EXAFS. Extended X-Ray Absorption Fine Structure. Santiago J. A. Figueroa Researcher Beamline coordinator XAFS2

Similar documents
Röntgen s experiment in X-ray Spectroscopy. Röntgen s experiment. Interaction of x-rays x. x-rays. with matter. Wavelength: m

Reprint (R34) Accurate Transmission Measurements Of Translucent Materials. January 2008

Measurement of Radiation: Exposure. Purpose. Quantitative description of radiation

SUPPLEMENTARY INFORMATION

Course Electron Microprobe Analysis

Determination of Mass Attenuation Coefficients, Effective atomic number and Electron Density of Lumefantrine in the Energy Range 1 kev 100 GeV

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

Title: Radiative transitions and spectral broadening

Electron-Impact Double Ionization of the H 2

Level Crossing Spectroscopy

Rate of Absorption and Stimulated Emission

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

Chapter-1. Photon interaction with matter and production of fluorescent. X-rays

Composite Hypotheses testing

Frequency dependence of the permittivity

8. Superfluid to Mott-insulator transition

Experimental Techniques for Nuclear and Particle Physics. Interactions of particles in matter (1)

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

Some basic statistics and curve fitting techniques

Chapter 13: Multiple Regression

Introduction to Antennas & Arrays

Formal solvers of the RT equation

7 Stellar Structure III. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Comparison of Regression Lines

A REVIEW OF ERROR ANALYSIS

SUPPLEMENTARY INFORMATION

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

5.76 Lecture #5 2/07/94 Page 1 of 10 pages. Lecture #5: Atoms: 1e and Alkali. centrifugal term ( +1)

5.15 MICRO GAMMA SCANNING ON THE HIGH BURNUP PWR FUEL SAMPLES

Uncertainty in measurements of power and energy on power networks

Week 9 Chapter 10 Section 1-5

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Digital Signal Processing

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Programming Project 1: Molecular Geometry and Rotational Constants

( ) + + REFLECTION FROM A METALLIC SURFACE

THERMAL DISTRIBUTION IN THE HCL SPECTRUM OBJECTIVE

Note: Please use the actual date you accessed this material in your citation.

Average Matrix Relative Sensitivity Factors (AMRSFs) for Auger Electron Spectroscopy (AES)

Statistics Spring MIT Department of Nuclear Engineering

ACKNOWLEDGEMENT. Dr. Ajay Sharma

On resolving the optical spectra of the edge plasma radiation against a strong background of the divertor stray light

Multi-user Detection Based on Weight approaching particle filter in Impulsive Noise

Lecture 5: Quantitative Emission/Absorption

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

OPTICAL PROPERTIES OF METALLIC NANOPARTICLES, MOLECULES AND POLYMERS

Determination of Dose Factors for External Gamma Radiation in Dwellings

Recent developments in the nonelastic reaction code BRIEFF deuteron induced reaction and emission

Army Ants Tunneling for Classical Simulations

ECE559VV Project Report

Homework 4. 1 Electromagnetic surface waves (55 pts.) Nano Optics, Fall Semester 2015 Photonics Laboratory, ETH Zürich

Lecture 10. Reading: Notes and Brennan Chapter 5

Polymer Analysis. Chapter 2. Error Analysis/Statistical Descriptions of Data.

SIMPLE REACTION TIME AS A FUNCTION OF TIME UNCERTAINTY 1

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder.

Lecture 6. p+p, Helium Burning and Energy Generation. ) 2 H (+0.42 MeV) p( p,e + ν e. Proton-proton reaction:

Mass Attenuation Coefficient and Effective Atomic Number of Ag/Cu/Zn Alloy at Different Photon Energy by Compton Scattering Technique

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

THEOREMS OF QUANTUM MECHANICS

Thermal-Fluids I. Chapter 18 Transient heat conduction. Dr. Primal Fernando Ph: (850)

The Concept of Beamforming

4. INTERACTION OF LIGHT WITH MATTER

Applied Nuclear Physics (Fall 2004) Lecture 23 (12/3/04) Nuclear Reactions: Energetics and Compound Nucleus

Physics 30 Lesson 31 The Bohr Model of the Atom

Communication with AWGN Interference

16 Reflection and transmission, TE mode

4. INTERACTION OF LIGHT WITH MATTER

Optimal information storage in noisy synapses under resource constraints

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

High Energy Astrophysics

Problem Points Score Total 100

Laboratory 1c: Method of Least Squares

Common loop optimizations. Example to improve locality. Why Dependence Analysis. Data Dependence in Loops. Goal is to find best schedule:

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

Mass Transfer Processes

Quantum and Classical Information Theory with Disentropy

Introduction to Regression

Its microwave cavity length is 0.96m, and the dimensions are almost

Chapter 5 Multilevel Models

Microscopy with self-reconstructing beams

GENERAL EQUATIONS OF PHYSICO-CHEMICAL

Atmospheric Radiation Fall 2008

Some Reading. Clustering and Unsupervised Learning. Some Data. K-Means Clustering. CS 536: Machine Learning Littman (Wu, TA)

Pulse Coded Modulation

Laboratory 3: Method of Least Squares

Aerosols, Dust and High Spectral Resolution Remote Sensing

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

Information-Geometric Studies on Neuronal Spike Trains

EXAM INFORMATION. Harmonic Oscillator. Anharmonic Oscillator 1 ~ 1. Rigid Rotor

Relative phase for atomic de Broglie waves A tutorial

x i1 =1 for all i (the constant ).

Physics 3 (PHYF144) Chap 2: Heat and the First Law of Thermodynamics System. Quantity Positive Negative

Implementation of the Matrix Method

Automatic Object Trajectory- Based Motion Recognition Using Gaussian Mixture Models

Neutral-Current Neutrino-Nucleus Inelastic Reactions for Core Collapse Supernovae

XANES spectroscopy. Andrej Mihelič Mentor: prof. dr. Alojz Kodre. December 2002

Transcription:

EXAFS Santago J. A. Fgueroa Researcher Beamlne coordnator XAFS santago.fgueroa@lnls.br Extended X-Ray Absorpton Fne Structure EXAFS 5 th School on X-Ray Spectroscopy Methods Campnas, 3 de Agosto de 16

Overvew 1.Interacton of X-rays wth matter.bascs aspects about XAFS 3.Understandng the EXAFS equaton

Interacton of X-rays wth matter Par producton h > 1M ev Photoelectrc absorpton h MATTER h Transmsson X-rays h' h Scatterng h Decay processes h f Compton Thomson Fluorescence Auger electrons Prmary competng processes and some radatve and non-radatve decay processes

Cross secton (barns/atom) Interacton of X-rays wth matter Photoelectrc effect s the domnatng process at the x-ray energy range (-1 kev) 1 6 1 3 1 X-ray attenuaton : Thomson Compton Cu Z=9 Absorpton Observed data Par producton Photonuclear absorpton 1 ev 1 KeV 1 MeV 1 GeV Energy

mt Bascs aspects about XAFS What s XAFS? XAFS studes the detals of the x-ray absorpton coeffcent around an absorpton edge. It reveals a wealth of nformaton regardng the geometrc and electronc structure of materals. 3..5. 1.5 1..5. -.5 11. 11.6 1. 1.4 Energa(keV)

Bascs aspects about XAFS

Coefcente de atenuação (cm /g) Bascs aspects about XAFS 1 4 L II L I Ge (Z=3) 3..5. 1 3 L III mt 1.5 1..5. 1 K -.5 11. 11.6 1. 1.4 Energa(keV) 1 1 3 1 4 Energa (ev) XAFS: Study the detals of the varaton on the absorpton coeffcent (fne structure) after the edge. Absorpton edges K 1s p L 1 L L 3 s p p 1/ s, d p 3/ s, d

Bascs aspects about XAFS X-ray attenuaton Absorpton coeffcent: h di t m Idt I I 1 h µ : lnear absorpton coeffcent t : thckness µt: absorbance amostra I 1 I t exp( m ) Includes contrbutons from all scatterng and absorpton precesses Mass absorpon coeffcent: m j g j m j unts (cm /g) Atomc absorpton coeffcent: m a j m j A j N Mass fracton of el. j Unts: 1-4 cm (1 barn)

Bascs aspects about XAFS Basc XAFS experment sequental mode detectors monochromator I o sample I Radaton source mt I log I 1

Bascs aspects about EXAFS SAMPLE Incdent X-rays Transmtted X-rays Vsble lght XEOL h e - TEY h Fluorescence X-rays EXAFS spectrum m X-ray energy

Bascs aspects about XAFS Whch method for whch applcaton? h fluor. I e- h The most mportant crteron: The best sgnal to nose rato for the element of nterest h e - h lumn. Always transmsson, f possble Most accurate method, best overall S/N countng statstcs of about 1-4 from beamlnes wth more than 1 8 photons/s) Fluorescence for very dluted samples A specfc sgnal reduces the large background (but maxmum tolerable detector count-rate can result n very long measurng tmes). Total electron yeld (TEY) for surface senstvty and surface XAFS (adsorbates on surfaces) TEY for thck samples that cannot be made unform. XEOL X-ray excted optcal lumnescence VIS/UV detecton from lumnescent samples

mt Bascs aspects about XAFS X-ray Absorpton Near Edge Strucuture hgh Z elements XANES.6.5 XAFS = XANES + EXAFS InAs - As K-Edge Extended X-ray Absorpton Fne Strucuture EXAFS.4.3 low Z elements NEXAFS..1 Near Edge X-ray Absorpton Fne Strucuture E =11.867 kev 1. 1.5 13. Photon Energy (kev) XANES s the regon ~5 ev around the edge

Bascs aspects about XAFS XANES : transtons to unoccuped states (localzed and contnuum) low energy photoelectron multple scatterng (MS) Informaton content Ferm energy Projected densty of unoccuped states Oxdaton states Coordnaton symmetry EXAFS: hgh energy photoelectron sngle scatterng + some mportant MS Informaton content nteratomc dstances dsorder coordnaton numbes Bond-angle dstrbutons Partal par dstrbuton Vbratonal propertes.

Bndng Energy Bascs aspects about XAFS Contnuum XANES Unnocuped states Ferm Energy 4s, 4p, 4d, 4f N fóton 3s, 3p, 3d s, p M L Ocupped states 1s K

E XANES: pre edge structure Ferm Golden rule m f > > E E a b f f > m Arctangent curve Inflecton pont > E E m > E

Bndng Energy Bascs aspects about XAFS Contnuum EXAFS Unnocupped states Ferm Energy 4s, 4p, 4d, 4f N Informaton obtaned: Coordnaton number Interactomc dstances Dsorder fóton 3s, 3p, 3d s, p M L Ocupped states 1s K

Bascs aspects about XAFS

mt Bascs aspects about XAFS XAFS = XANES + EXAFS InAs - As K-Edge Extended X-ray Absorpton Fne Strucuture.6.5 EXAFS.4.3 Fne Strucuture..1 E =11.867 kev 1. 1.5 13. Photon Energy (kev) EXAFS s the regon from 5 1 ev after the edge

Understandng the XAFS equaton Photon energy (E) > Bndng Energy (E l ): Photoelectrc effect. Knetc energy of the photoelectron (E c )= E - E L Wave-Partcle dualty: The photoelectron travel as a esferc wave: E c = h Wavevector of the photoelectron: K k m ( E e E L ) Quantcal state of the photoelectron: superposton of the propagatng wave wth the retrodspersed waves on the neghtbourgs Phase dfference of the ncomng and outgong waves: Δ kr R Interference n between propagatng waves and retrodspersed ones. Ths moduls the absorpton coeffcent. Osclaton frequence: R Osclaton ampltudes: number of neghtbourgs and dsorder

mx Understandng the XAFS equaton 3.5 3..5. m (k).8.6.4.. m m m 1.5 1. m -. -.4.5. -.5 7 7 74 76 78 8 8 -.6-4 6 8 1 1 14 16 18 Vetor de onda do fotoelétron: k(å -1 ) Energa(eV) Here we add (superpose) osclatons of dfferent frequences (radal dstances), one for each coordnaton shell Coordnaton shell: Refers to the aggrupaton's of atoms at the same dstance to the absorber atom. Coordnaton Number: amount of atoms n a coordnaton shell

Understandng the XAFS equaton Prncpal hypothess: Fnal states are plane waves Gaussan dsorder Dpolares transtons One actve electron Photoelectron dsperson s sngle Sayers et al.,prl 7, 14 (1971) E f F m( E) f ê r f E ( E f ) (k) N kr S F ( k) e k e R sn[ kr ( k)] Estructural parameters Atomc parameters: Absopton and dsperson of the Photoelectron R N F(k) (k) S ab nto

Understandng the XAFS equaton TF( R) 1 k k max mn ( k)e Rk dk

Understandng the XAFS equaton TF( R) 1 k k max mn ( k)e Rk dk

(k) Módulo da TF Understandng the XAFS equaton TF( R) 1 k k max mn ( k)e Rk dk 8 6 4 sn(*r*k) R=3 R=.5 R= R=1-5 5 1 15 5 3 35 k(å -1 ) 36 3 8 4 16 1 8 4..5 1. 1.5..5 3. 3.5 4. 4.5 5. R(Å)

(k) Módulo da TF Understandng the XAFS equaton TF( R) 1 k k max mn ( k)e Rk dk 1. *sn(*r *k) 1.5. 1 =6 =4 3 =5 4 =1 1 8 6 -.5 4-1. 5 1 15 5 3 k(å -1 ) 1 3 4 5 R(Å) (k) N kr S F ( k) e k e R sn[ kr ( k)]

Understandng the XAFS equaton 1 Fourer Transform (FT) (k) x k 6 4 - -4-6 Sgnal at Ge-K edge -8 5 1 15 k(å -1 ) FT: s not a Radal Dstrbuton functon but have some resemblance Módulo da TF 8 6 4 1 3 4 5 6 R(Å) 4 a shell: R = 5.66 N=4 1 a shell: R =.45 Å N=4 ok a shell: R = 4. Å N=1 3 a shell: R = 4.69 Å N=1 (k) N kr S F ( k) e k e R sn[ kr ( k)]

Módulo da TF Understandng the XAFS equaton Changes on the EXAFS sgnal wth varatons on the Coordnaton number 3 1 N=4 N=3 N= N=1 1 8 6 N=4 N=3 N= N=1 x k -1 4 - -3 5 1 15 k(å -1 ) 1 3 4 R(Å)

3 R R + R Módulo da TF Understandng the XAFS equaton 1 8 R R + R x k 1-1 - -3 3 5 1 15 k(å -1 ) R R - R Changes on the EXAFS sgnal wth a varaton on the Módulo da TF R.1Å 6 4 1 3 4 5 1 8 R(Å) R R - R x k 1 6-1 4 - -3 5 1 15 1 3 4 5 k(å -1 ) R(Å)

3 Sem desordem Com desordem 1 8 Sem desordem Com desordem x k 1-1 - -3 5 1 15 k(å -1 ) Changes on the EXAFS wth a varaton on the structural dsorder Módulo da TF 6 4 1 3 4 5 R(Å) Gaussan Dsorder: σ =.3 Å

absorbânca (E) Understandng the XAFS equaton 1 background extracton Data treatment. 1.5 CdSe - Borda K do Se xm bkg Vctoreen.1.5 m m m 1. m m..5 -.5. 16 18 13 13 134 136 138 Energa(eV) -.1 18 13 13 134 136 138 Energa (ev)

Understandng the XAFS equaton Converson Ek k m ( E e E L ).3..1 K-wegthng k. -.1 -..5. 1.5 1. -.3-4 6 8 1 1 14 16 18 k(å -1 ) k)*k.5. -.5-1. -1.5 -. 4 6 8 1 1 14 16 18 k(å -1 )

FT((k)) FT((k)) Understandng the XAFS equaton 4. 3.5 3..5. 1.5 1..5. 4 6 8 1 R(Å) Structural parameters: Mnmal Square fttng k)*k.5. 1.5 1..5. -.5 Phases and ampltudes of the retrodsperson -1. -1.5 -. 4 6 8 1 1 14 16 18 k(å -1 )

Understandng the XAFS equaton Prncpal hypothess: Fnal states are plane waves Gaussan dsorder Dpolares transtons One actve electron Photoelectron dsperson s sngle E f F m( E) f ê r f E ( E f ) Sayers et al.,prl 7, 14 (1971) (k) N kr S F ( k) e k e R sn[ kr ( k)] Estructural parameters Atomc parameters: Absopton and dsperson of the Photoelectron R N F(k) (k) S ab nto

But remeber...

Obrgado pela sua atenção! More nfo about XAFS: Questons, please emal me: santago.fgueroa@lnls.br https://speakerdeck.com/bruceravel?page= http://cars.uchcago.edu/fefft/malng_lst http://xafs.org/tutorals http://www.xasportal.net/xas/ http://cars.uchcago.edu/fefft/documentaton Acknowlegments: To Gustavo Azevedo, Valmor Mastelaro, Anatoly Frenkel por some sldes