Looking for WIMPs with EDELWEISS. Results and status of EDW I Prospects for EDW II + DAMA /LIBRA: brief status/future

Similar documents
Neutron background studies for

Direkte Suche nach Dark Matter

Edelweiss-II : status and first results A new generation of background-free bolometers for WIMP search

arxiv:astro-ph/ v1 24 Jun 2004

Latest results of EDELWEISS II

Cryogenic Dark Matter Search in Europe

The EDELWEISS DM search Phase II to Phase III

Status of the EDELWEISS Dark Matter search

NEUTRON BACKGROUND STUDIES FOR THE EDELWEISS WIMP SEARCH

STATUS OF THE EDELWEISS EXPERIMENT

Neutron background in underground particle astrophysics experiments

Low energy neutron propagation in MCNPX and GEANT4

Cryogenic Detectors Direct Dark Matter Search. Dark Matter

arxiv:astro-ph/ v3 26 May 2005

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Calibration of the EDELWEISS Cryogenic Heat-and-ionisation Germanium Detectors for Dark Matter Search

Identification of backgrounds in the EDELWEISS-I dark matter search experiment

Background simulations and shielding calculations

Results from 730 kg days of the CRESST-II Dark Matter Search

WIMP: direct and indirect detection Results and perspectives

The Search for Dark Matter with the XENON Experiment

=> Ωmatter >> Ωbaryon

The EDELWEISS III Experiment Status

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

Neutron- and muoninduced. underground physics experiments. L. Pandola, V. Tomasello and V. Kudryavtsev. for the JRA1 and N3 simulation groups

DARK MATTER SEARCHES AT CANFRANC: ANAIS AND ROSEBUD: an update INTRODUCTION AND EXPERIMENTAL GOALS SUMMARY OF RECENT ACHIEVEMENTS AND EFFORTS

The Direct Search for Dark Matter

Background Studies for the XENON100 Experiment. Alexander Kish Physics Institute, University of Zürich Doktorandenseminar August 30, 2010 UZH

DARK MATTER SEARCH AT BOULBY MINE

Dark Matter -- Astrophysical Evidences and Terrestrial Searches

PANDA-X A New Detector for Dark Matter Search. Karl Giboni Shanghai Jiao Tong University

COUPP: Bubble Chambers for Dark Matter Detection

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

Background optimization for a new spherical gas detector for very light WIMP detection

A survey of recent dark matter direct detection results

Simulations and other stuff

Cryogenic Dark Matter Searches

Direct Search for Dark Matter

XENON100. Marc Schumann. Physik Institut, Universität Zürich. IDM 2010, Montpellier, July 26 th,

Direct Detection of Dark Matter with LUX

DARK MATTER SEARCHES

Search for Low Energy Events with CUORE-0 and CUORE

Down-to-earth searches for cosmological dark matter

Sensitivity of sodium iodide cryogenic scintillation-phonon detectors to WIMP signals

arxiv: v1 [physics.ins-det] 15 May 2013

Recent results from the UK Dark Matter Search at Boulby Mine.

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

ANAIS: Status and prospects

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors

SuperCDMS: Recent Results for low-mass WIMPS

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

Direct Search for Dark Matter

Network on Direct Dark Matter Search ILIAS N3

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

Status of Dark Matter Detection Experiments

Backgrounds and Sensitivity Expectations for XENON100

Dark Matter. and TPC Technologies

Dark Matter - III. Workshop Freudenstadt September 30, GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University

The XENON1T experiment

Current status of LUX Dark Matter Experiment

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

arxiv:astro-ph/ v1 21 Apr 2000

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Direct Dark Matter and Axion Detection with CUORE

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

Direct Search for Dark Matter

Towards One Tonne WIMP Direct Detectors: Have we got what it takes?

cryogenic calorimeter with particle identification for double beta decay search

Sensitivity and Backgrounds of the LUX Dark Matter Search

Direct dark matter search using liquid noble gases

Status of the CUORE and CUORE-0 experiments at Gran Sasso

Dark matter search with the SABRE experiment

Dark Matter Detection with XENON100 Accomplishments, Challenges and the Future

European Underground Laboratories and ILIAS

Looking for WIMPs A Review

LARGE UNDERGROUND XENON

The GERmanium Detector Array

Double Beta Present Activities in Europe

Modane underground laboratory (Fréjus)

The XENON100 Dark Matter Experiment

DARWIN: dark matter WIMP search with noble liquids

The COSINUS project. development of new NaI- based detectors for dark ma6er search. STATUS report Karoline Schäffner

Backgrounds in PICO. Eric Vázquez Jáuregui SNOLAB. AARM Meeting Fermilab; Batavia IL, USA; March 19, 2014

XMASS: a large single-phase liquid-xenon detector

arxiv: v1 [astro-ph.im] 30 Jan 2014

Chapter 12. Dark Matter

The Very-Near-Site at Chooz a New Experimental Hall to Study CEnNS

Background and sensitivity predictions for XENON1T

DarkSide-50: performance and results from the first atmospheric argon run

DarkSide new results and prospects

Rare Event Searches and the Underground

Luca Grandi.

Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS

BACKGROUND DISCRIMINATION CAPABILITIES OF A HEAT AND IONIZATION GERMANIUM CRYOGENIC DETECTOR EDELWEISS COLLABORATION a P. Di Stefano a; et al., CEA, C

Studies of the XENON100 Electromagnetic Background

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia)

Dark Matter Searches. Marijke Haffke University of Zürich

Axion search with Dark Matter detector

Transcription:

Looking for WIMPs with EDELWEISS Results and status of EDW I Prospects for EDW II + DAMA /LIBRA: brief status/future G. Gerbier CEA/Saclay/DAPNIA G. Gerbier NESS 2002 1

The Edelweiss Collaboration CEA- Saclay DAPNIA: G. Chardin, H. Deschamps, G. Gerbier, M. Gros, S. Hervé, A. de Lesquen, M. Loidl, J. Mallet,L. Mosca, X. F. Navick, F. Nizery, L. Shoeffel CEA- Saclay DRECAM: M. Chapellier, P. Pari CRTBT Grenoble: A. Benoit, M. Caussignac, H. Rodenas CSNSM Orsay: L. Bergé, A. Broniatowski, L. Dumoulin, A.Juillard, S. Marnieros, N. Mirabolfathi, S. Collin IAP Paris: C. Goldbach, M. Martin, G. Nollez IPN Lyon:A. Bonnevaux, B. Chambon, L. Chabert, M. De Jesus,P. Di Stefano, D. Drain, J. Gascon, E. Gerlic, M. Goyot, J. P.Hadjout, O. Martineau, V. Sanglard, M. Stern,L. Vagneron Laboratoire Souterrain de Modane:P. Charvin (1/2), C. Riccio (1/4) (out of 4 technicians / 1 secretary in Modane) Tech Univ Munich : J. Jochum, H. Wulandari EDELWEISS : Expérience pour DEtecter Les Wimps En ISte Souterrain TECNomSiQ: Team Edelweiss Cresst for Neutron and m Shield Qualification G. Gerbier NESS 2002 2

Fréjus Lab (LSM) Fréjus Underground Laboratory NB : 3300 m 3 ITALIE FRANCE TUNNEL ROUTIER DU FREJUS GRAND HALL NEMO III 3, 2 T EDELWEISS I et II 4800 m water eq. Muon flux 4 m/m 2 /day Neutron flux 1.6 10-6 s -1 cm -2 ( from rock radioactivity) G. Gerbier NESS 2002 3

EDELWEISS-I, 1kg stage Archeological lead 320 g Ge detectors G. Gerbier NESS 2002 4

1kg stage of EDELWEISS-I : 3*320 g Ge. GGA1: heat and ionisation Ge 320 gram detectord, 20 mm thick aluminium electrodes (center + guard ring) + Ge amorphous layer (made by Canberra/Eurysis Eurysis) NTD sensor on guard ring electrode +wiring in Saclay Low radioactivity cryostat Shield: : 30 cm paraffin,, 20 cm Pb,, 10 cm Cu Resolutions @ 10 kev (resp 122) kev: ionisation : 1.3 kev (2.2 kev) heat : 1.0 kev (3.0 kev) G. Gerbier NESS 2002 5

57 Co calibration. Charge collection Detector with amorphous Ge surface treatment Few miscollected surface events 99.99 % background rejection ( 60 Co) Other detectors no amorphous layer More miscollected events 97.8-98.7 background rejection ( 60 Co) G. Gerbier NESS 2002 6

Gamma rejection neutron calibration n/g discrimination 99.9% for Er >15 kev 73 Ge(n,n g) Recoil threshold 20 kev Ionization threshold 3.7 kev Q= G. Gerbier NESS 2002 7

54 days fl 15.1 kg.day net fl 8.6 kg.day fl 7.74 kg.day fl 7.4 kg.day EDELWEISS-I : 2002 data from GGA1 detector 12% dead time 54 % fiducial Volume 90%nuclear recoil acceptance Upper recoil energy limit 95 % efficiency (ex : 119 kev recoil M W =10 TeV) G. Gerbier NESS 2002 8

The result of perseverance 1997 13 evts/kg.d in nucl recoil zone 2000 2 evts/kg.d 2002 <0.3 evts/kg.d G. Gerbier NESS 2002 9

EDELWEISS-I 05/2002 Present sensitivity for spin independent WIMPs Same model, astrophysic and nuclear parameters as DAMA and CDMS M W = 52 GeV, s = 7.2x10-6 pb : fi Prediction = 9.8 evts, P(0) = 0.006% M W = 44 GeV, s = 5.4x10-6 pb : fi Prediction = 6.2 evts, P(0) = 0.2% Exploration of first sample of SUSY models compatible with accelerator constraints. ficurrently accumulating data with 2 GGA fitest and data taking with 2 GSA up to 03/2003 G. Gerbier NESS 2002 10

from EDELWEISS I 1kg Copper Detection volume 50l 20 cm lead shielding 10 layers of 12 detectors of 320 g 3 detectors of 320 g to EDELWEISS II 6kg, 36 kg He tank G. Gerbier NESS 2002 11

EDELWEISS-II detector setup (Phase 21*320g detectors : approved, 2004) Reversed cryostat for up to 120 detectors : 36 kg Ge Shield : 20 cm Pb + 50 cm PE Improve sensitivity by fact 100 => down to 2 10-8 pb Start installation in march 2003 G. Gerbier NESS 2002 12

Backgrounds Physical : localised in recoil zone : neutrons 1. Radioactivity from rock 2. Radioactivity from inside (U fission) 3. m interactions in shield 4. m interactions in rock Instrumental : not localised but «fall» in recoil zone g spill over (resolution) Ge 68 Surface events Incomplete charge collection Unexpected/unknow Protections 1. Outside : paraffin shield 2. Inside (fission) : PE shied or segmentation (multiple) 3. m VETO 4. m VETO Identification : multiple Protections Clean detectors (RA, radon, dust ) Surface event identification : ballistic phonon identification with thin films G. Gerbier NESS 2002 13

1) a n and fission in rock : calculations done by H. Wulandari at TUM (using MCNP) within TECNomSiQ -Due to U/Th in rock/concrete- LNGS Hall A B C Activities (ppm) 238 U 6.80 0.42 0.66 232 Th 2.167 0.062 0.066 FLUX in the LNGS Lab (10-6 n/cm 2 /s): 1-2.5 MeV 2.5-5 MeV 5-10 MeV Hall A, 8% water 0.35 0.18 0.05 Hall A, 16% water 0.18 0.12 0.03 Hall C, 8% water 0.27 0.15 0.03 Belli et al. 0.38 ± 0.01 0.27 ± 0.14 0.05 ± 0.01 Concrete 1.05 0.66 + composition of rock/concrete Calculation of neutron yield Neutrons from (a,n): Hall A rock: 4.38 n/y/g rock Hall C rock: 0.39 n/y/g rock Conc. (8% water): 0.50 n/y/g conc. E > 1 MeV neutrons come from : 7 cm concrete 13 cm rock Concrete thickness: 40 cm (up to 1m in some places in LNGS) CONCRETE MORE IMPORTANT!! and neutron spectrum G. Gerbier NESS 2002 14

a n and fission : the case of LSM (Fréjus lab) Rock Concrete Frac Fission/Tot Rate n/g/y Fission 0.44 1 a n (updated data on Ca 05/2002) 0.9 0.7 Total 1.34 1.7 35 % to 60 % Flux /cm2/sec > 1 MeV calculation Fission 2.2E-07 5.0E-07 a n 6.1E-07 4.7E-07 Total 8.3E-07 9.8E-07 25 % to 50 % Flux /cm2/sec > 1 MeV measured 1.60E-06 - slightly higher rates and flux than LNGS NB : TECNomSiQ= Team Edelweiss Cresst for Neutron and m Shield Qualification G. Gerbier NESS 2002 15

3) neutron flux from cosmic-ray muons +V.A. Kudryavtsev results (University of Sheffield) Tests of the FLUKA, MCNP, MUSIC, GEANT 3/4 simulation codes Characteristics to investigate and compare to existing measurements Neutron production rate as a function of muon energy (depth); Neutron production rate as a function of atomic weight of material; Neutron energy spectrum; Neutron flux as a function of distance from muon track. Comparison with experimental data => Tools exist, must be fine tuned for real DM experiments G. Gerbier NESS 2002 16

Neutron production as a function of m energy experiments in scintillator/lead LSD ASD LVD 3.7 10-3 /m/g/cm 2 Palo Verde 2.3 10-4 /m/g/cm 2 Parametrisation in scintillator Nn = 4.14 E m 0.74 10-6 /m/g/cm 2 Wang et al. Phys Rev D 64 (2001) 013012 Bergamasco et al, 73 Nn = 3.2 E m 0.78 10-6 /m/g/cm 2 VK (IDM 2002) G. Gerbier NESS 2002 17

A dependance of neutron production Simulation VK For Em= 280 GeV Nn = 5.3 A 0.76 10-5 /m/g/cm 2 Parametrisation VK IDM 2002 G. Gerbier NESS 2002 18

Note big difference in shape below 8 MeV Exp spectrum depends on shield set up Preliminary simulations of neutron production in Pb with GEANT 3 modified by KARMEN (Lyon) dn/de 10 7 10 6 10 5 10 4 1000 100 Neutron energy spectrum from muons in thick Pb slab 50100 cm Primary and outgoing neutron spectra GEANT 3 98 % Outgoing neutrons 98 % Primary neutrons 10 1 0.1 0.1 1 10 100 1000 Energy (MeV) G. Gerbier NESS 2002 19

1000 4) transformation by EDW2 shield of HE neutrons m rock in LE neutrons at detector level Neutron energy spectrum in lab from muons in rock + contribution to flux in 1-10 MeV window at detector level Dementyev spectrum 100 10 1 Flux /cm /sec/mev * 10-14 Neutrons contributing to flux at detector level e -d/0.9m 0.1 10 100 1000 Energy (MeV) G. Gerbier NESS 2002 20

Résumé : neutron spectra at EDWII detectors 1.00E-04 1.00E-05 1.00E-06 Neutron energy spectra at detector for the 4 sources arbitrary normalisation RA rock Fission U in lead Mu rock Mu lead 1.00E-07 1.00E-08 1.00E-09 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 E neutron MeV => Similar shapes e -(E/0.7) for E<5 MeV, except for rock RA-steeper G. Gerbier NESS 2002 21

Summary of neutron background flux estimations at EDELWEISS II detector Background source Radioactivity from Rock U fission in Pb of shield assuming 0.1 ppb Neutrons from muons in Pb shield Neutrons from muons in rock Predicted flux at detector after shield E > 1 MeV 0.4 10-10 n/cm_/sec 1 <1.2 10-10 n /cm_/sec <3 10 10-10 n /cm_/sec 25 1.7 10-10 n /cm_/sec 4 Predicted flux at detector after shield E > 0.5 MeV 1.2 10-10 n /cm_/sec <2.4 10-10 n /cm_/sec 20 10-10 n /cm_/sec 3.2 10-10 n /cm_/sec m VETO e = 95 % will reduce this too G. Gerbier NESS 2002 22

EDELWEISS II m Veto 38.4 kg Ge 4 m Karlsruhe/KARMEN group joins EDELWEISS and provides the m VETO =140 m 2 plastic scintillator G. Gerbier NESS 2002 23

Instrumental background Example of GeAl9 => incomplete charge collection «flat» distribution in Q vs E plane at Q<0.5 fithe 3 evts of GGA1 at Q <0.5 could be same origin at lower rate or physical origin (1 neutron, 1 recoil, 1 surface event) G. Gerbier NESS 2002 24

Edelweiss II 100 detectors exercice : 6 months live = 3000 kg.d exposure 80 GeV WIMP, 2 10-8 pb Expected neutrons «Flat» background reduced by fact 10/GGA1 95 % accept 80 GeV WIMP G. Gerbier NESS 2002 25

g s 241Am (60Kev,18kev,14kev) Surface event rejection Ballistic phonon detection with Nb Si thin layers Ge bolometer (35g) (heat & ionization) E=1.5 Volt/cm Thermometer A Thermometer B A/B amplitude ratio 6 4 2 0 50 Charge deficit for A/B>2.5 (near surface events) Charge deficite Amplitude ratio (UP/DOWN) Full charge collection for A/B<2.5 (bulk events) 100 150 200 250 Ionization(kev) (kev) G. Gerbier NESS 2002 26 300 350 Counts 80 60 Counts 40 20 0 0 Raw energy spectrum Spectrum cleared from near surface events (A/B<2.5) Histogram of Ionization before and after rejection Before After 20 40 60 Ionization(kev) Ionization (kev) 80 Allows to reject surface events down to the energy threshold 100

This is a real thing September 2002 : dilution OK Wiring and cold electronic test : end 2002 Mounting in LSM : 03/2003-03/2004 Data taking with 6 kg : mid 2004 G. Gerbier NESS 2002 27

Wimp search goals NB : 0 evt/10 kgd NB : 0 evt/30 kg/60d EDW2 NB : 0 evt/1ton/200d 1 Ton G. Gerbier NESS 2002 28

Costs Edelweiss program (no labor costs) From EDELWEISS I to EDELWEISS II-6 kg- 1998-2004 : 3.8 M Additional cost to go to 36 kgs : 2.8 M Infrastructure (LSM) 0.2 M /y 0.1 to 1 ton experiment Cryogenic? G. Gerbier NESS 2002 29

hep-ph/0112018 December 2001 DAMA astro-ph/0205047 May 2002 G. Gerbier NESS 2002 30

From DAMA to LIBRA G. Gerbier NESS 2002 31

Towards next step : 1 ton detector(s) in Europe - CRESST-II, EDELWEISS-II, ZEPLIN-II are test stages of the 10-30 kg level - should test approx. 10-8 picobarn sensitivity range - sampling the 10-9 -10-10 picobarn range is beyond our present detector knowledge Requires in any case experiments at the ton scale, one or two at European scale - CRESST, EDELWEISS and KARMEN starting to assemble a collaboration and common working groups to design this ambitious experiment EU is initiating ApPEC (Astroparticle Physics European Coordination). => (CRESST, EDELWEISS, Karlsruhe) +, ZEPLIN will most probably present a common bid to EU for common R&D, networking and design studies => goal: make a common design study for neutron background studies and protection, avoid to duplicate efforts, define the best two lines of research for discriminating experiments (most probably cryogenic detectors and Xenon at the one-ton scale) assuming no definitive systematic background or limitations appears at the 10-30 kg stage G. Gerbier NESS 2002 32