Citation 数理解析研究所講究録 (2006), 1465:

Similar documents
Kazuyoshi Suzuki * Partial Epstein zeta functions on binary and their functional equations. linear codes. 1. Introduction

systems and harmonic analysis) Citation 数理解析研究所講究録 (2002), 1294:

Citation 数理解析研究所講究録 (2004), 1368:

Citation 数理解析研究所講究録 (2005), 1415:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

INTERMITTENCY OF VELOCITY FLUCTUATI TURBULENCE AN EXPERIMENT AT 4.2K. Citation 数理解析研究所講究録 (1995), 922:

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

Citation 数理解析研究所講究録 (2001), 1191:

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

Title Logics and Their Kripke Semantics) Citation 数理解析研究所講究録 (1997), 1010:

Type I Codes over GF(4)

Citation 数理解析研究所講究録 (1994), 886:

Citation 数理解析研究所講究録 (2017), 2014:

Existence, Uniqueness, and Extendibility of Solutions of Volterra Integral Systems with Multiple, Variable Lags

Citation 数理解析研究所講究録 (1996), 941:

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

Citation 数理解析研究所講究録 (2012), 1805:

Citation 数理解析研究所講究録 (2005), 1440:

Citation 数理解析研究所講究録 (2004), 1396:

Citation 数理解析研究所講究録 (2004), 1366:

Citation 数理解析研究所講究録 (2007), 1531:

SPIN REPRESENTATIONS AND CENTRALIZE. Representation Theory) Citation 数理解析研究所講究録 (2002), 1262:

Mathematical Sciences) Citation 数理解析研究所講究録 (2004), 1386:

Citation 数理解析研究所講究録 (2002), 1254:

Citation 数理解析研究所講究録 (2006), 1476:

Author(s) Higuchi, Masakazu; Tanaka, Tamaki. Citation 数理解析研究所講究録 (2002), 1298:

Citation 数理解析研究所講究録 (2013), 1841:

Construction of quasi-cyclic self-dual codes

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

Citation 数理解析研究所講究録 (2006), 1466:

Some aspects of codes over rings

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

Citation 数理解析研究所講究録 (2010), 1716:

Extracting a reduction system from. Citation 数理解析研究所講究録 (1995), 918:

Open Questions in Coding Theory

DIFFERENTIAL OPERATORS AND SIEGEL-M. Author(s) IMAMOGLU, OZLEM; RICHTER, OLAV K. Citation 数理解析研究所講究録 (2010), 1715:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32:

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

Binary codes of t-designs and Hadamard matrices

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

New extremal binary self-dual codes of length 68 via the short Kharaghani array over F 2 +uf 2

Self-Dual Codes and Invariant Theory

Some Extremal Self-Dual Codes and Unimodular Lattices in Dimension 40

On Extremal Codes With Automorphisms

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

LINEAR COMPARTMENTAL MODELS: INPUT-OUTPUT EQUATIONS AND OPERATIONS THAT PRESERVE IDENTIFIABILITY. 1. Introduction

Author(s) Kuninaka, Hiroto; Hayakawa, Citation 数理解析研究所講究録 (2003), 1305:

Title series (Analytic Number Theory and. Citation 数理解析研究所講究録 (2009), 1665:

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Citation 数理解析研究所講究録 (2003), 1334:

Citation 数理解析研究所講究録 (1997), 1014:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

Citation 数理解析研究所講究録 (2013), 1871:

Citation 数理解析研究所講究録 (2010), 1679:

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

Formally self-dual additive codes over F 4

Citation 数理解析研究所講究録 (2009), 1665:

SOME DESIGNS AND CODES FROM L 2 (q) Communicated by Alireza Abdollahi

Kahler submanifolds of a quaternion (Geometry of homogeneous spaces and. Citation 数理解析研究所講究録 (2003), 1346:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

New binary self-dual codes of lengths 50 to 60

A Projection Decoding of a Binary Extremal Self-Dual Code of Length 40

Citation 数理解析研究所講究録 (1996), 966:

INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

Citation 数理解析研究所講究録 (2000), 1145:

RADON TRANSFORM OF HYPERFUNCTIONS A PROBLEMS OF SUPPORT. Citation 数理解析研究所講究録 (1996), 937:

Citation 数理解析研究所講究録 (2002), 1244:

Citation 数理解析研究所講究録 (1995), 925:

Geometry and Related Mathematical P. Citation 数理解析研究所講究録 (2006), 1502:

SPECTRAL PROPERTIES OF DIRAC SYSTEM. and asymptotic analysis) Citation 数理解析研究所講究録 (2003), 1315:

Binary codes related to the moonshine vertex operator algebra

Citation 数理解析研究所講究録 (1999), 1099:

An Extremal Doubly Even Self-Dual Code of Length 112

Citation 数理解析研究所講究録 (2012), 1794:

Triply even codes binary codes, lattices and framed vertex operator algebras

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:


A Numerical Scheme for Quantum Hydr Title. Citation 数理解析研究所講究録 (2006), 1495:

Citation 数理解析研究所講究録 (2016), 1995:

Systems under Uncertain Environment. Author(s) Dohi, Tadashi; Takeita, Kentaro; Os. Citation 数理解析研究所講究録 (1998), 1048: 37-52

LOGARITHMIC ORDER AND DUAL LOGARITH ORDER (Operator Inequalities and Re. Citation 数理解析研究所講究録 (2000), 1144:

A SURVEY ON FIXED POINT THEOREMS IN. Citation 数理解析研究所講究録 (2006), 1484:

Title Numerics(The 7th Workshop on Stocha. Citation 数理解析研究所講究録 (2006), 1462:

A Mass Formula for Cyclic Self-Orthogonal Codes

Lecture Notes. Advanced Discrete Structures COT S

A Field Extension as a Vector Space

Frames of the Leech lattice and their applications

Citation 数理解析研究所講究録 (2012), 1807:

Citation 数理解析研究所講究録 (1996), 970:

TitleOccam Algorithms for Learning from. Citation 数理解析研究所講究録 (1990), 731:

NEW BINARY EXTREMAL SELF-DUAL CODES OF LENGTHS 50 AND 52. Stefka Buyuklieva

Construction ofnew extremal self-dual codes

Author(s) Isshiki, Toshiyuki; Tanaka, Citation 数理解析研究所講究録 (2003), 1325:

Ring of the weight enumerators of d + n

Citation 数理解析研究所講究録 (1994), 860:

Transcription:

Title Special Self-Dual Codes over $\math Applications of Combatorial Desig Author(s) Betsumiya Koichi Citation 数理解析研究所講究録 (2006) 1465: 119-125 Issue Date 2006-01 URL http://hdl.handle.net/2433/48021 Right Type Departmental Bullet Paper Textversion publisher Kyoto University

be an 1465 2006 119-125 119 Special Self-Dual Codes over $\mathrm{f}_{4}$ * (Koichi Betsumiya) Department of Busess Information Sciences Jobu University 1 Statement of the result The notion special self-dual codes the title of this proceedg is just defed for this conference temporarily not common termology. In this proceedg we call a self-dual code of length 16 over F4 special if the Frobenius automorphism does not preserve the complete weight enumerator of the code. Our purpose of this proceedg is to enumerate the special codes. In order to do this we give a classification of Type I codes of length 16 over F4 by means of Munemasa s method [3] Cor sequently we fd that there exist precisely 9858 codes up to permutationequivalence. 2948 codes of them are the special codes. In order to obta this result we calculated by means of the software package MAGMA $(64\mathrm{b}\mathrm{i}\mathrm{t}\mathrm{s}1.6\mathrm{M}\mathrm{H}\mathrm{z})$ on an AMD Opteron 242 mache Lux-operated. We needed about 2 hours for the total calculation. We organize this proceedg as followg. First we give necessary termology Section 2. In Section 3 we troduce a background of this work. In Section 6 we give the ma result of this proceedg enumeration of special codes. In Section 4 and Section 5 we give a classification $[16 7]$-self-orthogonal codes and Type 1 code of length 16 respectively to show the ma result. 2 Notation and Defitions Let $\mathrm{f}_{4}$ the fite field constructed by 4 elements $\{0 1 \omega \omega^{2}\}$ where $\omega^{2}+\omega$ $+1=0$. A lear code of length $n$ is a subspace of the vector space $\mathrm{f}_{4}^{n}$. A [$n$ $k_{\rfloor}^{\rceil}$-code is a code of This work was partially supported by the MEXT Japan Grant--Aid for Young Scientists (B) (16740023)

be 120 length of dimension. With respect to a ner product $n$ $k$ $( )$ we defe the dual code of a code $C$ to be $C^{[perp]}=$ \mathrm{f}_{4}^{n} $ { ( $v)=0$ for all $u$ $v\ C$ }. $u\ If $C=C^{[perp]}$ $C$ is said to be self-dual If $C\subset C^{[perp]}$ $C$ is said to be self-orthogonal. Through this proceedg we fix the ner product to be the Euclidean ner product $(u v)$ $= \sum_{\mathrm{i}=1}^{n}u_{i}v_{i}$. A vector $(c_{1} c_{2} \ldots c_{n})$ satisfies $\Sigma_{?=1}^{n}c_{\overle{I}}=0$ and $\Sigma_{i<j}c_{i}c_{j}=0$ is called doubly-even. For a self-dual code $C$ if every codeword $c\ C$ is doubly-even $C$ is called Type $II$ or doubly-even otherwise $C$ is called Type I or sgly-even. When a code $D$ is obtaed by permutatg coordates of a code $C$ we call $D$ is permutation-equivalent to. When a code $C$ $D$ is obtaed by perm utatg coordates and by the Frobenius automorphism operatg entrywise of a code $C$ we call $D$ is equivalent to $C$ where the Frobenius automorphism is a map defed by $xrightarrow x^{2}$. Let $C$ be a code $S_{n}$ be the symmetric group of degree and $n$ $\mathrm{f}_{2}$ $\mathrm{g}\mathrm{a}1_{\mathrm{f}_{4}/\mathrm{f}_{2}}$ the Galois group of F4 over generated by the Frobenius automorphism. The groups PAut(C) $:=$ {a $\ S_{n} C=C^{\sigma}$ } and Aut(C) $:=\{\sigma\ S_{n}\cross \mathrm{g}\mathrm{a}1_{\mathrm{f}_{4}/\mathrm{f}_{2}} C=C \}$ are called the permutation-automorphism group and the automorphism group of $C$ respectively. by The complete weight enumerator of a code $C$ is a polynomial $\mathbb{c}$ $y_{\alpha} $ [ a $\ \mathrm{f}_{4}$] defed $\mathrm{c}\mathrm{w}\mathrm{e}_{c}(y_{0} y_{1} y_{\omega} y_{\alpha r^{2}})=\sum_{\mathrm{c}\ C}\prod_{i=1}^{n}y_{c_{i}}$. Now we defe that a special code is a self-dual code of length 16 over $\mathrm{f}_{4}$ complete weight enumerator is not preserved by the Frobenius automorphism. of which Let $M$ $g_{1}$ $g_{2}$ 3 Background of this Work and be rg homomorphisms on the polynomial rg $f$ $\mathbb{c}$ by $M(y_{\alpha}):=(1/2)\Sigma_{\beta\ \mathrm{f}_{4}}(-1)^{\mathrm{t}\mathrm{r}(\alpha\beta)}y_{\beta}$ $g_{1}(y_{\alpha}):=y_{\alpha+1\}}g_{2}(y_{\alpha})$ $:=y_{\alpha\omega}$ and $y_{\alpha} $ [ a $\ \mathrm{f}_{4}$ ] defed $f(y_{\alpha})$ $:=y_{\alpha^{2}}$.

$\bullet$ $\bullet$ $\backslash$ $0^{\backslash }$ $0^{\backslash }$ $(\beg{array}{llll}1 0 \mathrm{o} 00 \mathrm{l} \mathrm{o} 00 0 0 10 0 1 0\end{array})$ 121 These homomorphisms are described by matrices dexed by $\mathrm{f}_{4}=\{01 \omega \omega^{2}\}$ as $\frac{1}{2}\{$ 1111 11-1 -1 1 -I -1 1 1-1 1-1 $\{$ 01 0 $1$ 0 0 0 0001 001 $0_{/}$ 100 0001 0100 00 1 0 $\{$ and respectively. Let and $G$ $H$ be groups generated by $\{M g_{1} g_{2} f\}$ and respectively. $\{M g_{1} g_{2}\}$ It is known that the variant rg $\mathbb{c}[y_{\alpha} \mathrm{a}\ \mathrm{f}_{4}]^{h}$ cocides with the rg generated by the complete weight enumerators of self-dual codes $(\mathrm{c}.\mathrm{f}. [2 4])$. The Molien series of $H$ is $\sum_{i=0}^{\fty}\dim_{i}(\mathbb{c}[y_{\alpha} \mathrm{a}\ \mathrm{f}_{4}]^{h})t^{i}=\frac{1+t^{16}}{(1-t^{2})(1-t^{4})(1-t^{6})(1-t^{8})}$. The other hand the Molien series $G$ is $\sum_{i=0}^{\fty}\dim_{i}(\mathbb{c}[y_{\alpha} \alpha \ \mathrm{f}_{4}]^{g})t^{2}=\frac{1}{(1-t^{2})(1-t^{4})(1-t^{6})(1-t^{8})}$. These Molien series dicate that $\mathbb{c}[y_{\alpha} \mathrm{a}\ \mathrm{f}_{4}]^{g}$ is a polynomial rg and $\mathbb{c}[y_{\alpha} \mathrm{a}\ \mathrm{f}_{4}]^{h}=\mathbb{c}[y_{\alpha} \mathrm{a}\ \mathrm{f}_{4}]^{g}\oplus \mathbb{c}[y_{\alpha} \mathrm{a}\ \mathrm{f}_{4}]^{g}\phi_{16}$ $\phi_{16}$ where is a complete weight enumerator of special code. An example of such code was constructed [2] as a double circulant code. $C_{16}$ Prom the facts above it is natural to appear some questions: there exists the other example or not there exists a certa standard code like other generators or not. In order to answer these questions we will give a classification of such codes the followg sections. 4 Enumeration of [16 $7]$ -Self-Orthogonal Codes Contag 1 In this section we will give a classification of $[16 7]$-self-orthogonal codes which conta all-one vector by means of the classification of Type II codes of length 16 [1]

$\bullet$ The $\bullet$ The $\bullet$ The be up ne $\mathrm{d}:=\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}$ (sub contag by 122 Theorem 4.1 There exist 3611 $[16 7]$ -self-orthogonal codes contag 1 up to permutationequivalence. For 1469 of them the Frobenius map image of the code are pemutationequivalent of itself. Hence there exist 2540 $[16 7]$ -self-orthogonal codes contag 1 up to equivalence. We will expla how to obta the theorem. Before dog this we recall the facts as followg. Proposition 4.2 ([I]) There precisely exist 48 TyPe II codes of length 16 up to permutationequivalence. Proposition 4.3 Any [2k k $-1]$ -self-orthogonal code contag 1 is contaed precisely two Type II codes of length 2k. Let $\mathrm{c}$ all hyperplanes of $\mathrm{c}$ a Type II code of length 16. By means of the method [3] we construct to equivalence with respect to Aut(C) action. Repeatg the calculation for each Type II code we obta distct 10719 $[16 7]$-self-orthogonal codes. To classify these codes up to equivalence we compute the followg variants of each $\mathrm{h}$ $[16 7]$-self-orthogonal code : two Type II codes contag $\mathrm{h}$ $\mathrm{h}$ complete weight enumerator of variant twoptdegreesorted for weight 8 defed [3]. For the first variant one of the Type II codes is $\mathrm{c}$ constractg H. We obta the other Type II code $\mathrm{d}$ MAGMA script. $\mathrm{k}<\mathrm{a}>:=\mathrm{g}\mathrm{f}(4)$ $\mathrm{v}:=\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{t}\mathrm{k}$ 16) $\mathrm{u}=\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}$( $\mathrm{k}$ $\mathrm{h}\mathrm{o}:=\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}(\mathrm{h})$ $=\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}$ Hd: $\mathrm{v}$ for i6) $\mathrm{h}_{-}$ (Dual (H)) Transversal (Hd $\mathrm{h}\mathrm{o}$) do $\mathrm{u}!\mathrm{v}$ $\mathrm{c}$ $\mathrm{v}$ if 0 and not and $\mathrm{l}\mathrm{w}(\mathrm{a}^{\wedge}2*\mathrm{v})$ mod 4 eq 0 and mod LW $(\mathrm{a}*\mathrm{v})$ end if end for break v $<\mathrm{v}$ $ \mathrm{h}$ $\mathrm{v}>$) which is the itial Type II code means of the followg 4 eq 0 then

Aut(C) $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}:arrow-\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}$ are Length )! : $\mathrm{p}\mathrm{o}\mathrm{w}:=<\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}$ (mono {Pot(des mono } } PAut(C) 123 Here we give an algorithm to obta twoptdegreesorted. It is clear that this is variant of equivalence class as well as permutation-equivalence class. $\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}<$ return Inc idenc $\mathrm{u}$ { Support (u) : end function $(\mathrm{c} \mathrm{t})$ ion $\mathrm{c} $ Weight (C) (u) eq $\mathrm{t}$ $>i$ $\mathrm{e}\mathrm{d}:=\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(\mathrm{c}\mathrm{t})$ twoptdegreesort $=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}\mathrm{t}\mathrm{c}\mathrm{t}$ des: return Sort $([$ $\#${ $\mathrm{b}$ : : $\mathrm{x}$ $\mathrm{b}$ $\mathrm{j}$ BlockSet(des) j) : Subsets $(\{1..16\}_{}2)1$ $)$ end function Eventually we obta 2540 different variants. $\mathrm{x}$ subset $\mathrm{b}$ } Moreover we can verify that the variant characterizes equivalence class of codes by means of mass formula as followg. Theorem 4.4 If $n$ is a positive teger divisible by 4 then the number of the $[n n/2-1]-$ self-orthogonal codes contag 1 is equal to $\frac{1}{3}(\prod_{i=1}^{n/2-1}(4^{i}+1)-\prod_{i=0}^{n/2-2}(4^{i}+1))$ $=$ 32563225114005625 $=$ $\sum_{c\ c}\frac{n!\cdot 2}{ \mathrm{a}\mathrm{u}\mathrm{t}(c) }$ $=$ $\sum_{c\ \mathrm{c} }\frac{n!}{ \mathrm{p}\mathrm{a}\mathrm{u}\mathrm{t}(c) }$ where $C$ and $\mathrm{c} $ a complete sets of representatives of equivalence classes of $[n n/2-1]-$ self-orthogonal codes and permutation-equivalence classes of $[n n/2-1]$ -self-orthogonal codes respectively. There is no build- command MAGMA to calculate our automorphism groups. So we calculate the order of automorpshim groups by means of the followg MAGMA script which is modified the script [3]. The function auto returns $(\mathrm{c}) $ : PAut. $=\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ $(\mathrm{c} \mathrm{c}\mathrm{w}\mathrm{e})$ GoodDist: $\mathrm{u}=\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{c}(\mathrm{c})$ $\mathrm{i}$ $\mathrm{m}1:=\mathrm{u}![\mathrm{k}$! 1: $\mathrm{c}\mathrm{f}:=\mathrm{s}\mathrm{u}\mathrm{b}<\mathrm{u} $ $\mathrm{u}$ [ [ $\mathrm{g}^{\wedge}2$ $\mathrm{g}$ $=\mathrm{m}\mathrm{o}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{s}$ $(\mathrm{c}\mathrm{w}\mathrm{e})$ mono: $\mathrm{j}$ $\mathrm{f}$or end if end $\mathrm{f}$or end function [1.. Length (U) 11 [2.. #mono-ll do Eltseq(C. j) 1 : $\mathrm{j}$ $[\mathrm{j}]$ $[\mathrm{j}]$ $\mathrm{y}3$ if Degree (mono $\mathrm{y}2$) eq Degree (mono ) and $\mathrm{c}\mathrm{w}\mathrm{e}$ $[\mathrm{j}]$ MonomialCoefficient ( ) gt 72 then $\mathrm{v}$ $[\mathrm{j}]\mathrm{v}$) $[\mathrm{y}0 : break j and [1..Dimension(C)]] $>$ \mathrm{y}1\mathrm{y}2]$ $>$

$\mathrm{h}$ $\mathrm{d}:=\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}<$ length 124 $=\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(\mathrm{c} \mathrm{c}\mathrm{w}\mathrm{e})$ auto: $:=\mathrm{g}\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\mathrm{c} pow \mathrm{c}\mathrm{w}\mathrm{e})$ SP { Support (u) : $:=$ $\mathrm{c}$ $\mathrm{u}$ $(\mathrm{u}\mathrm{x})$ $\mathrm{x}$ $<\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}(\mathrm{c})$-distance : $ \mathrm{s}\mathrm{p}>$ (C) $\mathrm{a}:=\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{t}\mathrm{d})$ $\mathrm{u}$ [! 0 $\mathrm{m}1$. $\mathrm{a}*\mathrm{m}\mathrm{l}\mathrm{l}$ $>$ eq $\mathrm{p}\mathrm{o}\mathrm{w}$} orbit: $=\mathrm{c}^{-}\mathrm{a}j$ if CF orbit then frob: $=2$ else frob: $=1$ end if return $<\#\mathrm{a}/\#\mathrm{o}\mathrm{r}\mathrm{b}$it frob $>$ end function 5 Enumeration of Type I Self-Dual Codes In this section we will give a classification of Type I codes of length 16 by means of the result above Theorem 5.1 There exist 9858 Type I codes up to permutation-equivalence. For 2200 of them the Frobenius map image of the code is permutation-equivalent to itself. Hence there exist 6029 Type I codes up to equivalence. We will expla how to obta the theorem. Before dog this we recall the facts as followg. Proposition 5.2 Any Type I codes of length 2k contas a unique [2k k-l] self-orthogonal code. Proposition 5.3 Any [2fc k-l] self-orthogonal code is contaed precisely three Type $I$ codes of length 2k. Let $\mathrm{h}$ be a $[16 7]$-self-orthogonal code. As same way to obta a Type II code contag the previous section we obta three Type I code contag H. The orbit of Aut(H) on the Type I codes shows us whether the three of them are equivalent or not. Therefore we obta the classification of Type I codes of length 16. The mass formula [4] also guarantees the classification is complete. Theorem 5.4 (c.f.$[4])$ if n is a positive teger divisible by 4 then the number of the

and are with 125 Type I codes of length $n$ is equal to $\prod_{i=1}^{n/2-1}(4^{i}+1)-\prod_{i=0}^{n/2-2}(4^{i}+1)$ $=$ 97689675342016875 $=$ $\sum_{c\ \mathrm{c}}\frac{n!\cdot 2}{ \mathrm{a}\mathrm{u}\mathrm{t}(c) }$ $=$ $\sum_{c\ C }\frac{n!}{ \mathrm{p}\mathrm{a}\mathrm{u}\mathrm{t}(c) }$ $\mathrm{c}$ $\mathrm{c} $ waere a complete sets of representatives of equivalence classes of Type I codes of length and $n$ $pe$ rmutation-equivalence classes of Type I codes of length respectively. $n$ 6 Enumeration of Special Self-Dual Codes It is easy to distguish special self-dual codes among Type I codes. Theorem 6.1 There precisely exist 2948 special self-dual cod es up to permutation-equivalence. In particular there precisely exist 1474 special self-dual codes up to equivalence. Unfortunately we could not succeed to fd some standard one among them like other generators. References $\mathrm{f}_{2^{r}}$ [1] K. Betsumiya. On the classification of Type II codes over preprt 2001. bary length 32. [2] K. Betsumiya and Y. Choie. Codes over F4 Jacobi forms and Hilbert-Siegel modular $\mathbb{q}(\sqrt{5})$ forms over. European J. Comb. 26:629-650 2005. [3] A. Munemasa. On the enumeration of self-dual codes. In Proceedgs of the Fourth Conference on Algebraic Geometry Number Theory Codg Theory and C yptography University of Tokyo 2000 pages 69-77 2000. [4] G. Nebe E. M. Ras and N. J. A. Sloane. $\mathit{3}elf$-dual 2005. workg draft Code and Invariant Theory.