J. Am. Chem. Soc., 1996, 118(7), , DOI: /ja952799y

Similar documents
J. Org. Chem., 1998, 63(13), , DOI: /jo980296f

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Stereoselective Synthesis of (-) Acanthoic Acid

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Supplementary Information. Single Crystal X-Ray Diffraction

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Supporting Information

J. Am. Chem. Soc., 1996, 118(17), , DOI: /ja953373m

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Supporting Information for Inorg. Chem., 1994, 33(7), , DOI: /ic00085a003 OHTO

J. Med. Chem., 1996, 39(14), , DOI: /jm960098l

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

,

Supporting Information

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Supporting Information

A single crystal investigation of L-tryptophan with Z = 16

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2002

Enantiospecific Synthesis of both Enantiomers of the Longtailed Mealybug Pheromone and their Evaluation in a New Zealand Vineyard

Supporting information

Supplementary Information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Supplementary Information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Supporting Information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

Seth B. Harkins and Jonas C. Peters

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Supporting Information

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Electronic Supplementary Information. for. Catalytic interconversion between hydrogen and formic acid at ambient temperature and pressure

Manganese-Calcium Clusters Supported by Calixarenes

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 ISSN SUPPORTING INFORMATION

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Spitalstrasse 51, and Klingelbergstrasse 80, CH-4056 Basel, Switzerland

Supplemental Information

Structure Report for J. Reibenspies

Supporting Information

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Supporting Information

Selective total encapsulation of the sulfate anion by neutral nano-jars

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.7, pp 36-41, 2015

Supporting Information

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Supporting Information for the Article Entitled

Supporting Information

Gulaim A. Seisenbaeva,, Geoffrey Daniel, Jean-Marie Nedelec,, Vadim G. Kessler,*, Supplementary materials

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Supporting Information. Table of Contents

Diammonium biphenyl-4,4'-disulfonate. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Link to published version

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supporting Information. for

Crystal structure of DL-Tryptophan at 173K

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Synthesis of Vinyl Germylenes

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Electronic Supplementary Information

metal-organic compounds

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Copyright WILEY-VCH Verlag GmbH, D Weinheim, 2000 Angew. Chem Supporting Information For Binding Cesium Ion with Nucleoside Pentamers.

Stereoselective Synthesis of Ezetimibe via Cross-Metathesis of Homoallylalcohols and α- Methylidene-β-Lactams

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Supporting information. Double Reformatsky Reaction: Divergent Synthesis of δ-hydroxy-β-ketoesters

organic papers 2,6-Diamino-3,5-dinitro-1,4-pyrazine 1-oxide Comment

metal-organic compounds

Supporting information. for. isatins and α-amino acids

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

Homework 1 (not graded) X-ray Diffractometry CHE Multiple Choice. 1. One of the methods of reducing exposure to radiation is to minimize.

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

Transcription:

J. Am. Chem. Soc., 1996, 118(7), 1629-1644, DOI:10.1021/ja952799y Terms & Conditions Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html Copyright 1996 American Chemical Society

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 1 Supplementary Material (-)-Sandramycin: Total Synthesis and Characterization of DNA Binding Properties Dale L. Boger,* Jyun-Hung Chen and Kurt W. Saionz Department of Chemistry, The Scripps Research Institute 10666 North Torrey Pines Road, La Jolla, Caifornia 92037 For 44: 'H NMR (CDCl 3, 400 MHz) with irradiation at 8 5.55 (D-Ser-NH) led to the collapse of the signal at 8 4.50 (M, D-Ser-a-CH) to a dd; irradiation at 8 5.30 (Pip-a-CH) led to the collapse of the signal at 8 1.73 (Pip-p-CH); irradiation at 8 4.50 (D-Ser-a-CH) led to the collapse of the signal at 8 5.55 (d, D-Ser-NH) to a singlet and to the collapse of the signal at 8 3.70 (D-Ser-p-CH 2 ); irradiation at 8 3.70 (D-Ser-p-CH 2 ) led to the collapse of the signal at 8 4.50 (m, D-Ser-a-CH) to a d and to the collapse of the signal at 8 3.08 (m, Ser-P-OH), to a singlet; irradiation at 8 3.30 (Pip-a-CH) led to the collapse of the signal at 8 1.40 (Pip-8-CH); irradiation at 8 3.08 (D-Ser-p-OH) led to the collapse of the signal at 8 3.70 (D-Ser-p-CH 2 ); irradiation at 8 2.31 (d, Pip-e-CH) led to the collapse of the signal at 8 1.73 (Pip-8-CH); irradiation at 8 1.73 (Pip-P and 8-CH) led to the collapse of the signal at 8 2.31 (Pip-a-CH) to a singlet, to the collapse of the signal at 8 3.30 (Pip-e-CH) to a dd, and to the collapse of the signal at 8 5.30 (Pip-a-CH) to a singlet; irradiation at 8 1.40 (Pip-8-CH) led to the collapse of the signal at 8 3.30 (Pip-e-CH) and to the colapse of the signal at 8 1.20 (Pip-y-CH 2 ). For 24: 'H NMR (CDC1 3, 400 MHz) with irradiation at 8 8.38 (Gly-NH) led to the collapse of the signal at 8 4.38 (dd, Gly-a-CH) to a doublet; irradiation at 8 5.79 (D-Ser-NH) led to the collapse of the signal at 8 4.63 (D-Ser-a-CH); irradiation at 8 5.30 (Sar-a-CH) led to the collapse of the signal at 8 3.42 (Sar-a-CH); irradiation at 8 5.25 (Pip-a-CH) led to the collapse of the signal at 8 1.55 (Pip-p-CH); irradiation at 8 4.78 (Val-c-CH) led to the collapse 1

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 2 of the signal at 8 2.10 (Val-p-CH) to a septet; irradiation at 8 4.63 (Ser-a and p-ch) led to the collapse of the signal at 8 5.79 (Ser-NH) to a singlet and to the collapse of the signal at 8 4.40 (Ser-p-CH) to a singlet; irradiation at 8 4.40 (Ser-p-CH and Gly-a-CH) led to the collapse of the signal at 8 8.38 (Ser-NH) to a singlet, to the collapse of the signal at 8 4.63 (Ser-a and P- CH) led to a singlet and to the collapse of the signal at 8 3.99 (Gly-a-CH); irradiation at 8 3.99 (Gly-a-CH) led to the collapse of the signal at 8 4.38 (Gly-a-CH); irradiation at 8 3.90 (Pip-c- CH) led to the collapse of the signal at 8 3.65 (Pip-c-CU) to a singlet; irradiation at 8 3.55 (Pipe-CH) led to the collapse of the signal at 8 3.90 (Pip-e-CH) to a doublet; irradiation at 8 3.42 (Sar-a-CU) led to the collapse of the signal at 8 5.30 (Sar-a-CH); irradiation at 8 2.10 (Val-p- CH) led to the collapse of the signal at 8 4.78 (Val-a-CH) and to the collapse of the signals at 8 0.95 and 0.84 (Val-y-CH 3 ) to two singlets; irradiation at 8 1.55 (Pip-p-CH) led to the collapse of the signal at 8 5.25 (Pip-a-CH) to a singlet. The 2D 'U-'H NOESY NMR spectrum of 24 (CDC1 3, 400 MHz) displayed diagnostic NOE crosspeaks for Gly-NH/pip-a-CH, Gly-NH/Gly-a-CH, Ser-NU/Ser-a-CH, Ser-NH/Val-NCH 3, Sar-a-CH/Sar-NCH 3, Sar-a-CU 3 /Val-NCU 3, Pip-a-CH/Pip-p-CH, Pip-a-CH/Pip-y-CH, Val-a- CH/Val-p-CH, Val-a-CH/Val-y-CH 3, Ser-a-CU/Ser-p-CH, Ser-a-CH/Pip-e-CH, Gly-a-CH/Glya-CH, Pip-c-CU/Pip-e-CH, Pip-e-CH/Pip-y-CH. For 25: 'H NMR (CDC1 3, 400 MHz) with irradiation at 8 8.46 (Gly-NH) led to the collapse of the signal at 8 4.41 (dd, Gly-a-CH) to a doublet; irradiation at 8 5.85 (Ser-NH) led to the collapse of the signal at 8 4.82 (d, Ser-a-CH) to a singlet; irradiation at 8 5.35 (Sar-a- CH) led to the collapse of the signal at 8 3.42 (d, Sar-a-CH) to a singlet; irradiation at 8 5.28 (Pip-a-CH) led to the collapse of the signal at 8 1.52 (Pip-p-CH); irradiation at 8 4. (Ser-a- 2

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 3 CH and Val-a-CH) led to the collapse of the signal at 8 5.85 (Ser-NH) to a singlet and to the collapse of the signal at 8 2.14 (Val-p-CH) to a septet; irradiation at 5 4.41 (Gly-a-CH) led to the collapse of the signal at 8 8.46 (d, Gly-NH) to a singlet, and to the collapse of the signal at 8 4.03 (Gly-a-NH); irradiation at 8 4.03 (Gly-a-CH) led to the collapse of the signal at 8 4.41 (Gly-a-CH); irradiation at 8 3.90 (Pip-a-CH)) led to the collapse of the signal at 8 3.61 (d, Pipa-CH) to a singlet; irradiation at 8 3.61 (Pip-e-CH) led to the collapse of the signal at 8 3.90 (Pip-e-CH) to a doublet; irradiation at 8 3.42 (Sar-a-CH) led to the collapse of the signal at 8 5.35 (d, Sar-a-CH) to a singlet; irradiation at 8 2.14 (Val-p-CIH) led to the collapse of the signal at 8 4. (d, Val-a-CH) to a singlet and to the collapse of the signals at 8 0.98 and 0.84 (two d, Val-y-CH 3 ) to two singlets; irradiation at 8 1.52 (Pip-p-CH) led to the collapse of the signal at 8 5.28 (d, Pip-a-CH) to a singlet; irradiation at 5 0.9 led to the collapse of the signal at 5 2.14 (d split septet, Val-P-CH) to a doublet. For 27: 'H NMR (CDCl 3, 400 MHz) with irradiation at 8 8.48 (Gly-NH) led to the collapse of the signal at 8 4.42 (dd, Gly-a-CH) to a doublet, irradiation at 8 5.45 (Sar-a-CH and Pip-a-CH) led to the collapse of the signal at 5 3.47 (d, Sar-a-CH) to a singlet and to the collapse of the signal at 8 1.60 (Pip-P-CH), irradiation at 8 5.34 (Ser-a-CH) led to the collapse of the signal at 8 9.01 (d, Ser-NH) to a singlet and to the collapse of the signal at 8 4.58 (dd, Ser-P-CH) to a doublet, irradiation at 8 4.87 (Ser-p-CH) led to the collapse of the signal at 6 4.58 (dd, Ser-P-CH) to a doublet, irradiation at 5 4.83 (Val-a-CH) led to the collapse of the signal at 8 2.05 (d split septet, Val-p-CH) to a septet, irradiation at 8 4.58 (Ser-p-CH) led to the collapse of the signal at 5 4.87 (d, Ser-p-CH) to a singlet, irradiation at 8 4.42 (Gly-a-CH) led to the collapse of the signal at 8 8.48 (d, Gly-NH) to a singlet and to the collapse of the 3

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 4 signal at 6 4.03 (d, Gly-a-CH) to a singlet, irradiation at 8 4.00 (Gly-a-CH and Pip-E-CH) led to collapse of the signal at 8 4.22 (dd, Gly-a-CH) to a doublet and to the collapse of the signal at 8 3.76 (d, Pip-e-CH) to a singlet; irradiation at 8 3.76 (Pip-e-CH) led to the collapse of the signal at 8 4.01 (dd, Pip-a-CH) to a doublet, irradiation at 8 3.47 (Sar-a-CH) led to the collapse of the signal at 8 5.45 (d, Sar-a-CH) to a singlet, irradiation at 8 2.05 (Val-p-CH) led to the collapse of the signal at 8 4.83 (d, Val-a-CH) to a singlet, and to the collapse of the signals at 8 0.95 and 0.81 (two doublets, Val-y-CH 3 ) to two singlets, irradiation at 8 1.65 (Pip-p-CH) led to the collapse of the signal at 8 5.46 (d, Pip-a-CH) to a singlet. 4

Table 6. 'H NMR of 25.a chemical shift, 8 (multiplicity, J = Hz) Proton CDC1 3 THF-dg CD 3 OD DMF-d DMSO-d 6b Sandramycin, CDC1 3 Gly-NHI 8.46 (d, 5.2) 8.35 (d, 5.4) 8.44 (d, 6.0) 8.25 (m) 8.52 (d, 4.4) Boc-NH 5.85 (d, 6.1) 5.09 (d, 6.4) 6.46 (d, 7.4) 6.53 (d, 8. Sar-ax-CH 5.35 (d, 16.8) 5.27 (d, 16.6) 5.19 (d, 16.9) 5.14 (d, 16.6) 4.93 (d, 16.6) 5.54 (d, 16.6) Pip-a-CH 5.28 (d, 4.8) 5.31 (d, 5.1) 5.25 (d, 4.8) 5.29 (d, 4.4) 5.01 (m) 5.57 (d, 6.4) Ser-a-CH 4.82 (d, 6.1) 4.78 (m) obscured by H20 4.93 (m) 5.26 (d, 5.0) Val-a-CH 4. (d, 11.0) 4.83 (d, 10.9) 4.75 (d, 11.11) 4.76 (d, 10.9) 4.68 (d, 10.8) 4.87 (d, 11.0) Ser- P -CH 2 4H 4.47 (s) 4.52 (dd, 11.4, 3.0) 4.28 (dd, 11.4, 3.0) 4.45 (m) 4.54 (dd, 11.3, 3.0) 4.40 (m) 4.99 (d, 11.7) 4.43 (d, 11.7) Gly-a-CH 4.41 (dd, 18.0, 5.2) 4.34 (dd, 18.3, 5.7) 4.45 (m) 4.40 (dd, 18.2, 6.0) 4.17 (d, 18.5) 4.43 (d, 11.7) C) Gly-ac-CH 4.03 (d, 18.0) 3.95 (d, 18.3) 4.00 (d, 18.2) 4.07 (d, 18.2) 4.06 (m) 0 Pip-e-CH (ax) 3.90 (app t, 12.0) 3.95 (m) 3.78 (m) 3.84 (app t, 11.6) 4.10 (m) Pip-s-CH (eq) Sar-a-CH 3.61 (d, 12.0) 3.42 (d, 16.8) 3.74 (d, 13.2) 3.60 (d, 16.6) 3.78 (m) 3. (d, 16.9) obscured by H 2 0 3.95 (d, 16.6) 3.82 (d, 16.6) 3.74 (d, 14.5) 3.55 (d, 16.6) 0 Val-NCH 3 6H 2.95 (s) 2.91 (s) 2.99 (s) 3.00 (s) 2.88 (s) 3.12 (s) Sar-NCH 3 6H 2.92 (s) 2.91 (s) 2.96 (s) 2.99 (s) 2.87 (s) 2.94 (s) Val-P-CH 2.13 (dsp, 11.0, 6.5) 2.00 (dsp, 10.9, 6.5) 2.18 (dsp, 11.1, 6.6) 2.12 (dsp, 10.9, 6.6) 2.17 (bs) 2.04 (dsp, 11.0, 6.4) Pip-(CH 2 ) 3 1 1.65 (m) 1.54 (m) 1.65 (m) 1.50 (m) 1.42 (m) 1.73 (m), 1.59 (m), 1.47 (m) Boc 18H 1.40 (s) 1.40 (s) 1.45 (s) 1.41 (s) 1.38, 1.36 (s x 2) Val-y-CH 3 6H 0.98 (d, 6.5) 0.94 (d, 6.5) 0.96 (d, 6.6) 0.93 (d, 6.6) 0.86 (d) 0.92 (d, 6.4) Val-y-CH 6H 0.84 (d, 6.5) 0.81 (d, 6.5) 0.86 (d, 6.6) 0.83 (d, 6.6) 0.76 (d) 0.78 (d, 6.4) 400 MHz. bmultiple conformations, signals detected and attributable to the same conformation detected in other solvents.

Figure 6. 1 H NMR (CDCI 3, 400 MHz) of 25 (top) and sandramycin (1, bottom) P PMI ppm 5 4 I ppm 2.1 414 L A I ha MJLLt ) ppm 10 9 8 7 6 5 4 3 2 1 0 ppm 11.8 11.7 l I TI ppm 5 4 ppm A-j -tit_ PPm 10 9 8 7 6 5 4 3 2 1 0

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 7 Figure 7. Excitation and emission spectra in 10 mm Tris-HCI, 75 mm NaCI (ph 7.4) with 10 RM agent 120- Excitation spectra of (1) 120- Emission spectra of (1) 100-100- ---- Ex (300 nm) Em (530 nm) --- Ex (360 nm) -. O 4 60-60- 40 40-20- 20 4 0 0 200 250 300 350 400 450 500 550 600 650 700 nm nm 120- Excitation spectra of luzopeptin A 120 Emission spectra of luzopeptin A 100-100- Ex (340 rim) ---- Em (530 nm) ---- Ex (360 nm) * - S60-60- ~40 40 / 20 20-0 0tla C 0.II '0 200 250 300 350 400 450 500 550 600 650 700 nm nm 120- Excitation spectra of (32) 120- Emission spectra of (32) 100-100- Ex (400 nm) Em(SOnm) ------ Ex (360 nm) - - 0 0 60-60- S40-40 / 204 20 nm 450 500 550 600 650 700 nm

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Pa e 8 Table 7. Nucleic Acid Proton Chemical Shift Assignments in the d(gcatgc),- Sandramycin Complex and Their Comparison with Free DNA and Comparable Complexes with Luzopeptin A. d(gcatgc) 2 - d(catg) 2 - d(gcatgc) 2 - Base (5' to 3') Proton d(gcatgc) 3 6 Luzopeptin 3 6 Luzopeptin" Sandramycin Guanosine- I Cytosine-2 Adenosine-3 Thymine-4 Guanosine-5 Cytosine-6 H-8 H-' H-2'/2" H-3' H-4' H-5'/5" H-5 H-6 H-1' H-2'/2" H-3' H-4' H-5'/5" H-2 H-8 H-1' H-2'/2" H-3' H-4' H-5'/5" 5-CH 3 H-6 H-1' H-2'/2" H-3' H-4' H-5'/5" H-8 H-l' H-2'/2" H-3' H-4' H-5'/5" H-5 H-6 H-' H-2'/2" H-3' H-4' H-5'/5"- 7.83 5.83 2.53/2.71 4.77 4.21 3.65 5.29 7.36 5.58 2.08/2.41 4.82 4.13 ND 7.61 8.27 6.19 2.66/2.89 4.97 4.37 ND 1.39 7.01 5.63 1.87/2.26 4.78 4.08 ND 7.73 5.81 2.50/2.61 4.89 4.29 ND 4.96 7.18 6.01 2.16/2.16 4.41 3.95 ND 7.78 5. 2.44/2.62 4.71 4.00 3.34/3.34 5.14 7.24 5.60 2.27/2.32 4.11 ND ND 7.52 8.04 5.88 2.71/2.71 4.89 4.39 4.04/3.94 1.37 6.92 5.55 2.12/2.30 4.57 4.02 ND 7.89 5.61 2.44/2.52 4.81 4.10 4.05/ND 5.35 7.49 6.11 2.06/2.08 4.32 4.15 3.90/4.05 5.48 7.55 5.31 2.20/2.36 4.60 3.94 3.78/3.88 7.65 8.09 5.95 2.72/2.79 4.98 4.44 4.21/3.84 1.42 6.95 5.62 2.15/2.37 4.61 3.71 4.09/4.08 7.83 5.92 2.29/2.56 4.63 4.03 4.14 7.79 5.74 2.51/2.56 4.74 4.13 3.68/3.68' 5.01 7.14 5.67 2.21/2.26 4.68 4.13 3.68/3.68' 7.33 8.09 5.94 2./2. 4.95 4.51 4.16/3.99' 1.44 6.91 5.60 2.09/2.12 4.64 3.84 4.21/4.13' 7.96 5.83 2.62/2.51 4.91 4.35a 3.88/4.15' 5.29 7.44 6.16 2.09/2.13 4.44 3.94 4.15/4.04a FPreliminary, tentative assignment.

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 9 Table 8. Sandramycin Proton Chemical Shift Assignments in the d(gcatgc),- Sandramycin Complex and Their Comparison to Free Agent and Comparable Complexes of Luzopeptin A. Proton Luzopeptin (CDC1 3 ) d(gcatgc) 2 - Luzopeptin 36 d(catg) 2 - Luzopeptin3 Sandramycin (CDC 3 ) d(gcatgc) 2 - Sandramycin Quinoline-4 7.48 6.92 7.00 7.63 7.11 5 6.89 6.42 6.55 7.81 7.21 6 (3.91)a (3.57)' (3.68)' 7.50 6.89 7 7.13 5.78 6.09 7.50 6.44 8 7.63 6.02 6.09 7.71 6.21 D-Serine-a 5.77 5.66 5.72 5.26 5.44c 5.46 4.15 4.66 4.99 4.91c 4.39 4.15 4.25 4.43 4.14c Sarcosine-a 5.62 5.37 5.51 5.54 5.57c a 3.53 4.23 4.28 3.55 4.24c NCH 3 2.93 2.93 2.98 2.94 3.06 Glycine-a 4.48 ND 4.78 4.43 4.53c a 3.98 ND 4.78 4.06 4.31c Pip-a (5. 4 9 )b (5.14)b (5.18)b 5.57 4.96 I@, y, 6 1.7, 1.6, 1.5 1.77, 1.50, 1.41 4.10/3.74 4.37c/3.62c Valine-a 5.17 5.17 5.13 4.87 4.64 p 2.04 2.22 Y 1.29 1.40 1.52 0.92 1.00 Y 1.04 1.18 1.20 0.78 0.91 NCH 3 3.26 3.40 3.37 3.12 3.35 aquinoline C6-OCH 3. bpyr-a. ctentative, preliminary assignments. dnd, not yet determined.

(01996 American Chemical Society J. Am. Chem. Soc. V118 Page1629 Boger Supplemental Page 10 j j(,qql-/ob Data Deposition Form TO BE COMPLETED BY AUTHOR ON SUBMISSION OF MANUSCRIPT fournal J. AM. Chem. Soc. N' of Structures 1 Title of Paper (-)-Sandramycin: Total Synthesis and Preliminary DNA Binding Properties Authors Dale L. Boger* and J.-H. Chen For correspondence with author* Tel. N' (619) 554-7022 Fax N*(619) 554-6401 Compound Name or N* 22 Conventional Chemical Diagram H3 O HH Formula (each residue to be formulated separately eg: CsH 4 N 2 0s 2 0) C 5 0 H 8 2 N1 0 0 1 6 TO BE COMPLETED BY AUTHOR FOR DATA DEPOSITION Please specify, at start of deposited data: journal, title of paper, authors Please preface each data set by compound name, number or formula E-MAIL Yes O1 Please specify file type (CIFSHELX etc) FLOPPY DISK Yes O Please supply 'text only' standard ASCII file Please specify file type (CIFSHELX etc) Computer type/model Operating system/version 3-- O 5.25- O Single-sided O1 Double-sided O 360K O1 720K O I.2M O.. Single density Double density O High density O PRINTED LISTING YES TO BE COMPLETED BY EDITOR PUBLICATION Expected year Expected issue number TO BE COMPLETED BY CCDC Data received Coden Dep. N' ' Str. N- Acknowledged Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, U.K. Tel. N 0 : +44-223-336408 Fax No: +44-223-336033 E-Mail: DEPOSITOCHEMCRYS.CAM.AC.UK

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page II J I (04q-(( Captions to the figures FIG. 1 ORTEP view of The atoms are ellipsoids. the "Chen" structure. drawn with the 30% probability Fig. 2 Unit cell packing diagram of the "Chen" Hydrogen atoms are omitted for clarity. Fig. 3 Stereoview projection of the structure. "Chen"

CD Z0 CD CD CD C25' 08 CD CD,_t 06 C8 C7 0n,23 C14 04 02 Cs 01 -e C16 Cl

-5 72 X

cz t cz oc cz u (1) I

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 15 Experimental A colorless, plate like crystal (0.04x0.13x0.26 mm) was mounted alongwith the largest dimension and data were collected with a Rigaku AFC6R diffractometer equipped with a copper rotating anode and a highly oriented graphite monochromator. A constant scan speed of 4o/min in w was used and the weak reflections [I<5o(I)] were rescanned to a maximum of 4 times and the counts accumulated to assure good counting statistics. The intensities of three monitor reflections measured after during 51 hrs of X-ray exposure. Unit cell every 200 reflections did not change significantly dimensions and standard deviations were obtained by least squares fit to 25 reflections (50<20< ). The data were corrected for Lorentz and polarization effects and an absorption correction based on psi scan was applied. See Table 1 for cell parameters and other relevant data. The systematic absences (hkl, h+k=2n+l) indicated a choice among the space groups C2, Cm and C2/m. Since the compound is chiral and can only have a two fold site symmetry, C2 was chosen and later confirmed correct because of successful refinement of the structure. Z=2 in this space group suggests that the molecule has a two fold site symmetry. The structure was solved by directi methods using SHELXS86. Nitrogen and and oxygen atoms were refined anisotropically and carbon atoms isotropically by the full matrix least-squares method. The function minimized was Ew(IFI-11Fc ) 2. Hydrogen atoms were refined the wih dea afixe postios oc*2 in the ideal positions with a fixed isotropic U values of 0.08A. A weighting scheme of the form w=1/[a 2(F)+gF 2] with g=0.001 was used. There was no evidence of secondary extinction; therefore it was not applied. The refinement converged to the R indices given in the Table 1 which also includes the A/a and Ap in max the last cycles of refinement. The final difference map was devoid of significant features. All calculations were done on a Silicon graphics Personal Iris 4D/35 and an IBM compatible PC using programs TEXSAN (data reductiong), SHELXS86(structure solution) and SHELXTL (refinement and plotting). Final atomic coordinates are listed in Table 2 and selected bond lengths and bond angles in Table 3. References TEXSAN structure Analysis Package. Molecular Structure Corporation. The Woodlands, TX 77381. 1992. SHELXS86 G.M.Sheldrick, Acta Crystallogr. A46, 467-473(1990). SHELXTL Siemens Analytical Xray Instruments Inc. Madison, Wisconsin,.

0 1996 American Chemical Society J. Am. Chem. Soc. V1 18 Page 1629 Boger Supplemental Page 16 Table 1. Summary of crystal data, data collection and structural refinement for Crystal Data Unit Cell Parameters Volume Crystal System Space Group Empirical Formula Formula weight Z; F(000) Density(calc.) Absorption Coefficient (g) Absorption Correction Data Collection Radiation Monochromator Temperature (K) 20 Range Scan Type Scan Speed Scan width Scan time/ background time Index Ranges Total reflections Collected Independent Reflections Unique data used (m) a = 19.022(3), b = 7.291(1), c = 21.003(2) A #= 96.63(1) 2894(1) A 3 Monoclinic C2 (No. 5, C 2 3 ) C50 H52 N10 016 1079.3 2; 1160 1.239 Mg/m 3 0.733 mm- 1 Transmission factors: 0.94-1.00 CuKa (X = 1.54178 A) Highly oriented graphite crystal 296 4.0 to 120.00 20-0 Constant; 4.00 /min. 1.410+0.140tanO 2:1 in w;(for details see text) 0 h!21, 0 k 8, -23 5 1 523 2482 2338 (Rint = 0.00%) 1530 (F > 4.0a(F)) Solution and Refinement No. of Parameters Refined (n) 217 Data-to-Parameter Ratio (m/n) 7.1:1 Final R Indices (obs. data) R = 7.02 %, wr = 11.31 % Goodness-of-Fit (S) 2.51 Largest shift/error (A/a) 0.011 Largest Difference Peak (Ap )0.35 ea -3 Largest Difference Hole -0.31 ea R=(E 11gI-FI I/E IFgI), of wr=( w( F B-F )2/ EW1II12]h, S=[Ew( IF l-iifc1 )2/(m-n)]h

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 17 Table 2. Atomic coordinates (xlo 4) and equivalent isotropic 4j displacement coefficients (A x103 x y z U(eq) 0(1) 5859(3) 5036 9403(3) 84(3) 0(2) 6270(4) 7937(18) 9386(4) 97(3) 0(3) 5108(4) 6165(17) 7455(3) 71(3) 0(4) 6523(3) 7686(18) 6492(3) 75(3) 0(5) 5711(3) 5346(18) 4448(3) 60(2) 0(6) 6951(3) 8518(16) 3826(3) 66(2) 0(7) 6000(4) 11704(18) 2512(4) 99(4) 0(8) 5825(3) 9259(17) 1881(3) 64(2) N(l) 5433(4) 6888(21) 8639(3) 75(3) N(2) 5364(3) 8883(18) 7044(3) 52(3) N(3) 5860(3) 6179(18) 5712(3) 51(2) N(4) 6886(3) 5225(18) 4381(3) 49(2) N(5) 6810(3) 7516(18) 28(3) 49(2) C(1) 7072(6) 4513(29) 9859(6) 118(5) C(2) 6109(7) 2424(28) 10052(7) 117(5) C(3) 6172(8) 5474(34) 10539(7) 148(6) C(4) 6316(5) 4376(22) 9969(5) 76(3) C(5) 5891(6) 6719(21) 9176(5) 68(3) C(6) 5431(4) 8476(20) 8228(4) 54(2) C(7) 5293(4) 7760(20) 7541(4) 51(2) C(8) 5719(5) 10673(21) 7096(5) 70(3) C(9) 5382(6) 12058(24) 6616(5) 84(3) C(10) 5309(5) 11272(23) 5938(5) 76(3) C(11) 4899(4) 9467(19) 5916(4) 55(2) C(12) 5243(4) 95(18) 6405(4) 45(2) C(13) 5933(4) 7328(20) 6208(4) 53(2) C(14) 6462(4) 5420(20) 5434(4) 56(2) C(15) 6322(4) 5336(20) 4712(3) 46(2) C(16) 7616(4) 5264(20) 4668(4) 59(2) C(17) 6779(4) 5295(21) 3688(4) 52(2) C(18) 6850(4) 7285(19) 3450(4) 46(2) C(19) 6666(5) 6008(21) 2365(4) 69(3) C(20) 6895(4) 9341(20) 2558(4) 51(2) C(21) 7391(4) 9554(20) 2035(4) 57(2) C(22) 7494(5) 11571(23) 1855(5) 77(3) C(23) 8100(6) 8664(30) 2237(6) 115(5) C(24) 6194(5) 10276(22) 2328(4) 63(2) C(25) 5116(5) 9881(22) 1632(4) 70(3) * Equivalent isotropic U defined as one third of the trace of the orthogonalized U.. tensor, i.e, U =1/3Y LU..a.*a.*a.*a.

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 18 Table 3. Bond lengths (A) and bond angles (o i I (a q -I 0(1)-C(4) 0(2)-C(S) 0(4)-C(13) 0(6)-C(18) 0(8)-C(24) N(1)-C(5) N(2)-C(7) N(2)-C(12) N(3)-C(14) N(4)-C(16) N(5)-C(18) N(5)-C(20) C(2)-C(4) C(6)-C(7) C(8)-C(9) C(10)-C(11) C(12)-C(13) C(17)-C(18) C(20)-C(24) C(21)-C(23) 1.469 1.196 1.236 1.198 1.330 1.348 1.344 1.454 1.454 1.449 1.353 1.447 1.492 1.530 1.516 1.527 1.529 1.545 1.527 (12) (18) (10) (15) (14) (12) (15) (12) (12) (9) (10) (18) (25) (13) (18) (20) (13) (20) (14) 1.512 (17) 0(1)-C(5) 0(3)-C(7) 0(5)-C(15) 0(7)-C(24) 0(8)-C(25) N (1) -C (6) N(2)-C(8) N(3)-C(13) N(4)-C(15) N(4)-C(17) N(5)-C(19) C(1)-C(4) C(3)-C(4) C(6)-C(25A) C(9)-C(10) C(11)-C(12) C(14)-C(15) C(20)-C(21) C(21)-C(22) C(25)-C(6A) 1.320 1.223 1.228 1.185 1.462 1.444 1.468 1.331 1.347 1.447 1.446 1.487 1.492 1.513 1.526 1.526 1.510 1.537 1.537 (15) (19) (9) (19) (11) (18) (18) (15) (10) (10) (17) (15) (23) (17) (16) (15) (10) (13) (21) 1.513 (17) C(4)-0(1)-C(5) C(5)-N(1)-C(6) C(7)-N(2)-C(12) C(13)-N(3)-C(14) C(15)-N(4)-C(17) C(18)-N(5)-C(19) C(19)-N(5)-C(20) 0(1)-C(4)-C(2) 0(1)-C(4)-C(3) C(2)-C(4)-C(3) 0(1)-C(5)-N( 1) N(1)-C(6)-C(7) C(7)-C(6)-C(25A) 0(3)-C(7)-C(6) N(2)-C(8)-C(9) C(9)-C(10)-C(11) N(2)-C(12)-C(11) C(11)-C(12)-C(13) 0(4)-C(13)-C(12) N(3)-C(14)-C(15) 0(5)-C(15)-C(14) N(4)-C(17)-C(18) 0(6)-C(18)-C(17) N(5)-C(20)-C(21) C(21)-C(20)-C(24) C(20)-C(21)-C(23) 0(7)-C(24)-0(8) 0(8)-C(24)-C(20) 123.3(8) 122.0(11) 117.1(11) 122.5(7) 119.3(6) 122.1(11) 119.1(7) 105.6(9) 109.1(11) 110.1(13) 109.6(11) 106.2(11) 111.5(7) 118.6(10) 112.8(9) 110.1(10) 111.9(10) 111.8(7) 123.5(10) 111.3(7) 120.1(7) 110.6(10) 120.3(8) 117.1(10) 108.4(8) 110.9(9) 124.2(10) 110.1(12) C(24)-0(8)-C(25) C(7)-N(2)-C(8) C(8)-N(2)-C(12) C(15)-N(4)-C(16) C(16)-N(4)-C(17) C(18)-N(5)-C(20) 0(1)-C(4)-C(1) C(1)-C(4)-C(2) C(1)-C(4)-C(3) 0(1)-C(5)-0(2) 0(2)-C(5)-N(1) N(1)-C(6)-C(25A) 0(3)-C(7)-N(2) N(2)-C(7)-C(6) C(8)-C(9)-C(10) C(10)-C(11)-C(12) N(2)-C(12)-C(13) 0(4)-C(13)-N(3) N(3)-C(13)-C(12) 0(5)-C(15)-N(4) N(4)-C(15)-C(14) 0(6)-C(18)-N(5) N(5)-C(18)-C(17) N(5)-C(20)-C(24) C(20)-C(21)-C(22) C(22)-C(21)-C(23) 0(7)-C(24)-C(20) 0(8)-C(25)-C(6A) 117.9(11) 124.8(8) 116.2(8) 124.5(6) 115.8(6) 118.7(10) 110.2(9) 110.7(13) 111.1(12) 127.4(10) 122.9(14) 112.4(8) 121.2(9) 120.1(12) 110.8(13) 111.6(8) 110.2(6) 121.2(9) 115.2(7) 122.4(7) 117.6(6) 123.4(12) 116.3(10) 113.3(9) 112.2(10) 110.2(10) 125.7(10) 110.4(11) Symmetry Equivalent positions: A= 1-x, y 1-z

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 19 1L~~4Ll4~ TORSION ANGLES FOR C5 C5 C5 C4 C4 C6 C6 C5 Ca C8 Ni Ni C7 C8 C9 C7 C7 C8 C8 C1O C1O C14 C14 Cii Cii C13 C16 C16 C1 7 C17 N3 N3 C15 C16 C19 C19 N4 N4 C18 C18 C19 C19 C24 C24 C25 C25 C21 C21 01 01 01 01 01 N1 N1 N1 C6 C6 C8 C9 C10 Cii Cii N3 N3 N3 N4 N4 N4 N4 C14 C14 N4 N4 NS C17 C17 C2 0 08 08 C4 C4 C4 C5 C5 CS C5 C6 C7 C7 C7 C7 C7 C7 C8 C8 C9 C10 Cii C13 C13 C13 C13 C13 C13 C14 C15 C15 C15 C15 C15 C15 C17 C17 C18 Ci8 C18 C18 C18 c18 C21 C21 C21 C21 C24 C24 C24 C24 C24 C24 Cl C2 C3 02 Ni 01 02 C7 03 C6 03 C6 03 C9 C9 CI Cii Cii C13 Cii C13 C13 04 04 N3 04 N3 C15 05 C14 05 C14 05 N4 C18 C18 06 C17 06 C17 06 C21 C24 C21 C24 C22 C23 C22 C23 07 07 08 07 08 CHEN CRYSTAL -59.9-179.5 62.3-1.1 177.1-169.9 8.4 141.2-166.6 14.5-2.8 178.3 10.9-170.2-146.0 50.0-51.9 55.3-55.6 145.2-89.7-49.5 75.5 52.0-72.2-6.2 175.8-14.3 163.7 110.8-71.2-140.5 178.0-2.9 6.0-174.9-21.4 159.5 93.0-79.6-178.2 3.7 0.1-178.0-2.7 175.5 133.6-99.1-48.0 79.2-174.5-50.8 55.9 179.6-4.3 176.2 123.1-57.4-105.2 74.4

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 20 Table 4. Anisotropic displacement coefficients (A x103 U 1 1 U 2 2 U 3 3 U 1 2 U 1 3 U 2 3 0(1) 0(2) 0(3) 0(4) 0(5) 0(6) 0(7) 0(8) N(1) N(2) N(3) N(4) N(5) 72(4) 106(6) 97(5) 52(3) 52(3) 92(4) 89(5) 53(3) 61(4) 59(4) 47(4) 47(3) 71(4) 123(8) 88(7) 56(5) 96(6) 71(5) 53(5) 56(6) 81(5) 109(8) 48(5) 54(5) 54(5) 40(5) 54(4) 88(5) 59(4) 76(4) 57(3) 52(3) 154(7) 58(3) 50(4) 49(4) 52(4) 47(3) 37(4) -8(5) 8(5) -15(4) -1(4) 3(4) -3(4) 6(5) 6(4) -13(5) -14(4) 2(4) 0(4) -7(4) -13(3) -29(4) 8(3) 2(3) 6(3) 5(3) 23(5) 8(3) -12(3) 9(3) 11(3) 11(3) 2(3) 10(5) -14(5) -3(4) -26(4) 2(4) -9(4) -20(5) 8(4) 3(5) -14(4) -4(4) 5(4) 2(3) The anisotropic displacement exponent takes the form: -2w 2(h 2a*2 U 11+k 2b*2 U 22+12c*2 U33 +2hka*b*U 2+2hla*c*U 3+2klb*c*U23

0 1996 American Chemical Society J. Am. Chem. Soc. VI 18 Page 1629 Boger Supplemental Page 21 Table 5. H-Atom coordinates (xlo 4) and isotropic displacement coefficients (Ax103) x y z U H (1A) H (3A) H(1B) H(1C) H (1D) H(2A) H (2B) H(2C) H (3B) H (3C) H(3D) H(6A) H (8A) H (8B) H (9A) H(9B) H(10A) H(10B) H(11A) H(11B) H(12A) H(14A) H(14B) H(16A) H(16B) H(16C) H(17A) H(17B) H(19A) H(19B) H(19C) H(20A) H(21A) H(22A) H(22B) H(22C) H(23A) H(23B) H(23C) H(25A) H(25B) 5103 5391 7369 7182 7153 6391 6182 5619 6470 5684 6268 5886 5696 6205 5676 4922 5058 5770 4890 4424 4911 6871 6551 7932 7698 7700 7126 6314 6662 6215 7029 7124 7169 7040 7775 7728 30 8336 8383 5165 4838 5916 5844 4090 5769 3775 1917 1725 23 5055 5332 6743 9062 11151 10502 13131 12386 12132 11060 8950 9706 7104 6171 4201 5169 4259 6400 4539 4847 6437 5482 5096 9947 8932 12116 11635 12223 7407 9304 8716 11065 9990 8522 5531 10231 9777 9496 10419 9678 10118 10911 10608 10465 8287 7519 7028 6630 6726 5650 5810 5495 6005 6412 5552 5597 4345 4963 4896 3518 3542 1932 2420 2452 2932 1662 1729 1504 2216 2350 2599 1888 1443 1984