Introduction to Quantum Error Correction

Similar documents
Example: sending one bit of information across noisy channel. Effects of the noise: flip the bit with probability p.

D.5 Quantum error correction

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction

Lectures on Fault-Tolerant Quantum Computation

Lecture 6: Quantum error correction and quantum capacity

The information content of a quantum

6. Quantum error correcting codes

QUANTUM COMPUTING 10.

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Magic States. Presented by Nathan Babcock

Quantum Computer Architecture

Talk by Johannes Vrana

Techniques for fault-tolerant quantum error correction

Quantum Error Correction

Non-Zero Syndromes and Syndrome Measurement Order for the [[7,1,3]] Quantum Error Correction Code

Summary: Types of Error

A Study of Topological Quantum Error Correcting Codes Part I: From Classical to Quantum ECCs

Logical error rate in the Pauli twirling approximation

Quantum secret sharing based on quantum error-correcting codes

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Analog quantum error correction with encoding a qubit into an oscillator

Quantum Error-Correcting Codes by Concatenation

A scheme for protecting one-qubit information against erasure. error. Abstract

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

arxiv:quant-ph/ v3 26 Aug 1997

General Qubit Errors Cannot Be Corrected

Quantum Computing with Very Noisy Gates

Quantum Error Correction Codes - From Qubit to Qudit

More advanced codes 0 1 ( , 1 1 (

b) (5 points) Give a simple quantum circuit that transforms the state

CSE 599d - Quantum Computing Stabilizer Quantum Error Correcting Codes

5. Communication resources

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas

Quantum Error Correction Codes Spring 2005 : EE229B Error Control Coding Milos Drezgic

What is a quantum computer? Quantum Architecture. Quantum Mechanics. Quantum Superposition. Quantum Entanglement. What is a Quantum Computer (contd.

Recovery in quantum error correction for general noise without measurement

Teleportation-based approaches to universal quantum computation with single-qubit measurements

Single qubit + CNOT gates

arxiv:quant-ph/ v1 18 Apr 2000

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

How Often Must We Apply Syndrome Measurements?

Introduction to quantum information processing

High Fidelity to Low Weight. Daniel Gottesman Perimeter Institute

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Introduction to Quantum Computation

Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel

Quantum Computing. 6. Quantum Computer Architecture 7. Quantum Computers and Complexity

Large-Scale Quantum Architectures

M. Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/ , Folie 127

Lecture 4: Postulates of quantum mechanics

Seminar 1. Introduction to Quantum Computing

arxiv: v2 [quant-ph] 16 Mar 2014

Quantum Error Correction Codes-From Qubit to Qudit. Xiaoyi Tang, Paul McGuirk

Jian-Wei Pan

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3,

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Quantum Control of Qubits

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Quantum Subsystem Codes Their Theory and Use

Quantum Gates, Circuits & Teleportation

Channel-Adapted Quantum Error Correction. Andrew Stephen Fletcher

High-fidelity Z-measurement error encoding of optical qubits

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

Degradable Quantum Channels

Memory Hierarchies for Quantum Data

Physics 239/139 Spring 2018 Assignment 6

Quantum gate. Contents. Commonly used gates

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Decodiy for surface. Quantum Error Correction. path integral. theory versus. Decoding for GKP code. experiment. Correcting

Quantum Computing: From Circuit To Architecture

Solution 4 for USTC class Physics of Quantum Information

quantum error-rejection

Approaches to Quantum Error Correction

Quantum Information Processing and Diagrams of States

Physics ; CS 4812 Problem Set 4

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

CS120, Quantum Cryptography, Fall 2016

1 Readings. 2 Unitary Operators. C/CS/Phys C191 Unitaries and Quantum Gates 9/22/09 Fall 2009 Lecture 8

A Tutorial on Quantum Error Correction

Introduction to Quantum Error Correction

C/CS/Phys 191 Quantum Gates and Universality 9/22/05 Fall 2005 Lecture 8. a b b d. w. Therefore, U preserves norms and angles (up to sign).

Introduction to Quantum Error Correction

arxiv: v1 [quant-ph] 15 Oct 2010

MP 472 Quantum Information and Computation

Short Course in Quantum Information Lecture 2

Quantum Entanglement and Error Correction

1. Basic rules of quantum mechanics

CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem

Quantum Memory Hierarchies

arxiv: v2 [quant-ph] 14 May 2017

Reliable quantum computers

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

Energetics and Error Rates of Self-Correcting Quantum Memories

Introduction to Quantum Computing

arxiv: v2 [quant-ph] 5 Jan 2015

The Deutsch-Josza Algorithm in NMR

arxiv:quant-ph/ v2 18 Feb 1997

Transcription:

Introduction to Quantum Error Correction Nielsen & Chuang Quantum Information and Quantum Computation, CUP 2000, Ch. 10 Gottesman quant-ph/0004072 Steane quant-ph/0304016 Gottesman quant-ph/9903099

Errors in QIP unitary # $ # $e! " U i( + ) 0 + 1 %%& 0 + 1 M non-unitary! 0 + " 1 ##$ p! 0 general: pure mixed states! " " 2 # f tr f <! = " " #! = E! E = E " " E 1 $ $ from! f = tr env " U! $! env U # f % & = $ = ' e U! e0 e0 U e! ' E! E E = e U e0 U sys+env trace preserving:! EE = 1 E! E = " " tae ρ and randomly replace by, ( ) with probability (! ) p = tr E E

Bit flip channel Quantum noise: channel representation! " # E! E! 1 0"! 0 1" E0 = p $, E1 1 p, 0 1 % = # $ 1 0 % & ' & ' Phase flip channel 1 0 1 0 E0 = p! $ ", E1 1 p! " 0 1 % = # $ 0 # 1 % & ' & ' Bit-phase flip channel 1 0 0!i E0 = p " $ #, E1 1 py 1 p " # 0 1 % =! =! $ i 0 % & ' & ' Amplitude damping channel " 1 0 # " 0! # E0 =, E1 = $ 2 0 1! % $ % ' & ( ' 0 0 ( p! " = 1# p " + X " X + Y " Y + Z " Z 3 Depolarizing channel ( ) ( ) ( ) Geometrical interpretation: Bloch sphere in r-space (NC p. 376) I + r #! " =,! =!,!,!, =,, 2 { } r { r r r } x y z x y z

Repetition codes classical 0 000 1 111 error, e.g. 010, corrected to majority value 000 note: learned value of bits in doing so prob. for bit error p < 1: multi-bit error prob. = 3p 2 (1-p)+p 3 =3p 2-2p 3 < p when p < 0.5 0 00000 1 11111 quantum??! ""#!!! No cloning theorem! n bits, majority n/2+1 error prob. p n/2+1 + error prob. as n (p < 0.5) suppose! #!! and " # " " then but (! + " )#(! + " )(! + " )! + " #!! + "" =!! + "" + "! +!" by linearity cannot copy unnown quantum states

Encode/Error/Recovery quantum information is encoded into ρ C an error occurs! (" ) = # E " E C C recovery procedure undertaen R [! ] (" ) R E " E R = # # C l C l l regain the encoded state ρ C R [ ( )]! " = " C C

Encoding and Recovery R encode error diagnose error fix encoding qubits ancillas measurement error and recovery are superoperators ( ) # A A! = S " =! Unitary operations Recovery operator R restores state to the code after error from environment encode into a subspace no meaurement of state, only of error achieve by adding ancilla qubits measure ancillas syndrome of error perform unitaries conditional on syndrome to correct erroneous qubits

Encoding e.g., 3-qubit bit flip code 0 L >= 000> 1 L >= 111>! = " 0 + # 1 $! = " 0 + # 1 C L L! 0 0! C ( ) ( )! 0 + " 1 # 0 $! 00 + " 11! 00 + " 11 # 0 $! 000 + " 111 %! 0 + " 1 L L

Continuous Errors R " i! / 2 # 1 0 $ i! / 2 e 0! / 2 e i! i! / 2 # $ = % 0 e & = % & ' ( ' 0 e ( (! ) (! ) = cos / 2 I " isin / 2 Z add ancilla(s), transfer error info to ancilla (c-u) Z! 0 + " 1 # 0 $ Z! 0 + " 1 # Z ( ) ( ) L L anc L L anc (! 0 " 1 ) 0 (! 0 " 1 ) I + # $ I + # noerror L L anc L L anc ancilla superposition $! % cos I " 0 # 1 ' ( ) 2 * ( ) + & no error L L anc $! % + isin' ( Z (" 0 + # 1 )& Z ) 2 * L L anc measure ancilla 2 $! % prob. sin ' ( Z (" 0 1 ) L + # L & Zanc ) 2 * 2 $! % prob. cos ' ( I (" 0 + # 1 )& no error ) 2 * L L anc invert either one restore initial state

3-qubit Bit Flip Code 0 L >= 000> 1 L >= 111> α+β 1> Error X with prob. p R ψ> anc M encode error diagnose fix I II III IV M X I: (α+β 1>) α 000>+β 111> II: 8 possibilities from errors XII, IXI, IIX, XXI, XIX, IXX, XXX, III

state after error α 000>+β 111> (1-p) 3 α 100>+β 011> p(1-p) 2 α 010>+β 101> p(1-p) 2 α 001>+β 110> p(1-p) 2 α 110>+β 001> p 2 (1-p) α 101>+β 010> p 2 (1-p) α 011>+β 100> p 2 (1-p) α 111>+β 000> p 3 Prob. of getting state 1 or no error III: a) perform CNOT between qubits 1 & 2 with ancilla 1 b) perform CNOT between qubits 1 & 3 with ancilla 2 α 000>+β 111> 00> (1-p) 3 α 100>+β 011> 11> p(1-p) 2 α 010>+β 101> 10> p(1-p) 2 α 001>+β 110> 01> p(1-p) 2 α 110>+β 001> 01> p 2 (1-p) α 101>+β 010> 10> p 2 (1-p) α 011>+β 100> 11> p 2 (1-p) α 111>+β 000> 00> p 3 syndrome syndrome redundant for 1 and 2 (0 and 3) errors, but unequal probabilities

III. c) M = measure ancillas: assume only 1 (or 0) error syndrome uniquely identifies error failure rate of code = rate of 2 errors = 3p 2 (1-p)+p 3 = 3p 2-2p 3 < p for p < 0.5 IV. fix by applying unitary conditional on M syndrome: 00 do nothing 01 apply σ x to 3 rd qubit 10 apply σ x to 2 nd qubit 11 apply σ x to 1 st qubit α 000>+β 111> 00> α 100>+β 011> 11> α 010>+β 101> 10> α 001>+β 110> 01> recover encoded state α 000>+β 111>

Decoding e.g. from syndrome 10 after IV. have α 000>+β 111> with p(1-p) 2 extract original qubit α+β 1> with circuit: i) ii) i) α 000>+β 111> α 00>+β 1> 10> ii) α 00>+β 1> 10> α 00>+β 1> 00> = (α+β 1>) 00> get correct qubit state with prob. > 1-p prob. of failure = 3p 2-2p 3 < p for p < 0.5 success = 100% if no 2 or 3 errors error prob. reduced from p to O(p 2 )

3-bit Phase Code σ z (α+β 1>) = α-β 1> not classical! change basis: +> =1/ 2(+ 1>) ->=1/ 2(- 1>)! + " 1! 1 1 "! 1"! 1" # = = H % $ # 2 1 % 1 $# 1 $ # 1 $ & ' & '& ' & ' H σ z H=σ x or H= +><0 + -><1 then σ z +>= -> σ z ->= +> lie bit flip! R ψ> H H H H H H Z M M X I II

effectively encoded into 0 L >= +++>, 1 L >= ---> I, II α +++> + β ---> phase errors ZII, IZI, ZII act as Z on 000>, 111> e.g., ZII 000> = 000> ZII 111> = -1 111> but as X on +++>, --->

Both bit flip and phase errors: concatenate these two codes: 0 L >=( 000>+ 111>)( 000>+ 111>)( 000>+ 111>) 1 L >=( 000>- 111>)( 000>- 111>)( 000>- 111>) inner layer corrects bit flips 000, 111 outer layer corrects phase flips +++, ---- define Bell basis: 000>± 111> 001> ± 110> 010> ± 101> 100> ± 011> Shor PRA 52, R2493 (1995) consider decoherence of qubit 1: e a 0 +a 1 1> e 1> a 2 +a 3 1> e, a 0, a 3 = states of env first triple: 000>+ 111> (a 0 +a 1 1>) 00>+ (a 2 +a 3 1>) 11> = a 0 000>+a 1 100 +a 2 011>+a 3 111>

put in Bell basis =1/2 (a 0 +a 3 ) ( 000> + 111>) +1/2 (a 0 -a 3 ) ( 000> - 111>) +1/2 (a 1 +a 2 ) ( 100> + 011>) +1/2 (a 1 -a 2 ) ( 100> - 111>) similarly 000> - 111> goes to =1/2 (a 0 +a 3 ) ( 000> - 111>) +1/2 (a 0 -a 3 ) ( 000> + 111>) +1/2 (a 1 +a 2 ) ( 100> - 011>) +1/2 (a 1 -a 2 ) ( 100> + 111>) output 2 (syndrome 2) assume 1 error only: compare all 3 triples, see which differs majority sign indicates 0 L > or 1 L > find which qubit decohered (measure 9 ancillas which syndrome) restore qubit state with a unitary operation e.g. from 000> - 111>) 1/2 (a 0 +a 3 ) ( 000> - 111>) no error output 2 1/2 (a 0 -a 3 ) ( 000> + 111>) Z error 1/2 (a 1 +a 2 ) ( 100> + 011>) X error 1/2 (a 1 -a 2 ) ( 100> - 011>) ZX=Y error

have diagnosed error on 1 st qubit correct with appropriate unitary Encoder: ψ> H H H [9,1,3] code: 9 physical qubits 1 logical qubit (3-1)/2=1 arbitrary error corrected not most efficient code: [7,1,3] and [5,1,3] cannot compute easily (logical X, Z OK logical H, CNOT, T hard)