Introduction to SIMS Basic principles Components Techniques Drawbacks Figures of Merit Variations Resources

Similar documents
Secondary Ion Mass Spectrometry (SIMS)

Secondaryionmassspectrometry

Secondary ion mass spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Lecture 22 Ion Beam Techniques

Secondary ion mass spectrometry (SIMS)

Ionization Techniques Part IV

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS)

ToF-SIMS or XPS? Xinqi Chen Keck-II

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectrometry (SIMS)

TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS)

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

Application of Surface Analysis for Root Cause Failure Analysis

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

IV. Surface analysis for chemical state, chemical composition

Lecture 11 Surface Characterization of Biomaterials in Vacuum

Secondary-Ion Mass Spectrometry

Secondary Ion-Mass Spectroscopy (SIMS)

Surface and Interface Characterization of Polymer Films

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

Auger Electron Spectroscopy

MSE 321 Structural Characterization

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

ION BEAM TECHNIQUES. Ion beam characterization techniques are illustrated in Fig

SNMS. SNMS Applications. Combined SIMS and SNMS

Surface analysis techniques

Auger Electron Spectroscopy (AES)

Auger Electron Spectroscopy *

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

3 - Atomic Absorption Spectroscopy

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

MS482 Materials Characterization ( 재료분석 ) Lecture Note 12: Summary. Byungha Shin Dept. of MSE, KAIST

Introduction to GC/MS

In-situ Ar Plasma Cleaning of Samples Prior to Surface Analysis

Secondary Ion Mass Spectrometry (SIMS) for Surface Analysis

The Benefit of Wide Energy Range Spectrum Acquisition During Sputter Depth Profile Measurements

Surface Analysis - The Principal Techniques

1 Introduction COPYRIGHTED MATERIAL. 1.1 HowdoweDefinetheSurface?

QUESTIONS AND ANSWERS

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

ELECTROMAGNETIC WAVES

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

5) Surface photoelectron spectroscopy. For MChem, Spring, Dr. Qiao Chen (room 3R506) University of Sussex.

5.8 Auger Electron Spectroscopy (AES)

Segregated chemistry and structure on (001) and (100) surfaces of

XPS & Scanning Auger Principles & Examples

Characterization of individual free-standing nanoobjects by cluster SIMS in transmission

MSE 321 Structural Characterization

Methods of surface analysis

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Sputtering by Particle Bombardment

FIB - SIMS. Focussed Ion Beam Secondary Ion Mass Spectrometry.

1.1 Atomic structure

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

A DIVISION OF ULVAC-PHI

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

Auger Electron Spectrometry. EMSE-515 F. Ernst

Fig 1: Auger Electron Generation (a) Step 1 and (b) Step 2

Photoelectron Spectroscopy using High Order Harmonic Generation

EE 527 MICROFABRICATION. Lecture 5 Tai-Chang Chen University of Washington

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS

Use of PV 25 in the PV Industry: Strengths and Weaknesses. Larry Wang, Ph.D. Evans Analytical Group Sunnyvale, CA, USA

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity

Accelerator Mass Spectroscopy

Auger Electron Spectroscopy Overview

ECE Semiconductor Device and Material Characterization

A DIVISION OF ULVAC-PHI. Time-of-Flight Secondary Ion Mass Spectrometer with Parallel Imaging MS/MS for Confident Molecular Identification

X-Ray Fluorescence and Natural History

Characterization of Ultra-Shallow Implants Using Low-Energy Secondary Ion Mass Spectrometry: Surface Roughening under Cesium Bombardment

Applications of XPS, AES, and TOF-SIMS

A DIVISION OF ULVAC-PHI. Quantera II. Scanning XPS Microprobe

CHAPTER 2: Atoms, Molecules and Stoichiometry

Contrasted strengths and weakness of EDS, WDS and AES for determining the composition of samples

Proportional Counters

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

Interfacial Chemistry in Solid-state Batteries: Formation of

SIMS XVIII SIMS Course Depth Profiling

Application of surface analysis for root cause failure analysis

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST

Secondary Ion Mass Spectrometry (SIMS)

EDS User School. Principles of Electron Beam Microanalysis

Fundamentals of Nanoscale Film Analysis

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

Surface and Thin Film Analysis with Electron and Mass Spectrometric Techniques

Thermo Scientific K-Alpha + XPS Spectrometer. Fast, powerful and accessible chemical analysis for surface and thin film characterization

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Harris: Quantitative Chemical Analysis, Eight Edition

Acidic Water Monolayer on Ruthenium(0001)

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

TANDEM MASS SPECTROSCOPY

L. Seda Mut Neslihan Ötük

X-Ray Photoelectron Spectroscopy (XPS)

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

High-Precision Evaluation of Ultra-Shallow Impurity Profiles by Secondary Ion Mass Spectrometry

Transcription:

Introduction to SIMS Basic principles Components Techniques Drawbacks Figures of Merit Variations Resources

New technique for surface chemical analysis. SIMS examines the mass of ions, instead of energy of electron, escaped from a solid surface to obtain information on surface chemistry. The term secondary ion is used to distinguish primary ion that is the energy source for knocking out ions from a solid surface.

The advantages of SIMS over electron spectroscopy are: 1) Detection of all the chemical elements in the periodic table, including hydrogen which cannot be detect by the AES and XPS. 2) Detection of element in concentrations as low as 10-6, while AES or XPS detection limits are concentration levels of 0.1 atom%. 3) Limitation of the detection to the top one or two atomic layers of a solid surface (<1 nm). 4) Distinguish between different isotopes of elements.

SIMS can be either destructive and nondestructive to the surface being analyses. Destructive types called dynamic SIMS. Nondestructive types called Static SIMS. SIMS can be used to determine the composition of organic and inorganic solids at the outer 5 nm of a sample.

To determine the composition of the sample at varying spatial and depth resolutions depending on the method used. This can generate spatial or depth profiles of elemental or molecular concentrations. These profiles can be used to generate element specific images of the sample that display the varying concentrations over the area of the sample. To detect impurities or trace elements, especially in semi-conductors and thin filaments.

SIMS uses energized primary particles, usually ions such as Ar+, Gr+ and Cs+, to bombard a solid surface in order to induce sputtering of secondary particles from an area. The secondary particles include electrons, neutral species of atoms or molecules, and ions. The majority of the secondary particles are neutral and not useful in SIMS. Only the secondary ions generated by the bombarding process carry chemical information

Secord, the interactions are often more than a simply one-to-one knock-out of a surface ion by a primary ion. The primary ions induce a series of collisions (collision cascade) in a solid because the energy of a primary ion is transferred by collisions between atoms in a solid before secondary ions on the surface are emitted. The generation of secondary ions involves sputtering and ionization.

University of Arizona SIMS, http://www.u.arizona.edu/~xiuminj/web/simsdefault.htm Video

The sample is prepared in an ultra high vacuum. A beam of primary ions or neutral particles impacts the surface with energies of 3-20 kev. A primary ion or particle causes a collision cascade amongst surface atoms and between 0.1 and 10 atoms are usually ejected. This process is termed sputtering. The sputter yield depends on the nature of the analyzed.

Video Video Of these ejected atoms some are ionized (usually less than 10%), these are the secondary ions. The matrix of a sample must be known to accurately determine elemental concentrations, as ionization yields can vary as much as three orders of magnitude between nearly identical atomic sputtering yields. Secondary ions can then be analyzed using mass spectroscopy. http://www.siu.edu/~cafs/surface/file6.html

Primary particles are accelerated through an electrical field. Kinetic energy and thus particle velocity are generated through the relationship of E k = qv = ½ mv 2. The particles used are either reactive (often: O -, O 2+, or Cs + ) or inert (usually: Ar +, Ar, Xe +, Xe, He +, or Ne + ) Ion flux is the term used to quantify the number of primary ions which bombard an anlalyte per unit time and area. The beam current usually affects the analyte on magnitudes ranging from na to ma per cm 2. Ablation is the term used to describe the process of primary ions eating away at the sample by ejecting secondary ions.

The atoms tend to be ionized at varying levels. The sample matrix must be known, because it effects the propensity of an atom to be ejected in its ionic form. For instance the Cu + fraction of sputtered Cu from metallic copper and copper oxide differs by a factor of 24. Ionization rates are compared to Cs, which is ionized very easily, its ionization efficiency is 1. The correction is necessary, otherwise the composition of a sample will be underestimated for all atoms but Cs.

A solid matrix standard must be used to match the analyte s matrix. Matrix specific Relative Sensitivity Factors (RSFs) are used to correct for sputtering yields and ionization efficiencies. -http://www.cea.com/cai/simstheo/rsf.htm

Static SIMS are used to determine surface concentrations of elements and molecules without significantly altering the analyte. Imaging SIMS like static SIMS does not alter the analyte appreciably. This mode is used to generate images or maps of analytes based upon concentrations of one secondary ion representing either an element or molecule. Dynamic SIMS involves the use of a much higher energy primary beam (larger amp beam current). It is used to generate sample depth profiles.

Low ion flux is used. This means a small amount of primary ions is used to bombard the sample per area per unit time. Sputters away approximately only a tenth of an atomic monolayer. Ar +, Xe +, Ar, and Xe are the commonly used particles present in the primary particle beam, which has a diameter of 2-3 mm. The analysis typically requires more than 15 minutes. This technique generates mass spectra data well suited for the detection of organic molecules.

Fragmentation and subsequent ion formation of the sample can reveal the overall structure of the molecule through mass spectrometry. Polymethylmethacrylate SIMS (a) positve and (b) negative

The mass spectrometer is set to only detect one mass. The particle beam traces a raster pattern over the sample with a low ion flux beam, much like Static SIMS. Typical beam particles consists of Ga + or In + and the beam diameter is approximately 100 nm. The analysis takes usually less than 15 min. The intensity of the signal detected for the particular mass is plotted against the location that generated this signal. Absolute quantity is difficult to measure, but for a relatively homogeneous sample, the relative concentration differences are measurable and evident on an image. Images or maps of both elements and organics can be generated.

Scanning ion image of granite from the Isle of Skye. -University of Arizona SIMS 75 x 100 micrometers.

The higher ion flux used in dynamic SIMS eats away at the surface of the analyte, burying the beam steadily deeper into the sample and generating secondary ions that characterize the composition at varying depths. The beam typically consists of O 2 + or Cs + ions and has a diameter of less than 10 μm. The experiment time is typically less than a second. Ion yield changes with time as primary particles build up on the analyte effecting the ejection and path of secondary ions.

Depth profile of hydrogen embedded in Silicon. http://www.siu.edu/~cafs/surface/file6.html

Depth analysis is limited by the embedding of primary ions into the sample. This can cause charge build up, which will especially distort the path of secondary ions of an electrical insulator. Resolution of the analytes is decreased by the fact that the surface may wear down differently throughout the sample. Stoichiometric and matrix properties of the analyte must be known to interpret the data. Inconsistencies in sputter yield. Inconsistencies in atomic ionization. Sample is at least partially destroyed in the analysis process.

At low frequency ion bombardment the outer most 5 nm of a sample can be characterized. Secondary ion images have resolution on the order of.5 to 5 μm. Detection limits for trace elements range between 10 12 to 10 16 atoms/cc. Detection limits are affected by stray ions and electrons in the vacuum instrument system and by cosmic rays. Their presence can create currents called dark currents, which can drown out a weak secondary ion signal. Spatial resolution is determined by primary ion beam widths, which can be as small as 100 nm.

Sputtered Neutral Mass Spectrometry (SNMS) involves the depth analysis of samples by collecting neutral atoms and clusters followed by ionization and mass spectrometry. This technique s elemental sensitivities are fairly independent of the matrix. and thus it can be used for quantification with greater accuracy over dynamic SIMS, although the DL is higher. Time of Flight Secondary Ion Mass Spectroscopy involves pulsed particle beams.

Dr. Marx. Surfaces and Contact Mechanics http://www.siu.edu/~cafs/surface/file6.html Arizona State Univeristy SIMS Lab http://www.asu.edu/clas/csss/sims/ Charles Evans & Associates. Secondary Ion Mass Spectrometry Theory Tutorial. http://www.cea.com/cai/simstheo/caistheo.htm University of Arizona. Secondary Ion Mass Specrtoscopy. http://www.u.arizona.edu/~xiuminj/web/simsdefaul t.htm Rubinson, KA and Rubinson JF. Contemporary Instrumental Analysis. Prentice-Hall, Inc., Upper Saddle River, New Jersey. 2000. Pp. 536-555. Montana State University Dept of Physics. SIMS. http://www.physics.montana.edu/ical/pages/sims.h tm