Ostriker

News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Cosmological and astrophysical probes of dark matter annihilation

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies

contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1)

Cosmic Rays in large air-shower detectors. Lecture 1: Introduction to cosmic rays Lecture 2: Current status & future

Probing Cosmic Hadron Colliders with hard X-ray detectors of ASTRO-H

Positron Anomaly in Galactic Cosmic Rays: Constraining Dark Matter Contribution

COSMIC RAY ACCELERATION

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

Acceleration and Transport of Galactic Cosmic Rays

Cosmic-ray propagation in the light of the Myriad model

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Indirect Searches for Gravitino Dark Matter

Multi-Messenger Astonomy with Cen A?

Properties of Elementary Particle Fluxes in Cosmic Rays. TeVPA Aug. 7, Yuan-Hann Chang National Central University, Taiwan

On the GCR/EGCR transition and UHECR origin

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

High-energy cosmic rays

Supernova Remnants and Cosmic. Rays

On the location and properties of the GeV and TeV emitters of LS 5039

Cosmic Ray Excess From Multi-Component Dark Matter

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

Cosmic Ray Astronomy. Qingling Ni

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong.

Positron Anomaly in Galactic Cosmic Rays: Constraining Dark Matter Contribution

Proton/Helium spectral anomaly and other signatures of diffusive shock acceleration/propagation in/from SNR

Galactic radio loops. Philipp Mertsch with Subir Sarkar. The Radio Synchrotron Background Workshop, University of Richmond 21 July 2017

Ultra High Energy Cosmic Rays I

arxiv: v1 [astro-ph] 17 Nov 2008

High energy radiation from molecular clouds (illuminated by a supernova remnant

Cosmic rays and relativistic shock acceleration

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

Quest for New Physics

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari

Dynamical Dark Matter and the Positron Excess in Light of AMS

Conservative Constraints on Dark Matter Self Annihilation Rate

Outstanding Problems in Astroparticle Physics for Plasma Physicists

Cosmic-ray Acceleration and Current-Driven Instabilities

Collisionless Shocks and Particle Acceleration

The High-Energy Interstellar Medium

The positron and antiproton fluxes in Cosmic Rays

Neutrinos and DM (Galactic)

Low-Energy Cosmic Rays

Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

PULSAR WIND NEBULAE AS COSMIC ACCELERATORS. Elena Amato INAF-Osservatorio Astrofisico di Arcetri

Prospects for Observations of Very Extended and Diffuse Sources with VERITAS. Josh Cardenzana

Radio Observations of TeV and GeV emitting Supernova Remnants

arxiv: v2 [astro-ph.he] 24 Jul 2012

Spectra of Cosmic Rays

Lower bound on the extragalactic magnetic field

Fermi-LAT and WMAP observations of the SNR Puppis A

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

GeV-TeV Galactic Cosmic Rays (GCRs)

On Cosmic-Ray Production Efficiency at Realistic Supernova Remnant Shocks

Pulsar Wind Nebulae: A Multiwavelength Perspective

Transcription:

Antimatter from Supernova Remnants Michael Kachelrieß NTNU, Trondheim with S. Ostapchenko, R. Tomàs

- PAMELA anomaly )) )+ φ(e + ) / (φ(e + 0.4 0.3 0.2 Positron fraction φ(e 0.1 0.02 Muller & Tang 1987 MASS 1989 TS93 HEAT94+95 CAPRICE94 AMS98 HEAT00 Clem & Evenson 2007 PAMELA 0.01 0.1 1 10 100 Energy (GeV) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 2 / 18

Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: sources are SNRs: kinetic energy output of SNe: 10M ejected with v 5 10 8 cm/s every 30 yr L SN,kin 3 10 42 erg/s explains local energy density of CR ǫcr 1 ev/cm 3 for a escape time from disc τ esc 6 10 6 yr Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: sources are SNRs: kinetic energy output of SNe: 10M ejected with v 5 10 8 cm/s every 30 yr L SN,kin 3 10 42 erg/s explains local energy density of CR ǫcr 1 ev/cm 3 for a escape time from disc τ esc 6 10 6 yr 1.order Fermi shock acceleration dn/de E γ with γ = 2.0 2.2 diffusion with D(E) τesc (E) E δ and δ 0.5 explains observed spectrum E 2.6 Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: sources are SNRs: kinetic energy output of SNe: 10M ejected with v 5 10 8 cm/s every 30 yr L SN,kin 3 10 42 erg/s explains local energy density of CR ǫcr 1 ev/cm 3 for a escape time from disc τ esc 6 10 6 yr 1.order Fermi shock acceleration dn/de E γ with γ = 2.0 2.2 diffusion with D(E) τesc (E) E δ and δ 0.5 explains observed spectrum E 2.6 electrons, positrons: τ loss τ esc and τ loss 1/E Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: sources are SNRs: kinetic energy output of SNe: 10M ejected with v 5 10 8 cm/s every 30 yr L SN,kin 3 10 42 erg/s explains local energy density of CR ǫcr 1 ev/cm 3 for a escape time from disc τ esc 6 10 6 yr 1.order Fermi shock acceleration dn/de E γ with γ = 2.0 2.2 diffusion with D(E) τesc (E) E δ and δ 0.5 explains observed spectrum E 2.6 electrons, positrons: τ loss τ esc and τ loss 1/E electrons dn /de E γ 1 positrons dn + /de E γ δ 1 Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

Astrophysical sources for anti-matter: CR secondaries standard secenario for Galactic CRs: sources are SNRs: kinetic energy output of SNe: 10M ejected with v 5 10 8 cm/s every 30 yr L SN,kin 3 10 42 erg/s explains local energy density of CR ǫcr 1 ev/cm 3 for a escape time from disc τ esc 6 10 6 yr 1.order Fermi shock acceleration dn/de E γ with γ = 2.0 2.2 diffusion with D(E) τesc (E) E δ and δ 0.5 explains observed spectrum E 2.6 electrons, positrons: τ loss τ esc and τ loss 1/E electrons dn /de E γ 1 positrons dn + /de E γ δ 1 ratio n + n E δ CR secondaries can not explain increasing positron fraction Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 3 / 18

Possible explanations for the PAMELA anomaly: Astrophysics: as primaries from pulsars supernova remnants (SNR) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 4 / 18

Possible explanations for the PAMELA anomaly: Astrophysics: as primaries from pulsars supernova remnants (SNR) Dark matter requires large boost factors 100 Sommerfeld enhancement dense, cold clumps Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 4 / 18

Possible explanations for the PAMELA anomaly: Astrophysics: as primaries from pulsars supernova remnants (SNR) Dark matter requires large boost factors 100 Sommerfeld enhancement dense, cold clumps exclusive coupling to leptons Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 4 / 18

Astrophysical explanations II: SNR [P. Blasi 09 ] N CR (E) N e (E) for energies E m p in acceleration region Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 5 / 18

Astrophysical explanations II: SNR [P. Blasi 09 ] N CR (E) N e (E) for energies E m p in acceleration region significant e ± production by CRs even for small τ pp in source Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 5 / 18

Astrophysical explanations II: SNR [P. Blasi 09 ] N CR (E) N e (E) for energies E m p in acceleration region significant e ± production by CRs even for small τ pp in source secondary e ± are accelerated, spectra becomes harder Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 5 / 18

Astrophysical explanations II: SNR [P. Blasi 09 ] N CR (E) N e (E) for energies E m p in acceleration region significant e ± production by CRs even for small τ pp in source secondary e ± are accelerated, spectra becomes harder several important implications for CR physics: increase of p/p, B/C,... Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 5 / 18

Positron ratio from SNR: [Blasi 09 ] Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 6 / 18

Antiproton ratio from SNR: [Blasi, Serpico 09 ] 0.001 Bohm-like ISM ISM+B term Total p - /p 0.0001 1e-05 B term A term 10 100 1000 Kinetic Energy, T [GeV] Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 7 / 18

Antiproton ratio from SNR: Supernova remnants Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 7 / 18

Antiproton ratio from SNR: [Blasi, Serpico 09 ] where J p,snrs (E) J p (E) 2 n 1 c [A(E) + B(E)] and ( ) 1 E A(E) = γ ξ + r2 dω ω γ 3D Emax 1(ω) m u 2 de E 2 γ σ p p (E, ω), 1 ω B(E) = τ SNR r Emax 2 E 2 γ de E 2 γ σ p p (E, E). E Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 8 / 18

Antiproton ratio from SNR: [Blasi, Serpico 09 ] where J p,snrs (E) J p (E) 2 n 1 c [A(E) + B(E)] and ( ) 1 E A(E) = γ ξ + r2 dω ω γ 3D Emax 1(ω) m u 2 de E 2 γ σ p p (E, ω), 1 ω B(E) = τ SNR r Emax 2 E 2 γ de E 2 γ σ p p (E, E). E A increases for large D and small u old SNR Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 8 / 18

Antiproton ratio from SNR: [Blasi, Serpico 09 ] where J p,snrs (E) J p (E) 2 n 1 c [A(E) + B(E)] and ( ) 1 E A(E) = γ ξ + r2 dω ω γ 3D Emax 1(ω) m u 2 de E 2 γ σ p p (E, ω), 1 ω B(E) = τ SNR r Emax 2 E 2 γ de E 2 γ σ p p (E, E). E A increases for large D and small u old SNR constraints: t acc D(E)/u 2 < τ SNR and D(E)/u 2 u 1 τ SNR Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 8 / 18

Advantage of a Monte Carlo framework: you don t need to think Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 9 / 18

Advantage of a Monte Carlo framework: you don t need to think easy to include: time-dependence of v sh, D,... Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 9 / 18

Advantage of a Monte Carlo framework: you don t need to think easy to include: time-dependence of v sh, D,... interactions: production of multi-particle states Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 9 / 18

Advantage of a Monte Carlo framework: you don t need to think easy to include: time-dependence of v sh, D,... interactions: production of multi-particle states Example: BS and AMS use as average energy fraction per antiproton/positron: ξ e + = Z e + n e + = 0.05, ξ p = Z p n p = 0.17 where Z p 1 σpp inel (E) de E E dσ p p (E, E ) de Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 9 / 18

Antiproton energy fraction: QDC simulations give Z e + 0.05 const. and Z p 0.02 const. 0.1 Z p (QGSJET) Z p (SIBYLL) Z p 0.01 0.001 1e+11 1e+12 1e+13 1e+14 1e+15 E/eV Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 10 / 18

Antiproton energy fraction: QDC simulations give Z e + 0.05 const. and Z p 0.02 const. 0.1 Z p (QGSJET) Z p (SIBYLL) Z p 0.01 0.001 1e+11 1e+12 1e+13 1e+14 1e+15 E/eV since multipicity increases fast, ξ e + = Z e +/n e + and ξ p = Z p /n p are strongly energy dependent Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 10 / 18

Disadvantage of the stationary framework: shock velocity is time-dependent acceleration efficiency, injection rate,...are time-dependent too Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 11 / 18

Disadvantage of the stationary framework: shock velocity is time-dependent acceleration efficiency, injection rate,...are time-dependent too replace parameter X(t) by suitable average X. Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 11 / 18

Disadvantage of the stationary framework: shock velocity is time-dependent acceleration efficiency, injection rate,...are time-dependent too replace parameter X(t) by suitable average X. downstream flux is infinite, E max is infinite choose appropriate value Emax > 10 TeV [Blasi, Serpico 09 ] acceleration zone SNR [Ahlers, Mertsch, Sarkar, 09 ] Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 11 / 18

Disadvantage of the stationary framework: shock velocity is time-dependent acceleration efficiency, injection rate,...are time-dependent too replace parameter X(t) by suitable average X. downstream flux is infinite, E max is infinite choose appropriate value Emax > 10 TeV [Blasi, Serpico 09 ] acceleration zone SNR [Ahlers, Mertsch, Sarkar, 09 ] large component A requires small v sh and large D, giving small E max protons accelerate efficiently early, produce secondaries in larger acceleration zone in late phase Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 11 / 18

Time-dependent framework: [MK, Ostapchenko, Tomas 10 ] spherical SNR shock; v sh (t) from self-similiar solutions Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 12 / 18

Time-dependent framework: [MK, Ostapchenko, Tomas 10 ] spherical SNR shock; v sh (t) from self-similiar solutions use random-walk with prescribed diffusion coefficient D Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 12 / 18

Time-dependent framework: [MK, Ostapchenko, Tomas 10 ] spherical SNR shock; v sh (t) from self-similiar solutions use random-walk with prescribed diffusion coefficient D E max result of acceleration process Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 12 / 18

Time-dependent framework: [MK, Ostapchenko, Tomas 10 ] spherical SNR shock; v sh (t) from self-similiar solutions use random-walk with prescribed diffusion coefficient D E max result of acceleration process QGSJET, JETSET for pp interactions, particle decays Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 12 / 18

Time-dependent framework: results for constant D(t) 1 model 1 model 2 E 2 F p 10-1 up down total 10-2 10 10 10 11 10 12 10 13 10 14 10 15 E (ev) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 13 / 18

Time-dependent framework: results for constant D(t) 1 model 1 model 2 E 2 F p 10-1 up down total 10-2 10 10 10 11 10 12 10 13 10 14 10 15 E (ev) only downstream spectrum, E E max, is stationary upstream is always non-stationary Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 13 / 18

Time-dependent framework: results for constant D(t) F - p / F p+p - 10-4 10-5 10-6 A B A+B 10-7 10 10 10 11 10 12 10 13 10 14 E (ev) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 14 / 18

Time-dependent framework: results for constant D(t) F - p / F p+p - 10-4 10-5 10-6 A B A+B 10-7 10 10 10 11 10 12 10 13 10 14 E (ev) component A grows as E 2+β = E 1, solely from increase of acceleration zone t acc D(E)/u 2 1 < τ SNR Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 14 / 18

Time-dependent framework: results for constant D(t) F - p / F p+p - 10-4 10-5 10-6 A B A+B 10-7 10 10 10 11 10 12 10 13 10 14 E (ev) component A grows as E 2+β = E 1, solely from increase of acceleration zone t acc D(E)/u 2 1 < τ SNR reacceleration is a misnamer Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 14 / 18

Time-dependent framework: results for constant D(t) F x - / F x+x - 10-1 10-2 10-3 10-4 10-5 10-6 e + /(e + +e - ) model 1 model 2 p/(p+p) - - 10 10 10 11 10 12 10 13 10 14 E (ev) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 15 / 18

Time-dependent framework: results with amplification/damping Bell: non-linear coupling between CRs and plasma (Alfven waves) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 16 / 18

Time-dependent framework: results with amplification/damping Bell: non-linear coupling between CRs and plasma (Alfven waves) non-linear amplification of B by factor O(100) efficient acceleration of CRs to/beyond the knee in early SNR Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 16 / 18

Time-dependent framework: results with amplification/damping Bell: non-linear coupling between CRs and plasma (Alfven waves) non-linear amplification of B by factor O(100) efficient acceleration of CRs to/beyond the knee in early SNR then CR damp Alfven waves, turbulent field homogenous field Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 16 / 18

Time-dependent framework: results with amplification/damping Bell: non-linear coupling between CRs and plasma (Alfven waves) non-linear amplification of B by factor O(100) efficient acceleration of CRs to/beyond the knee in early SNR then CR damp Alfven waves, turbulent field homogenous field we model amplification/damping by setting { 1/100 cp D = 20 cp eb, eb, t < t t > t Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 16 / 18

Time-dependent framework: results with amplification/damping E 2 F x 1 10-1 10-2 B F p 10 3 F e + 10-3 A 10-4 10 10 10 11 10 12 10 13 10 14 10 15 10 16 E (ev) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 17 / 18

Time-dependent framework: results with amplification/damping F - p / F p+p - 10-4 10-5 10-6 A B A+B 10-7 10 10 10 11 10 12 10 13 10 14 10 15 E (ev) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 17 / 18

Time-dependent framework: results with amplification/damping F x - / F - x+x 10-1 10-2 10-3 10-4 10-5 10-6 e + /(e + +e - ) p/(p+p) - - 10 10 10 11 10 12 10 13 10 14 E (ev) Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 17 / 18

Conclusions Prospects and Conclusions 1 Pulsars are natural solution to Pamela excess 2 Supernova remnants B,BS,AMS: E > 100GeV: p and B/C,... rising KOT: no reacceleration, no rise 3 Origin of difference: partly in interactions use of inconsistent effective parameters in stationary approach 4 test by AMS Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 18 / 18

Conclusions Prospects and Conclusions 1 Pulsars are natural solution to Pamela excess 2 Supernova remnants B,BS,AMS: E > 100GeV: p and B/C,... rising KOT: no reacceleration, no rise 3 Origin of difference: partly in interactions use of inconsistent effective parameters in stationary approach 4 test by AMS Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 18 / 18

Conclusions Prospects and Conclusions 1 Pulsars are natural solution to Pamela excess 2 Supernova remnants B,BS,AMS: E > 100GeV: p and B/C,... rising KOT: no reacceleration, no rise 3 Origin of difference: partly in interactions use of inconsistent effective parameters in stationary approach 4 test by AMS Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 18 / 18

Conclusions Prospects and Conclusions 1 Pulsars are natural solution to Pamela excess 2 Supernova remnants B,BS,AMS: E > 100GeV: p and B/C,... rising KOT: no reacceleration, no rise 3 Origin of difference: partly in interactions use of inconsistent effective parameters in stationary approach 4 test by AMS Michael Kachelrieß (NTNU Trondheim) Antimatter from Supernova Remnants TeVPA, Paris 2010 18 / 18