Reaction rates for nucleosynthesys of light and intermediate-mass isotopes

Similar documents
Cross section measurements of fusion reactions at astrophysically relevant energies: the LUNA experiment

at Gran Sasso Laboratories, Italy

Hydrogen & Helium Burning in Stars

«Ettore Majorana» International School of Subnuclear Physics Erice, 14th-23rd June 2016

Latest results from LUNA

The LUNA experiment at the Gran Sasso Laboratory

Direct measurement of the 2H(α,γ)6Li cross section at energies of astrophysical interest

The LUNA - MV project at the Gran Sasso Laboratory

Neutrino physics and nuclear astrophysics:

Experimental setup. Alpha beam. Deuterium exhaust. - Germanium detector close to the beam line to. increase the detection efficiency

Experimental study of the 14 N(p,γ) 15 O reaction

arxiv: v1 [nucl-ex] 18 Nov 2016

arxiv: v1 [nucl-ex] 4 Feb 2009

Perspectives on Nuclear Astrophysics

Nuclear Astrophysics Underground Status & Future

PoS(FRAPWS2016)005. LUNA: hydrogen, helium and carbon burning under Gran Sasso. Carlo Broggini. INFN-Sezione di Padova

H/He burning reactions on unstable nuclei for Nuclear Astrophysics

STUDY OF THE RESONANCES AT 417, 611, AND

Underground nuclear astrophysics and the Sun

Recent results and status of the

Ness LUNA II facility. INFN underground Gran Sasso Laboratories. P. Corvisiero INFN - Italy

Neutrino Physics and Nuclear Astrophysics: the LUNA-MV project at Gran Sasso

arxiv: v1 [nucl-ex] 3 Oct 2016

Explosive Phenomena in Astrophysics and Nuclear Reactions Studies

Primer: Nuclear reactions in Stellar Burning

Lecture #1: Nuclear and Thermonuclear Reactions. Prof. Christian Iliadis

Nuclear astrophysics at Gran Sasso Laboratory: LUNA experiment

Stellar Evolution: what do we know?

arxiv:astro-ph/ v1 2 Mar 2004

(EXPERIMENTAL) NUCLEAR ASTROPHYSICS. study energy generation processes in stars study nucleosynthesis of the elements

Ne(p,γ) 23 Na MEASUREMENT AT LUNA II AND IMPACT ON ASTROPHYSICAL SCENARIOS. MARIE-LUISE MENZEL for the LUNA collaboration

Nuclear Astrophysics - I

arxiv: v1 [nucl-ex] 17 Nov 2015

new LUNA rate for 22 Ne(p,γ) 23 Na

LUNA-400 and LUNA-MV: present and future of Nuclear Astrophysics at LNGS

arxiv: v1 [astro-ph.sr] 22 Jul 2011

Scientific goal in Nuclear Astrophysics is to explore:

Preparation and characterisation of isotopically enriched Ta 2 O 5 targets for nuclear astrophysics studies

arxiv:nucl-ex/ v1 9 Feb 2006

Reaction rates in the Laboratory

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

Impact of Nuclear Reaction Uncertainties on AGB Nucleosynthesis Models

What Powers the Stars?

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

Hands on LUNA: Detector Simulations with Geant4

Direct measurement of the 17 O(p,α) 14 N reaction at energies of astrophysical interest at LUNA

Nuclear Astrophysics

High-precision (p,t) reactions to determine reaction rates of explosive stellar processes Matić, Andrija

Experiments on reaction rates for the astrophysical p-process

Topics in Nuclear Astrophysics II. Stellar Reaction Rates

arxiv: v1 [astro-ph.sr] 2 Nov 2016

Resonant Reactions direct reactions:

Lifetime measurement of the MeV state in 15O with the AGATA Demonstrator

AGB stars as laboratories for nuclear physics

DIANA A NEXT GENERATION DEEP UNDERGROUND ACCELERATOR FACILITY

High Resolution Spectroscopy in Nuclear Astrophysics. Joachim Görres University of Notre Dame & JINA

Solar Neutrinos. Solar Neutrinos. Standard Solar Model

Experimental Nuclear Astrophysics: Lecture 1. Chris Wrede National Nuclear Physics Summer School June 19 th, 2018

The MonKey Project. An Update on Stellar Yields

Nuclear Astrophysics II

The 14 N(p,γ) 15 O reaction studied at low and high beam energy

The 3 He(α, γ ) 7 Be S-factor at solar energies: The prompt γ experiment at LUNA

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Indirect techniques for astrophysical reaction rates determinations. Faïrouz Hammache (IPN-Orsay)

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows

Ne(alpha,n) revisited

Experimental Study of Stellar Reactions at CNS

Nuclear Physics for Astrophysics: from the Laboratory to the Stars

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

The Monash Chemical Yields Project

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

p-process simulations with an updated reaction library I. Dillmann (TUM), F. Käppeler (FZK), T. Rauscher (Basel), F.-K. Thielemann (Basel)

Evolution and nucleosynthesis prior to the AGB phase

Mixing, Nucleosynthesis, and Stellar Yields in Intermediate Mass AGB stars

Nuclear Astrophysics

Astrophysical Nucleosynthesis

Felsenkeller 5 MV underground accelerator: Towards the Holy Grail of Nuclear Astrophysics 12 C(α, γ) 16 O

Nuclear Astrophysics : an introduction

Evolution of Intermediate-Mass Stars

MAJOR NUCLEAR BURNING STAGES

PoS(NIC XI)019. Low energy beam induced background studies for a. 12 C( 12 C,p) 23 Na reaction cross section measurement

MRC-1: Low Energy Nuclear Reactions and Stellar Evolution

NEW RESULTS FOR THE ASTROPHYSICAL S-FACTOR AND REACTION RATE OF RADIATIVE 3 Не 4 Не CAPTURE

Astronomy 404 October 9, 2013

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

An Alternative Method for the Measurement of Stellar Nuclear-Reaction Rates

Experimental Initiatives in Nuclear Astrophysics

Determining Two Reaction Rates in Novae using the ANCs Technique. Tariq Al-Abdullah Hashemite University, Jordan Russbach, March 2011

PoS(ENAS 6)048. Modified r-matrix analysis of the 19 F(p,α) 16 O HOES reaction. M. La Cognata

How Nature makes gold

He-Burning in massive Stars

Neutron induced reactions & nuclear cosmo-chronology. chronology. A Mengoni IAEA Vienna/CERN, Geneva

Nuclear astrophysics studies with charged particles in hot plasma environments

Theory for nuclear processes in stars and nucleosynthesis

Neutron capture cross sections on light nuclei

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

arxiv: v1 [nucl-ex] 30 Sep 2008

Decay spectroscopy for nuclear astrophysics

Recoil Separators for Nuclear Astrophysics studies Manoel Couder

Transcription:

Reaction rates for nucleosynthesys of light and intermediate-mass isotopes Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear Astrophysics (JINA) gianluca.imbriani@na.infn.it

but before I would like to remind..

s [b] Charged particle reaction in stars nuclear well V E C ~ z 1 z 2 r n z 1 z 2 Example z 1 =p and z 2 =p (e.g. in the Sun) projectile r E ~ kt T ~ 15x10 6 K E = kt ~ 1 kev E C = 550 kev during quiescent burnings: kt << E c reactions occur through TUNNEL EFFECT 1E-04 1E-08 1E-12 1E-16 1E-20

S [kev b] Astrophysical factor and Gamow peak σ E S E E exp - 2 η Z Z e 1 2 ν 2 10 8 6 4 2 0 0 200 400 600 800 1000 1200 140 E [kev] reaction Coulomb barrier (kev) E 0 (kev) p + p 550 5.9 + 12 C 3430 56 16 O + 16 O 14070 237 Maxwell-Boltzmann distribution Gamow peak Tunneling through Coulomb barrier

sub-threshold resonance S(E)-FACTOR many orders of magnitude CROSS SECTION s(e) LOG SCALE Problem of extrapolation resonance E G non-resonant direct measurements S(E) LINEAR SCALE extrapolation needed! extrapolation direct measurement E G low-energy tail of broad resonance non resonant process p+p [kev] 3 He+ 3 He [kev] 3 He+ 4 He [kev] Interaction energy E 7 Be+p [kev] 14 N+p [kev] 6 22 23 18 27 Most of the reactions of astrophysical interest happen via radiative capture. 3 He(,g) 7 Be, 14 N(p,g) 15 O, 12 C(,g) 16 C... -E r 0 E r interaction energy E

Why going underground 1 st 40 K 214 Bi 232 Th Gran Sasso shielding: 3800 m w.e. 40 K 214 Bi 232 Th E>4MeV 0.45 0.04 0.10 0.38 0.09 0.04 0.04 0.0008 environmental radioactivity cosmic rays Therefore, the advantage of an underground environment is evident for high Q-value reactions such as 14 N(p,g) 15 O, 15 N(p,g) 16 O, 17 O(p,g) 18 F, 25 Mg(p,g) 26 Al... Radiation muons neutrons LNGS/out 10-6 10-3

Why going underground 2 nd 11 B(p,g) 12 C HpGe spectrum E cm = 230keV «light» Pb shielding Beam induced background 14 N(p,g) 15 O - EPJA 25(2005)

LUNA 1997-2012 - experimental set-ups LNGS Lab LUNA I 50 kv Voltage Range : 1-50 kv Output Current: 1 ma Beam energy spread: 20 ev LUNA II 400 kv Voltage Range : 50-400 kv Output Current: 500 ma Beam energy spread: 70 ev

LUNA program: astrophysical motivation Solar neutrinos: 3 He( 3 He, 2p) 4 He, 3 He(,g) 7 Be, 14 N(p,g) 15 O Big Bang nucleosynthesis: 2 H(p,g) 3 He, 3 He(,g) 7 Be, 4 He(d,g) 6 Li Age of Globular Clusters and C production in AGB: 14 N(p,g) 15 O Light nuclei nucleosynthesis - 17 O/ 18 O abundaces, F origin, 26 Al g-ray in the Galaxy, 26 Mg excess...: 15 N(p,g) 16 O, 17 O(p,g) 18 F(b + ) 18 O, 25 Mg(p,g) 26 Al(b + ) 26 Mg

14 N(p,g) 15 O: LUNA results LUNA/NACRE BGO spectrum E cm =70keV HpGe spectrum E cm =110keV D. Bemmer, et al. NuPhyA 779(2006) G. Imbriani, et al., EPJA 25(2005)

14 N(p,g) 15 O: astrophysical consequences G. Imbriani, et al., A&A 420(2004) Stellar calculation done with the FRANEC code The age of the oldest Globular Clusters should be increased by about 0.7-1 Gyr. The lower limit to the Age of the Universe is 14 ± 1 Gyr. In good agreement with the precise detrmination of WMAP. With 14 N(p,γ) 15 O rate = ½ of NACRE better agreement between observation and calculation.

H-shell burning @LUNA Solar neutrinos: 3 He( 3 He, 2p) 4 He, 3 He(,g) 7 Be 14 N(p,g) 15 O Big Bang nucleosynthesis: 2 H(p,g) 3 He, 3 He(,g) 7 Be, 4 He(d,g) 6 Li Age of Globular Clusters and C production in AGB : 14 N(p,g) 15 O Light nuclei nucleosynthesis - 17 O/ 18 O abundaces, F origin, 26 Al g-ray in the Galaxy, 26 Mg excess...: 15 N(p,g) 16 O, 17 O(p,g) 18 F(b + ) 18 O, 25 Mg(p,g) 26 Al(b + ) 26 Mg,

15 N(p, )/(p,g): first branch of the CNO cycle S(0) kevb DIRECT MEASUREMENTS Hebbard 60 NuPhy 15(1960) Rolfs 74 NuPhy A 235(1974) LUNA-ND PRC 82(2010) INDIRECT MEASUREMENTS Mukhamedzhanov et al. PRC 78(2008) 32 ± 6 64 ± 6 39.6 ± 2.6 36 ± 6 6 10 9 y 13 C 10 m 13 N 12 C e + n 1 10 9 y CN 2 m (p, 1 10 8 y 14 N 2 10 12 y 15 O 15 N e + n (p, NO 17 O e + n 64 s 17 F 16 O (p, 18 F e + n 108 m 18 O P.J. Le Blanc, et al., PRC 82 (2010) The leakage from CN to NO reduces of a factor 2: every about 2000 cycles of the main CN cycle, one goes to NO cycle. Before every 1000 cycles was the value recommended by the NACRE compilations (Angulo et al., 1999)

25 Mg(p,g) 26 Al Astrophysical motivations E x (kev) J 25 Mg 26Al Q = 6306 kev 25 Mg+p 26 Al 0 26 Al m 6343 6280 4-3 + 228 0 + 0 5 + 26 Al level scheme T ½ = 7.2 10 5 y << galactic time scale b+ E x (kev) 1809 0 2 + 0 + 26 Mg g- ray 1.8 MeV e + n 7 s 25 Al 24 Mg (p, e + n 6 s 26 Mg 27 Al 27 Si 26 Mg excess in meteorites Evidence that 26 Al nucleosynthesis is still active (WR stars, SN and NOVAE) Signature of 26 Mg production during the Hydrogen burning (RGB, AGB)

E CM (kev) 304 190 130 108 93 58 37 E x (kev) 6610 3-6496 5 + (4 + ) 6436 6414 6399 6364 6343 4-0 + 2-3 + 4 - J Novae explosive Burning (T 9 >0.1) AGB or W-R Stars (T 9 ~0.05) 25 Mg(p,g) 26 Al Astrophysical motivations No direct strength resonance data (level structure derived from the single particle transfer reaction: 25 Mg( 3 He,d) 26 Al) LUNA energy window Q 6306 25 Mg+p -26 6280 3 + isomeric state 417 3 + 26 Al m (t 1/2 = 6s) 228 0 + 26 Al 0 (t 1/2 = 7 10 5 y) 0 5 + 26 Al b+ 1809 0

25 Mg(p,g) 26 Al - HPGe spectra E R = 190 kev 75 C Iliadis et al, 1990

25 Mg(p,g) 26 Al - HPGe spectra E R = 190 kev 75 C wg [ev] LUNA HPGe wg [ev] LUNA BGO wg [ev] Iliadis et al. 1990 (9.0 ± 0.7) 10-7 (9.0 ± 0.8) 10-7 (7.4 ± 1.0) 10-7 BR 0 = (75 ± 2) %

25 Mg(p,g) 26 Al - BGO spectra E R = 92 kev the lowest ever directly measured resonance strength wg [10-10 ev] LUNA wg [10-10 ev] NACRE ind. Background run done @ E p = 86.5 kev 2.9 ± 0.6 1.16 +1.16-0.39 E x (kev) J 6399 2 + 25 Mg+p 26 Al m 26 Al 0 228 0 + 0 5 + 26 Al level scheme BR 0 = (60 +20-10) % The BGO g-ray total sum spectrum on the 92 kev 25 Mg(p,g) 26 Al resonance (E p = 100 kev). 1. The shaded area envinromental background 2. Thin solid line 25 Mg(p,g) 26 Al simulation varying the primaries branchings. 3. Solid red line total yield fit including background and simulation.

25 Mg(p,g) 26 Al - Astrophysical consequences 50 MK < T < 140 MK 50 MK < T < 140 MK 30-40 % larger factor 5 larger About factor 2 larger Straniero, Imbriani, Strieder et al. ApJ 2013 LUNA results fully cover the temperature range of core massive main sequence stars (Wolf-Rayet) as well as the H-burning shell of RGB and AGB stars.

25 Mg(p,g) 26 Al - Astrophysical consequences WR stars: N A <sv> total factor 2 > NACRE and Iliadis N A <sv> isomeric factor 5 > NACRE and Iliadis the expected production of 26 Al gs in stellar H- burning zones is lower than previously estimated. This implies a reduction of the estimated contribution of WR stars to the galactic production of 26 Al. Presolar grains originated in AGB stars: the most important conclusion is that the deep AGB extramixing, often invoked to explain the large excess of 26 Al in some O-rich grains, does not appear a suitable solution for 26 Al/ 27 Al> 10 2. Mg-Al anti-correlation in Globular Clusters stars: the substantial increase of the total reaction rate makes the Globular Cluster self-pollution caused by massive AGB stars a more reliable scenario for the reproduction of the Mg-Al anti-correlation.

17 O(p,g) 18 F - Astrophysical motivation Classical Novae nucleosythesis (T=0.1-0.4 GK): 1. production of light nuclei ( 17 O/ 18 O abundances...); 2. observation of 18 F g-ray signal (annihilation 511 kev).

Caciolli et al., submitted to EPJ A 17 O(p,g) 18 F LUNA experiment 100% 90% 80% DC/tot 183/tot 65/tot 489.9/tot 556 kev 767 kev Broad resonaces - - - - - DC component - - - - - Total N A <ss>i/n A <sv> tot 70% 60% 50% 40% 30% 529.9/tot Broad res/tot 20% 10% 0% 1.00E+07 1.00E+08 1.00E+09 T [K] LUNA is directly investigating this energy window

17 O(p,g) 18 F On and off resonance spectra Off-Resonance On-Resonance New transitions observed on resonance!

New Transitions Observed E x (kev) E p = 193 kev 5789 On Resonance Black = Previously Observed Blue = First Observation Off Resonance 200<E<370 E p E x (kev) 17 O+p 3839 3791 3358 3134 2523 2101 1080 1041 937 17 O+p 4116 3839 3791 3358 3061 2523 2101 1080 1041 937 18 F 18 F

Total reaction Cross section measured between E cm 180 370 ke Resonance Strength of E p =193 kev resonance measured within an uncertainty of 8%. (~factor 2 higher accuracy). Activation: ωγ193 = (1.67 ± 0.12 ) μev ωγ193= (1.2±0.2)μeV FOX ωγ193= (2.2±0.4)μeV CHAFA Preliminary 17 O(p,g) 18 F Results results LUNA experiment LUNA experiment Newton et al. Hager et al.

17 O(p,g) 18 Preliminary F Reaction Results rate @ Novae T five-fold reduction in reaction rate uncertainty. D. Scott et al.

NeNa CYCLE LUNA 400 kv outlook 13 C 14 N e + n 10 m 6 10 9 y 1 10 8 y e + n (p, 1 10 9 y 2 1012y 13 N 15 O CN 2 m (p, 12 C 15 N NO 17 O e + n 64 s 17 F 16 O CNO CYCLE (p, (,g 18 F e + n 108 m 18 O 19 F 22 s 21 Ne e + n 21 Na 3 yr 22 Na 22 Ne 20 Ne 23 Na (p, e + n 25 Mg 7 s e + n 25 Al 24 Mg 400 kv 2008 (p, 26Al 6 s 26 Mg 27 Al e + n MgAl CYCLE 27 Si

The Luna Collaboration INFN, Laboratori Nazionali del Gran Sasso INFN, Section of Genoa INFN, Section of Milan INFN, Section of Naples INFN, Section of Padua INFN, Section of Roma 1 INFN, Section of Turin INAF, Teramo observatory Ruhr-Universität Bochum, Germany Forschungszentrum Dresden-Rossendorf, Germany Atomki Debrecen, Hungary The University of Edinburgh, UK A. Formicola, M. Junker F. Cavanna, P. Corvisiero, P. Prati A. Guglielmetti (SP), D. Trezzi A. Di Leva, G. Imbriani, E. Roca and F. Terrasi C. Broggini, A. Caciolli, R. De Palo,R.Menegazzo C. Gustavino G. Gervino O. Straniero C. Rolfs, F. Strieder, H. P. Trautvetter M. Anders, D. Bemmerer, Z. Elekes Zs. Fulop, Gy. Gyurky, E. Somorjai,T. Szucs M. Aliotta, T. Davinson, D. A. Scott