opposite hypotenuse adjacent hypotenuse opposite adjacent adjacent opposite hypotenuse hypotenuse opposite

Similar documents
I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

P a g e 5 1 of R e p o r t P B 4 / 0 9

I N A C O M P L E X W O R L D

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES

Preview from Notesale.co.uk Page 2 of 42

Chapter 7 Trigonometric Identities and Equations 7-1 Basic Trigonometric Identities Pages

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Executive Committee and Officers ( )

A List of Definitions and Theorems

1.3 Basic Trigonometric Functions

A L A BA M A L A W R E V IE W

P a g e 3 6 of R e p o r t P B 4 / 0 9

T h e C S E T I P r o j e c t

Practice Test - Chapter 4

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

1 The six trigonometric functions

Chapter 1. Functions 1.3. Trigonometric Functions

Precalculus Midterm Review

Chapter 5: Trigonometric Functions of Angles Homework Solutions

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

Solutions for Trigonometric Functions of Any Angle

Trigonometric Identities Exam Questions

2. Pythagorean Theorem:

Fundamentals of Mathematics (MATH 1510)

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent

Unit 2 - The Trigonometric Functions - Classwork

Chapter 5 The Next Wave: MORE MODELING AND TRIGONOMETRY

Math Section 4.3 Unit Circle Trigonometry

4-3 Trigonometric Functions on the Unit Circle

As we know, the three basic trigonometric functions are as follows: Figure 1

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

Given an arc of length s on a circle of radius r, the radian measure of the central angle subtended by the arc is given by θ = s r :

A. Incorrect! For a point to lie on the unit circle, the sum of the squares of its coordinates must be equal to 1.

4 The Trigonometric Functions

Section 6.2 Trigonometric Functions: Unit Circle Approach

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t

THIS PAGE DECLASSIFIED IAW E

Chapter 4 Trigonometric Functions

Geometry. A. Right Triangle. Legs of a right triangle : a, b. Hypotenuse : c. Altitude : h. Medians : m a, m b, m c. Angles :,

D In, RS=10, sin R

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Geometry The Unit Circle

Math Section 4.3 Unit Circle Trigonometry

Notes on Radian Measure

Trigonometric Functions. Copyright Cengage Learning. All rights reserved.

Math 141: Trigonometry Practice Final Exam: Fall 2012

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, TECHNICAL MATHEMATICS- I (Common Except DCP and CABM)

Transition to College Math

Trigonometry Trigonometry comes from the Greek word meaning measurement of triangles Angles are typically labeled with Greek letters

HARRISON COLLEGE. 1l!:NDOF YEAR EXAMINATION YEAR MA THEMA TICS PAPER 02

AMB121F Trigonometry Notes

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

The function x² + y² = 1, is the algebraic function that describes a circle with radius = 1.

Trigonometric Identities

Angles and Applications

Practice Test - Chapter 4

ANSWER KEY 1. [A] 2. [C] 3. [B] 4. [B] 5. [C] 6. [A] 7. [B] 8. [C] 9. [A] 10. [A] 11. [D] 12. [A] 13. [D] 14. [C] 15. [B] 16. [C] 17. [D] 18.

Trigonometric Functions and Triangles

2 Trigonometric functions

The American School of Marrakesh. AP Calculus AB Summer Preparation Packet

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Sect 7.4 Trigonometric Functions of Any Angles

HYPOCYCLOID ViflTH FOUR CUSf S 11.1

H STO RY OF TH E SA NT

CK- 12 Algebra II with Trigonometry Concepts 1

For a semi-circle with radius r, its circumfrence is πr, so the radian measure of a semi-circle (a straight line) is

Quantum Mechanics for Scientists and Engineers. David Miller

Special Mathematics Notes

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Trigonometric Functions

Unit Circle. Return to. Contents

1 / 23

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

2.Draw each angle in standard position. Name the quadrant in which the angle lies. 2. Which point(s) lies on the unit circle? Explain how you know.

CO-ORDINATE GEOMETRY

More with Angles Reference Angles

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, 2013

7.1 Right Triangle Trigonometry; Applications Objectives

Trig Identities, Solving Trig Equations Answer Section

Spherical trigonometry

Radian Measure and Angles on the Cartesian Plane

Exercise Set 4.1: Special Right Triangles and Trigonometric Ratios

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

5.3 Properties of Trigonometric Functions Objectives

Maharashtra State Board Class X Mathematics - Geometry Board Paper 2016 Solution

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

Mathematics, Algebra, and Geometry

2Trigonometry UNCORRECTED PAGE PROOFS. 2.1 Kick off with CAS

Math Trigonometry Final Exam

CHAPTER 6. Section Two angles are supplementary. 2. Two angles are complementary if the sum of their measures is 90 radians

Unit 6 Trigonometric Identities Prove trigonometric identities Solve trigonometric equations

Chapter 10. Properties of Circles

Crash Course in Trigonometry

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

Functions and their Graphs

08/01/2017. Trig Functions Learning Outcomes. Use Trig Functions (RAT) Use Trig Functions (Right-Angled Triangles)

Unit two review (trig)

CHEM 10113, Quiz 5 October 26, 2011

Transcription:

5 TRtGOhiOAMTRiC WNCTIONS D O E T F F R F l I F U A R N G TO N I l O R C G T N I T Triangle ABC bas a right angle (9Oo) at C and sides of length u, b, c. The trigonometric functions of angle A are defined as follows. 5 sintz. of A = sin A 1 = : = 5 cosine. of A = ~OS A 2 = i = opposite hypotenuse adjacent hypotenuse B opposite 5 tangent. of A = tana 3 = f = -~ adjacent adjacent 5 c. of A = ocet A 4 = k = t c z n g opposite A 5.5 hypotenuse secant of A = sec A = t = -~ adjacent 5 cosecant. of A = csc A 6 = z = hypotenuse opposite Fig. 5-1 E TX A WO T N M 3 H GE G A TE I RN 9 L Y H C ES0 E A H AI Consider an rg coordinate system [see Fig. 5-2 and 5-3 belowl. A point P in the ry plane has coordinates (%,y) where x is eonsidered as positive along OX and negative along OX while y is positive along OY and negative along OY. The distance from origin 0 to point P is positive and denoted by r = dm. The angle A described cozmtwczockwlse from OX is considered pos&ve. If it is described dockhse from OX it is considered negathe. We cal1 X OX and Y OY the x and y axis respectively. The various quadrants are denoted by 1, II, III and IV called the first, second, third and fourth quadrants respectively. In Fig. 5-2, for example, angle A is in the second quadrant while in Fig. 5-3 angle A is in the third quadrant. Y Y II 1 II 1 III IV III IV Y Y Fig. 5-2 Fig. 5-3 11 f

12 TRIGONOMETRIC FUNCTIONS For an angle A in any quadrant the trigonometric functions of A are defined as follows. 5.7 sin A = ylr 5.8 COS A = xl?. 5.9 tan A = ylx 5.10 cet A = xly 5.11 sec A = v-lx 5.12 csc A = riy RELAT!ONSHiP BETWEEN DEGREES AN0 RAnIANS A radian is that angle e subtended at tenter 0 of a eircle by an arc MN equal to the radius r. Since 2~ radians = 360 we have 5.13 1 radian = 180 /~ = 57.29577 95130 8232... o 5.14 10 = ~/180 radians = 0.01745 32925 19943 29576 92...radians B N 1 r e M 0 r Fig. 5-4 REkATlONSHlPS AMONG TRtGONOMETRK FUNCTItB4S 5.15 tana = 5 5.19 sine A + ~OS~A = 1 5.16 5.17 5.18 1 COS A &A ~II ~ zz - tan A sin A 1 sec A = ~ COS A 1 csca = - sin A 5.20 sec2a - tane A = 1 5.21 csce A - cots A = 1 SIaNS AND VARIATIONS OF TRl@ONOMETRK FUNCTIONS 1 + + + + + + 0 to 1 1 to 0 0 to m CC to 0 1 to uz m to 1 - - II + + 1 to 0 0 to -1 -mtoo oto-m -cc to -1 1 to ca III IV - + + 0 to -1-1 to 0 0 to d Cc to 0-1to-m --CO to-1 - + - + - -1 to 0 0 to 1 -- too oto-m uz to 1-1 to --

TRIGONOMETRIC FUNCTIONS 1 3 E V X F AT A O RL FC R IU OUT V GE F NA A OS CN R N TG I Angle A Angle A in degrees in radians sin A COS A tan A cet A sec A csc A 00 0 0 1 0 w 1 cc 15O riil2 #-fi) &(&+fi) 2-fi 2+* fi-fi &+fi 300 ii/6 1 +ti *fi fi $fi 2 450 zl4 J-fi $fi 1 1 fi fi 60 VI3 Jti r 1 fi.+fi 2 ;G 750 5~112 i(fi+m @-fi) 2+& 2-& &+fi fi-fi 900 z.12 1 0 *CU 0 km 1 105O 7~112 *(fi+&) -&(&-Y% -(2+fi) -(2-&) -(&+fi) fi-fi 120 2~13 *fi -* -fi -$fi -2 ++ 1350 3714 +fi -*fi -1-1 -fi \h 150 5~16 4 -+ti -*fi -fi -+fi 2 165O llrll2 $(fi- fi) -&(G+ fi) -(2-fi) -(2+fi) -(fi-fi) Vz+V-c? 180?r 0-1 0 Tm -1 *ca 1950 13~112 -$(fi-fi) -*(&+fi) 2-fi 2 + ti -(&-fi) -(&+fi) 210 7716 1-4 & 6 l f 3 i - g -2 f i 225O 5z-14 -Jfi -*fi 1 1 -fi -fi 240 4%J3 -# -4 ti &fi -2-36 255O 17~112 -&&+&Q -&(&-fi) 2+fi 2-6 -(&+?cz) -(fi-fi) 270 3712-1 0 km 0 Tm -1 285O 19?rll2 -&(&+fi) *(&-fi) -(2+6) -@-fi) &+fi -(fi-fi) 3000 5ïrl3 -*fi 2 -ti -*fi 2 -$fi 315O 7?rl4-4fi *fi -1-1 fi -fi 330 117rl6 1 *fi -+ti -ti $fi -2 345O 237112 -i(fi- 6) &(&+ fi) -(2 - fi) -(2+6) fi-fi -(&+fi) 360 2r 0 1 0 T-J 1?m For tables involving other angles see pages 206-211 and 212-215. f

TRIGONOMETRIC FUNCTIONS 19 5.89 y = cet-1% 5.90 y = sec-l% 5.91 y = csc-lx _--/ I T Y / /A-- --- -77, /, // -- Fig. 5-14 Fig. 5-15 Fig. 5-16 RElAilONSHfPS BETWEEN SIDES AND ANGtGS OY A PkAtM TRlAF4GlG The following results hold for any plane triangle ABC with sides a, b, c and angles A, B, C. A 5.92 Law of Sines 5.93 Law of Cosines with -=Y=a b c sin A sin B sin C cs = a2 + bz - Zab COS C similar relations involving the other sides and angles. C /A 1 f 5.94 Law of Tangents with a+b tan $(A + B) - a-b = tan i(a -B) similar relations involving the other sides and angles. Fig. 5-1 7 5.95 sina = :ds(s - a)(s - b)(s - c) where s = &a + b + c) is the semiperimeter of the triangle. Similar relations involving B and C cari be obtained. See also formulas 4.5, page 5; 4.15 and 4.16, page 6. angles Spherieal triangle ABC is on the surface of a sphere as shown in Fig. 5-18. Sides a, b, c [which are arcs of great circles] are measured by their angles subtended at tenter 0 of the sphere. A, B, C are the angles opposite sides a, b, c respectively. Then the following results hold. 5.96 Law of Sines -z-x_ sin a sin b sin c sin A sin B sin C 5.97 Law of Cosines cosa = cosbcosc + sinbsinccosa COSA = - COSB COSC + sinb sinccosa with similar results involving other sides and angles.

2 0 T R F I U G N O C N T O 5 L o. T a 9f a w 8 n g e n t s t & + B a t( $ ) + n b aa ( ) n u t & - B a= t( ) n A a n i ( w s r i i i et o mn s sh a t aiv i un h nl o d l d e ag l e t r r l v s s e i 5. 9 9 w s = & h 1 + c S( e r ) u i h r f e. o m+ ose o sa t a i li r un h n l d ld e ga e t r l r s 5. 1 0 0 w S = + h + B + C ( Se r) A i rh f e. o me os o sa t a i li r un h nl d ld e ga e t r lr S a f e 4 l op 1e. s ra 0 4o mg. 4 e u, l a NAPIER S RlJlES FGR RtGHT ANGLED SPHERICAL TRIANGLES E f r x a o C it c na r f, ghp e gor si hae pt le f pv At r t rwe he i Zae t ih ei f t r3s o ai nr h rc r nc a g i F s i wn i b -va b i c g B e le,, u,.. 9 n A l, d a C O F 5 i - g 1. 9 F 5 i - g 2. S t uq h a pua e ri p a r c s ae n ionrfi 5e s n wsta ir w- a e hi ng ct e 2p t etcg. lh 0r t ri Oeee [ c i ot hn mo c ayd a p A anpi B n l nd oc g. c d ta ml et ee ni n s A o o t n p n of th y ac e f i hce ri a ms ia prt ti ts l ancs hd wl pvle e ad eo c a-e i rl da frg a p da t at rj n h wr p ea d a e c to a omc r a ps rp eate lan pt xi hr r l aaos t n eut e psr i nsl di ie 5 T s. o a h m i1 f p n e i n0 t a py q d e o1 ht r rt u d f oe h t oa aa l f e ph dn dl e ae ug js r ce a 5.102 T s o a h m i f p n e i n t a py q d e o ht r rc u d f o e ht t o a l f pe h dsp l e ae uip s r nco E S x C = 9i a- O C n0 = m9a - O wc h0 p, B A - e e a l, B ve e : s a = t b it ( a n a Co n s n = r Ot i -a n B n a ) b s ( = Ci Ca C ( n O OoO C ~ A S = -r S C Oa Os B A O - S i ) S B n T c o ch ba o f o e a e r fb uts rl i rt 5 rhe o es p oa 1. se n o s a m i 9 e u g n. 7 l e e