objects via gravitational microlensing

Similar documents
Review of results from the EROS microlensing search for massive compact objects

NOT ENOUGH MACHOS IN THE GALACTIC HALO. Éric AUBOURG EROS, CEA-Saclay

The OGLE search for microlensing events towards the LMC

arxiv:astro-ph/ v2 2 Mar 2000

91191-Gif-Sur-Yvette CEDEX, France. and NATHALIE PALANQUE-DELABROUILLE.

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

The Cult of Microlensing B. Scott Gaudi Institute for Advanced Study

Chapter 14 The Milky Way Galaxy

Gravitational Lensing: Strong, Weak and Micro

Dark Baryons and their Hidden Places. Physics 554: Nuclear Astrophysics Towfiq Ahmed December 7, 2007

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

MASS FUNCTION OF STELLAR REMNANTS IN THE MILKY WAY

Microlensing (planet detection): theory and applications

Our View of the Milky Way. 23. The Milky Way Galaxy

16th Microlensing Season of the Optical Gravitational Lensing Experiment

arxiv:astro-ph/ v1 12 Aug 1998

Microlensing towards the Galactic Centre with OGLE

arxiv:astro-ph/ v1 23 Jan 2006

Microlensing with Spitzer

MICROLENSING MAPS FOR THE MILKY WAY GALAXY N. W. Evans and V. Belokurov

Our Galaxy. Chapter Twenty-Five. Guiding Questions

Searching for extrasolar planets using microlensing

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves

BASICS OF GRAVITATIONAL LENSING

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Gravitational Lensing. A Brief History, Theory, and Applications

Gravitational Efects and the Motion of Stars

arxiv:astro-ph/ v2 8 Dec 1998

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Microlensing Parallax with Spitzer

Astro 242. The Physics of Galaxies and the Universe: Lecture Notes Wayne Hu

Chapter 12. Dark Matter

arxiv:astro-ph/ v1 5 Apr 1996

Non Baryonic Nature of Dark Matter

Gravitational microlensing: an original technique to detect exoplanets

Ground Based Gravitational Microlensing Searches for Extra-Solar Terrestrial Planets Sun Hong Rhie & David Bennett (University of Notre Dame)

Ay162, Spring 2006 Week 8 p. 1 of 15

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

arxiv:astro-ph/ v1 12 Apr 1997

arxiv: v1 [astro-ph] 12 Nov 2008

BROCK UNIVERSITY. Test 2, March 2018 Number of pages: 9 Course: ASTR 1P02, Section 1 Number of Students: 465 Date of Examination: March 12, 2018

Microlensing and the Physics of Stellar Atmospheres

Are there MACHOs in the Milky Way halo?

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

Conceptual Themes for the 2017 Sagan Summer Workshop

astro-ph/ Mar 1999

Observations from Australasia using the Gravitational Microlensing Technique

Results of the OGLE-II and OGLE-III surveys

Structure of the Milky Way. Structure of the Milky Way. The Milky Way

Dark Matter: Observational Constraints

arxiv:astro-ph/ v2 4 Nov 1999

Dark Matter & Dark Energy. Astronomy 1101

Observations of gravitational microlensing events with OSIRIS. A Proposal for a Cruise Science Observation

astro-ph/ Feb 95

arxiv:astro-ph/ v1 30 Mar 2003

Structure of Our Galaxy The Milkyway. More background Stars and Gas in our Galaxy

Galaxies and the Universe. Our Galaxy - The Milky Way The Interstellar Medium

Towards the Galactic Distribution of Exoplanets

The Star Clusters of the Magellanic Clouds

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Distances & the Milky Way. The Curtis View. Our Galaxy. The Shapley View 3/27/18

Astronomy 113. Dr. Joseph E. Pesce, Ph.D. Dr. Joseph E. Pesce, Ph.D.

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

astro-ph/ Aug 1995

Framework for functional tree simulation applied to 'golden delicious' apple trees

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

ASTRON 331 Astrophysics TEST 1 May 5, This is a closed-book test. No notes, books, or calculators allowed.

arxiv: v1 [astro-ph] 18 Aug 2007

The Milky Way Galaxy Guiding Questions

The Milky Way Galaxy

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Astronomy 114. Lecture 29: Internal Properties of Galaxies. Martin D. Weinberg. UMass/Astronomy Department

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

The frequency of snowline planets from a 2 nd generation microlensing survey

The First Heroic Decade of Microlensing

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.


Light curve solutions of eclipsing binaries in SMC

Galaxies. CESAR s Booklet

The Milky Way. Mass of the Galaxy, Part 2. Mass of the Galaxy, Part 1. Phys1403 Stars and Galaxies Instructor: Dr. Goderya

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy. Sun you are here. This is what our Galaxy would look like if we were looking at it from another galaxy.

Introduction to (Strong) Gravitational Lensing: Basics and History. Joachim Wambsganss Zentrum für Astronomie der Universität Heidelberg (ZAH/ARI)

2 Princeton University Observatory, Princeton, NJ , USA

The Gravitational Microlensing Planet Search Technique from Space

Dark matter: summary

Star systems like our Milky Way. Galaxies

dynamical constraints on the dark matter distribution in the milky way

Age and abundance structure of the central sub-kpc of the Milky Way

Influence of magnification threshold on pixel lensing optical depth, event rate and time scale distributions towards M 31

arxiv: v1 [astro-ph.sr] 29 Jan 2009

arxiv: v1 [astro-ph.ga] 28 Jan 2009

Reddening map of the Large Magellanic Cloud bar region. A. Subramaniam

The Milky Way Galaxy. sun. Examples of three Milky-Way like Galaxies

Investigating the free-floating planet mass by Euclid observations

L2 point vs. geosynchronous orbit for parallax effect by simulations

Detecting Planets via Gravitational Microlensing

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

telescopes resolve it into many faint (i.e. distant) stars What does it tell us?

Transcription:

12 EROS : A search for dim galactic 11 objects via gravitational microlensing 10 9 8 7 6 James Rich : CEA Saclay/DAPNIA Service de Physique des Particules 5 4 J. Rich, Nov 8, 2007 p.1/37

* ' % (., 7 4, ; ( ', :, = 5 ( E * D * * #! * J J I H 3 ' < K J! ( H < - K.J, : I / K <. ( : ; % *: >( * / < KK ( : I ' 5 ; * AC ; * : Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds Astronomy and Astrophysics, 469 (2007) 387-404 ) ( & & "$#! 2 10 & / + - " + ( +! 8 * / 6 0 6 5 2 3 < / 5 "# ( 5 & 5 % ( 9 "# A 3 @? = 5 5 >. 5 ' G? F' C D % ( > 5? C : 5! /! B! >/ AC? / + / B;?? +? ' C / "$# # + / E A +? C " " " // I + / +? % L ; & * ' ( H + < E 5 +? D / 5 A < 7 3 0 KK 38? K D 5 H * & C M K A6<( 0 ' M ; C A* 0' 0 3: 2 + +?, * ' " "? A - J % C KKJ # ' A C. # J. Rich, Nov 8, 2007 p.2/37

R Q PO N Dark Matter in the Milky Way Milky Way Galactic Bulge LMC Dark Matter Halo particles or objects 50 kpc 8 kpc Earth Dark matter particles (wimps) can be detected as they pass through the Earth. Neutrinos or photons from wimp annihilation can be detected Dark objects (MACHOs) in the halo can lens visible stars in the LMC (Large Magellanic Cloud). Probability per star. J. Rich, Nov 8, 2007 p.3/37

S W N W Y S Z MACHOS MACHOS = MAssive Compact Halo Objects Candidates : brown dwarfs ( old white dwarfs ( primordial black holes ( V P PUT X PUT ), ), ) Detection by microlensing (Paczyński,1985) Projects : EROS : 1990-2002 MACHO : 1992-2000 between 10% and 50% of the halo is made of machos OGLE : 1992- MOA : 1998- Supermacho : 2001-2004 J. Rich, Nov 8, 2007 p.4/37

\ ] \ \ \ ] S \ ] S S \ ] S Macho Halo fraction Magellanic Clouds : M31 : MACHO (Alcock et al 2000) : with [P PUT P^ PUT EROS (Afonso et al, 2003) @ O ^ PUT EROS (this work) @ [P PUT \ W O ^`_ P T W X _ P T W X _ P T W a _ PUT AGAPE (Calchi Novati et al 2005) @ a ^ PUT \ ] \ b PUT MEGA (de Jong et al 2005) @ Pc PUT W X _ P T W X _ PUT J. Rich, Nov 8, 2007 p.5/37

d r q z yxw qu ˆ N tr Ž X c O T A Gravitation Microlensing Event star star small image dark object and Einstein ring large image telescope telescope ikj9l h f S dgf e time scale summed flux vs. 5 n ƒ z {} ~ y yxw stvu npo m z {} ~ y ŠŒ d f Amplification œ š ŽŽ Ž 1 0 3 idgf d 3 if undeflected line-of-sight inside Einstein Ring. Ÿž J. Rich, Nov 8, 2007 p.6/37

A lensed star in the Milky Way b P PUT 35000 reconstructed stars event 6-5-3-18380, b=-3.8 before during 2030 2124 log(flux) 2030 2124 t (days) J. Rich, Nov 8, 2007 p.7/37

O \ X c O T S R Q PO N ] Q PO O N S Q PO N Galactic Bulge and Magellanic Clouds optical depth =probability for Ÿž k : h f «ª Œ Galactic Bulge 8 kpc Earth Milky Way 50 kpc Macho Halo LMC SMC Galactic Bulge lenses = normal faint stars b Magellanic Clouds lenses = hypothetical machos for for faint Galactic and Magellanic stars ^ b PUT J. Rich, Nov 8, 2007 p.8/37

O EROS-2 Expérience de Recherche d Objets Sombres (CEA-Saclay, LAL-Orsay, IAParis, Obs.Marseille...) Marly 1m telescope, ESO LaSilla 2 ccd cameras ( b ) 2 mosaics of 8 CCDs, 2048 Data taking : 1996-2003 50 terabytes of data 2048 pixels 2 filtres rouge et bleu J. Rich, Nov 8, 2007 p.9/37

µ R PO ^ T EROS-2 : Milky-Way fields 66 Galactic Bulge fields : G X PO P P S dÿ³ R PO ^P ±`² X ± Bulge clump giants ^ J. Rich, Nov 8, 2007 p.10/37

¹¹¹ ¹¹ ºººº»»»» ººººº»»»»»» ºººººººººº»»»»»»»»» ºººººººººº»»»»»»»»»» ººººººººººººº»»»»»»»»»»»»» ººººººººººººº»»»»»»»»»»»»» ººººººººººº»»»»»»»»»»» ºººººº»»»»»» ºººº»»»» ºº»»» ººººº»»»» EROS and MACHO LMC fields EROS LMC Fields ¹ ¹ 65 6 5 r.a (hr) dec. (deg) 70 75 7 MACHO LMC Fields 11million stars in dense fields EROS LMC Fields 6million bright stars in sparse fields (good efficiency and photometry) J. Rich, Nov 8, 2007 p.11/37

Z Typical color-magnitude diagrams 12.00 Bulge 16 LMC R eros clump giants R eros bright stars 20.00 (B R) eros 0.25 1.75 23 0.5 (B R) eros 1.5 Use of Bulge clump giants + LMC bright stars reliable optical depth J. Rich, Nov 8, 2007 p.12/37

¼ A light curve (Galactic Bulge) EROS-2 : July, 1996 February,2003 653 18380 13.50 R 15.69 u0 0.21 te 23.32 t0 4.18 u0 0.21 te 23.29 t0 4.19 13.50 16.50 15.00 2.30 4.70 B 17.12 u0 0.21 te 23.25 t0 4.19 16.50 15.00 4.14 4.23 18.00 2.30 4.70 18.00 4.14 4.23 J. Rich, Nov 8, 2007 p.13/37

A parallax event 10.5 observer lens I (EROS) 11 no parallax fit parallax fit Sun source 11.5.1 1800 2000 2200 2400.05 residual 0.05.1 1800 2000 2200 2400 HJD J. Rich, Nov 8, 2007 p.14/37

A binary lens 251 20157 12.70 u0 0.09 te 97.85 t0 3.83 16.50 14.40 3.64 4.02 18.30 3.64 4.02 J. Rich, Nov 8, 2007 p.15/37

Z S ½ W V ^ P ¾PUT ± O b P T N N ½ PLANET collaboration lightcurve of EROS-2000-5 b ± PUT c ^ P T J. Rich, Nov 8, 2007 p.16/37

A binary source 11451 16265 14.20 u0 0.55 te 67.94 t0 3.77 15.80 15.60 3.63 3.91 17.20 3.63 3.91 J. Rich, Nov 8, 2007 p.17/37

A Strong Blend 10771 22583 14.27 R 17.11 u0 0.00 te 85.03 t0 3.74 bf 0.06 u0 0.08 te 8.57 t0 3.74 A dim star in the seeing disk of a clump giant 17.20 15.85 3.73 3.76 R 19.02 u0 0.00 te 85.03 t0 3.74 Blend fit: bf 0.08 te=85 days 19.11 3.73 3.76 No blend fit: te=9 days J. Rich, Nov 8, 2007 p.18/37

Contribution to calculated optical depth 120 EROS-2 events on Bulge clump giants Simple Events : 79% Strong Blends : 3% Parallax : 11% Caustic events : 5% Non-caustic : 2% J. Rich, Nov 8, 2007 p.19/37

i S b X Impact parameter distribution [minimum distance (lens)-(line-of-sight)] distribution should be flat h f 100.00 595 245 174 156 0.65 0.56 0.49 0.46 0.26 0.30 0.29 >= 1 bump Nevents S Â À Á } 0.00 1 bump achromatic scan 0.00 u 1.00 0 final u0 distribution is ~flat J. Rich, Nov 8, 2007 p.20/37

c ¾ b [ O Pb \ \ ± O c T Time-scale distribution 20 entries 120 mean 1.387 r.m.s. 0.317 S Ä Ãdgf days N events d f (80% of ) 10 1.0 N events 0 20 1.0 1.5 Log t E (days) entries 115 mean 1.328 r.m.s. 0.325 Cumulative optical depth 0.5 10 0 0.5 1.0 1.5 2.0 2.5 Log t E (days) 0 0.5 1.0 1.5 2.0 2.5 Log t E (days) J. Rich, Nov 8, 2007 p.21/37

± b O Å T ½ Q ³ S EROS-2 Optical Depth to Galactic Bulge 6 6 optical depth / 10 6 4 2 0 1 2 3 4 5 6 EROS 2 fit C B A latitude (deg) EROS 2 Hamadache et al, A&A (2006) S Æ ½ Ð Ïc Í Ë ÍÎ ³ ÊÌË É È Ç b c ¾PUT O ± ¾P T X c PUT Agreement with Galactic models : Han and Gould Bissantz and Gerhard Evans and Belokurov optical depth / 10 4 2 C B A 0 6 3 0 3 6 longitude (deg) J. Rich, Nov 8, 2007 p.22/37

Optical Depth to Galactic Bulge optical depth vs Galactic latitude optical depth / 10 6 6 4 2 EROS 2 MACHO OGLE 2 general agreement EROS/MACHO/OGLE 0 1 2 3 4 b (degree) 5 J. Rich, Nov 8, 2007 p.23/37

The only EROS Magellanic candidate (Bright source sample) sm0054m 17.2 R 5761 EROS2 SMC 1 R 18.14 u0 0.52 te 101.55 t0 460.53 16 18.2 17.1 B B 18.01 u0 0.53 te 105.85 t0 458.95 eros R 18.1 200 2600 17.2 R 18.2 17.1 B 22 18.1 0.5 (B R) 1.0 250 JD 2450000 700 eros Lens probably in SMC (expected d f, optical depth) J. Rich, Nov 8, 2007 p.24/37

Ñ ß â Ô b N S Ø Ô l ÖÂ Ô ÜÞ l o åæ ^ ± X b N T T S S Ò) Number of expected events ( à Ôá ßà Ó l ÜÁ ÛÝÜ ÚÙ i ª O ] ÓÕÔ äã R PO b P^ P ^ Q PO ^ ²³ i ª Ü Ø æ Á â (LMC) (SMC) (EROS-1) c ^ events expected X a V V 1 Efficiency vs log(te/day) 0.5 0 1 2 J. Rich, Nov 8, 2007 p.25/37

\ ] N W Z T TT TT EROS Limits on Macho Halo fraction 150 100 EROS 1+EROS 2 EROS 2 LMC Number of events expected for 100% macho halo N events 50 EROS 1 Plates EROS 2 SMC No LMC events seen (Tisserand et al 2007) macho Halo fraction 0 0.6 0.4 0.2 0.0 EROS 1 CCD 8 6 4 2 EROS 2 + EROS 1 upper limit (95% cl) log(m/msun) MACHO f=0.2 M=0.4Msun 0 2 8 6 4 2 0 2 log(m/msun) EROS Limit on macho halo fraction : for [P P T X PUT Events reported by MACHO collaboration likely due to ordinary stars in the LMC J. Rich, Nov 8, 2007 p.26/37

Z The 17 Macho events in EROS data 13 events before start of EROS-2 (July 1996) MACHO LMC-23 : before EROS-2 and then repeated 7 years later in EROS-2 : variable star. MACHO LMC-14 : event seen but not in bright sample MACHO LMC-15 : source star dimmer than EROS limit MACHO LMC-20 (B candidate) : event seen but not in bright sample J. Rich, Nov 8, 2007 p.27/37

J. Rich, Nov 8, 2007 p.28/37

MACHO color-magnitude diagram Only Macho-LMC-25 would be in EROS Bright Sample J. Rich, Nov 8, 2007 p.29/37

A MACDO event J. Rich, Nov 8, 2007 p.30/37

A MACDO event J. Rich, Nov 8, 2007 p.31/37

½ PO \ Q PO \ W W ² ³ O PO MACHOs ruled out 1 limit on halo fraction EROS MACHO Combined disk stability globular cluster abundance 0 LMC events (bright sample) 0 LMC events with (full sample, preliminary) ž dgf EROS wide binary abundance 0 8 0 log(m/msun) 8 J. Rich, Nov 8, 2007 p.32/37

POINT-AGAPE : M31 410 400 400 350 0 200 400 600 800 PA-99-N1 r light curve 0 200 400 600 800 PA-99-N2 r light curve 410 400 400 350 0 20 40 PA-99-N1 r light curve (zoom) 0 50 100 PA-99-N2 r light curve (zoom) N2 N1 N6 214 212 210 208 0 20 40 PA-99-N1 g light curve (zoom) 200 180 0 50 100 PA-99-N2 g light curve (zoom) S7 S4 S3 * S5 1250 1200 1150 1250 1200 1150 0 200 400 600 800 PA-00-S3 r light curve 420 440 460 480 PA-00-S3 r light curve (zoom) 240 220 240 220 0 200 400 600 800 PA-00-S4 r light curve 460 480 500 520 PA-00-S4 r light curve (zoom) 1700 1600 340 330 420 440 460 480 PA-00-S3 i light curve (zoom) 320 460 480 500 520 PA-00-S4 i light curve (zoom) J. Rich, Nov 8, 2007 p.33/37

POINT-AGAPE : M31 dn/d(t 1/2 ) 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 t 1/2 (days) J. Rich, Nov 8, 2007 p.34/37

Z \ ] Conclusions Galactic Bulge events well described by Models Little room for CDM cusp? MACHOs not dominant component of Milly Way Halo (EROS-2) [P PUT LMC events seen by MACHO collaboration may be due to dim stars in or near LMC bar Unexplained microlensing-like events in M31 Microlensing surveys are a goldmine of variable astrophysical phenomena J. Rich, Nov 8, 2007 p.35/37

R-Coronae Borealis Stars Tisserand et al A& A (2004) J. Rich, Nov 8, 2007 p.36/37

Rings around SN1987a Film : http ://eros.in2p3.fr/echoessn1987a/ Difference between 2 images J. Rich, Nov 8, 2007 p.37/37