Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Similar documents
Fermi gases in an optical lattice. Michael Köhl

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Cold fermions, Feshbach resonance, and molecular condensates (II)

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Universal quantum transport in ultracold Fermi gases

High-Temperature Superfluidity

Ultracold Fermi Gases with unbalanced spin populations

A Mixture of Bose and Fermi Superfluids. C. Salomon

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

F. Chevy Seattle May 2011

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Dimensional BCS-BEC crossover

Experiments with an Ultracold Three-Component Fermi Gas

Reference for most of this talk:

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Lecture 3 : ultracold Fermi Gases

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

BEC and superfluidity in ultracold Fermi gases

Superfluidity of a 2D Bose gas (arxiv: v1)

Lecture 4. Feshbach resonances Ultracold molecules

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

arxiv: v3 [cond-mat.quant-gas] 1 Dec 2011

A Mixture of Bose and Fermi Superfluids. C. Salomon

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej)

SUPPLEMENTARY INFORMATION

Low-dimensional Bose gases Part 1: BEC and interactions

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

Publications. Articles:

Superfluidity in interacting Fermi gases

Path-integrals and the BEC/BCS crossover in dilute atomic gases

Cooperative Phenomena

Impurities and disorder in systems of ultracold atoms

Design and realization of exotic quantum phases in atomic gases

hal , version 1-9 Jan 2007

The BCS-BEC Crossover and the Unitary Fermi Gas

Equilibrium and nonequilibrium properties of unitary Fermi gas. Piotr Magierski Warsaw University of Technology

Strongly correlated systems: from electronic materials to cold atoms

Equilibrium and nonequilibrium properties of unitary Fermi gas from Quantum Monte Carlo

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover

Fermi Condensates ULTRACOLD QUANTUM GASES

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

BCS to BEC Crossover and the Unitarity Fermi Gas. Mohit Randeria Ohio State University Boulder School on Modern aspects of Superconductivity

BCS-BEC BEC Crossover at Finite Temperature in Cold Gases and Condensed Matter KITP

Condensate fraction for a polarized three-dimensional Fermi gas

Disordered Ultracold Gases

A study of the BEC-BCS crossover region with Lithium 6

Probing dynamical properties of Fermi-Hubbard systems with a quantum gas microscope Peter Brown Bakr Lab Solvay workshop, February 19 th 2019

Is an Ultra-Cold Strongly Interacting Fermi Gas a Perfect Fluid?

Optical Trapping and Fundamental Studies of Atomic Fermi Gases

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

arxiv: v4 [cond-mat.quant-gas] 1 Oct 2015

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Equation of state of the unitary Fermi gas

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

Strongly paired fermions

Dynamics of two and three component Fermi mixtures

Lecture 2: Ultracold fermions

When superfluids are a drag

1. Cold Collision Basics

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Ultracold molecules - a new frontier for quantum & chemical physics

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Lattice modulation experiments with fermions in optical lattices and more

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Exact relations for two-component Fermi gases with contact interactions

Shock waves in the unitary Fermi gas

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Lecture 3. Bose-Einstein condensation Ultracold molecules

From laser cooling to BEC First experiments of superfluid hydrodynamics

Quantum limited spin transport in ultracold atomic gases

Interference experiments with ultracold atoms

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Cooling and Trapping Neutral Atoms

Time-dependent density-functional theory for trapped strongly interacting fermionic atoms

Bose-Bose mixtures in confined dimensions

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

synthetic condensed matter systems

Learning about order from noise

Fundamentals and New Frontiers of Bose Einstein Condensation

Non-Equilibrium Physics with Quantum Gases

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

3D Hydrodynamics and Quasi-2D Thermodynamics in Strongly Correlated Fermi Gases. John E. Thomas NC State University

Fermi polaron-polaritons in MoSe 2

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Confining ultracold atoms on a ring in reduced dimensions

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

Transcription:

Two-dimensional atomic Fermi gases Michael Köhl Universität Bonn

Ultracold Fermi gases as model systems BEC/BCS crossover Search for the perfect fluid: Cold fermions vs. Quark-gluon plasma Cao et al., Science (2012) Few particles systems, observation of Efimov states h/s > 1/4p (universal in strong coupling?) Strongly-correlated quantum phases in Optical lattices e.g. Fermi Hubbard model

Fermionic Pairing Bose Einstein condensate of molecules BCS superfluid

Fermionic Pairing BCS superfl

Fermionic Pairing a Magnetic field Feshbach scattering resonance 3000 Unitary interaction BCS superfl 0-3000 200 210 B[G]

Fermionic Pairing Crossover superfluid Unitary Fermi gas BCS superfl

Fermi pair condensates Composite bosons

Fermi condensates C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004)

Vortex lattices in the crossover M.W. Zwierlein et al., Nature 435, 1047 (2005)

BEC-BCS crossover What happens in reduced dimensions?

Two-dimensional Fermi gases Two-dimensional gases: the grand challenge of condensed matter physics High-T c superconductors: After 25 years of research still many open questions Material is too complicated to understand even the basic mechanism How can cold atoms help?. Cleanliness, tunability, testing models.

Quasi-2D geometry Strong axial harmonic confinement Conditions for 2D: E F, k B T << ħw z Spin ½ Fermi gas with contact interaction 2p Mean-field coupling constant in 2D g2d (Bloom 1975) m 2 1 ln( k a F 2D ) - -1 0 1 ln k 2D Fa Bose gas of dimers strongly interacting 2D Fermi gas Fermi liquid non-interacting 2D Fermi gas BKT transition at T BKT 0.1 T F in the strongly interacting regime T BKT decays exponentially towards weak attractive interactions (as in 3D) Theory: Bloom, P.W. Anderson, Randeria, Shlyapnikov, Devreese, Julienne, Duan, Zwerger, Giorgini, Sa de Melo,... Experiment: B. Fröhlich et al., PRL 106, 105301 (2011), Inguscio, Grimm, Esslinger, Jochim, Moritz, Turlapov, Vale, Zwierlein

Cold atoms meets condensed matter Quasiparticle spectroscopy by momentum-resolved photoemission (aka ARPES) Spin transport and spin diffusion

Quasiparticle spectroscopy

Momentum-resolved RF spectroscopy Energy E ħw RF 3>= -5/2> 3> (E,k) ħw RF >= -7/2> >= -9/2> 202G Feshbach resonance ħw RF final state 3> (weak interactions) 2 k E f ( k) 2m i 2 initial state, e.g. BCS-like dispersion 2 2 2 k 2 E ( k) 2m momentum k ARPES in 3D Experiment: Jin Theory: Georges, Strinati, Levin, Ohashi, Zwerger, Drummond,...

Spin-balanced Fermi liquid Landau-Fermi liquid quasi-particles are fermionic finite lifetime 1/t ~ (k-k F ) 2 (longlived near the Fermi surface) effective mass: m*/m > 1, depending on interaction strength Fermi liquid: E F, k B T < ħw (two-dimensional) E B < k B T (no pairing) - -1 0 1 Bose gas of dimers strongly interacting 2D Fermi gas Fermi liquid ln k 2D Fa non-interacting 2D Fermi gas g=1/ln(k F a 2D ) < 1 (weak interactions)

Comparison with theory Single-particle spectral function Experiment Theory Effective mass parameter T/T F =0.3 B. Fröhlich et al., Phys. Rev. Lett. 109, 130403 (2012)

Strongly imbalanced Fermi gases in 2D The N+1 problem: one > impurity in a large > Fermi sea Mobile impurity interacting with a Fermi sea of atoms Tunable interactions repulsive polaron Energy ln(k F a 2D ) Polaron properties determine phase diagram of imbalanced Fermi mixtures molecule attractive polaron 3D Theory: Bruun, Bulgac, Chevy, Giorgini, Lobo, Prokofiev, Stringari, Svistunov,... 3D Experiment: Zwierlein, Salomon, Grimm, Jochim 2D Theory: Bruun, Demler, Enss, Parish, Pethick, Recati,...

Characterizing the attractive polaron Energy repulsive polaron ln(k F a 2D ) attractive polaron molecule free-particle dispersion subtracted Theory from: R. Schmidt, T. Enss, V. Pietilä, E. Demler, PRA 85, 021602 (2012) 0 Signal 1 M. Koschorreck et al., Nature 485, 619 (2012)

Coherence of the polaron Rabi oscillations between polaron and free particle E [khz] 0-10 -20-30 0 4 8 k[μm -1 ] Incoherent transfer: rate ~ amplitude M. Koschorreck et al., Nature 485, 619 (2012)

Spin transport

Spin transport: spintronics Chalmers Vision: Transport of information by spin excitations rather than charges Non-volatile Less dissipation, energy consumption

Spin transport: simple model n (x) n (x) x No interactions: ballistic transport Strong interactions: diffusion j = D d(n n ) dx Diffusion constant D v n Fermi velocity: Density: Cross section: v k F / 3 n k F 1 2 k F m D m Quantum limit of diffusivity for 1 2 k F

Spin diffusion Semiconductor nanostructures 3D Fermi gases at unitarity D 2 10 m D 6.3 m Weber et al., Nature (2005) Zwierlein group, Nature (2011) Thywissen group, Science (2014)

Spin dynamics transversely polarized Fermi gas

Longitudinal vs. transverse diffusion Magnetisation: longitudinal ~1/T 2 transverse Mullin & Jeon (1992)

Spin-echo technique p/2 p p/2 0 t 2t time Eliminates effect of magnetic field gradient M z (t) = characteristic exponent Theory: Hahn, Purcell, Leggett, Mullin, Dobbs, Lhuillier, Laloe,... Experiment in 3He: Osheroff M. Koschorreck et al., Nature Physics 9, 405 (2013).

Spin diffusion in the strongly interacting regime Smallest spin diffusion constant ever measured: 0.007(1) ħ/m. M. Koschorreck et al., Nature Physics 9, 405 (2013).

Implications of D< ħ/m v Reminder: diffusion constant D n vl MFP Mean free path Mean particle separation Spin diffusivity D < ħ/m l MFP < d Resistivity of metals (semiclassically): MFP Mean-free path for collisions with phonons or electrons As function of temperature: l MFP ~ 1/T BUT: Ioffe-Regel criterion l MFP > d Saturation of resistivity

Strongly correlated materials Possible ideas for resistivity in solids: Violation of quasiparticle picture [Nature 405, 1027-1030 (2000)] Modification of kinetic theory by correlation effects du to stong interactions [PRB 66, 205105 (2002)] For cold atoms?

Weakly interacting regime r COM M. Koschorreck et al., Nature Physics 9, 405 (2013)

Damping and frequency shift non-interacting strongly interacting M. Koschorreck et al., Nature Physics 9, 405 (2013)

Damping and frequency shift Mode softening Spin-dipole mode becomes overdamped in the strongly interacting regime [Stringari et al., PRA 2000]. Measured damping rate scales as ~ 1/ln(k F a 2D ) Scattering rate ~ 1/ln(k F a 2D ) 2 Ramsey-dephasing rate: g Ramsey 1600 Hz strongly interacting non-interacting M. Koschorreck et al., Nature Physics 9, 405 (2013)

Summary Measurement of single-particle spectral function to observe Fermi liquid (Pseudogap) Polarons Spin diffusion with D~0.01 ħ/m

Thanks Fermi gases Trapped ions J. Bernardoff, F. Brennecke, E. Cocchi, J. Drewes, M. Koschorreck, L. Miller, D. Pertot, A. Behrle, K. Gao, T. Harrison, J. Andrijauskas T. Ballance, L. Carcagni, M. Link, H.-M. Meyer, R. Maiwald, J. Silver www.quantumoptics.eu : Alexander-von-Humboldt Foundation, DFG, EPSRC, ERC, ITN Comiq