Quadratic nonlinear interaction

Similar documents
Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Phase independent nonlinear amplification regime in one-dimensional photonic bandgaps

12. Nonlinear optics I

Oscillateur paramétrique optique en

36. Nonlinear optics: χ(2) processes

1. Introduction. Keywords: second-harmonic generation, broadband, isotropic, zinc telluride.

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

Quasi-Phase-Matched Gallium Arsenide for Mid Infrared Frequency Conversion

Controlling light with metamaterial-based nonlinear photonic crystals

arxiv: v1 [physics.optics] 2 Sep 2013

Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media

36. Nonlinear optics: (2) processes

Broadband second harmonic generation in whispering gallery mode resonators

Type-0 second order nonlinear interaction in monolithic waveguides of isotropic semiconductors

Design and modeling of semiconductor terahertz sources based on nonlinear difference-frequency mixing. Alireza Marandi. Master of Applied Science

arxiv:physics/ v1 [physics.optics] 25 Jun 1998

Potassium Titanyl Phosphate(KTiOPO 4, KTP)

FABRY-PEROT INTERFERENCE IN QUASI-PHASE-MATCHED SECOND HARMONIC GENERATION IN GREEN MICROCHIP LASER

Advanced Vitreous State The Physical Properties of Glass

Engineering entangled-photon states using two-dimensional PPLN crystals

Temperature Tuning Characteristics of Periodically Poled Lithium Niobate for Second Harmonic Generation at 490 nm

Non-linear Optics III (Phase-matching & frequency conversion)

3.5x10 8 s/cm (c axis, 22 C, 1KHz) α x =11x10-6 / C, α y =9x10-6 / C, α z =0.6x10-6 / C

Frequency Doubling Ole Bjarlin Jensen

SHG Spectroscopy. Clean surfaces Oxidation SOI wafer

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Fabrication and characterization of Teflonbonded periodic GaAs structures for THz generation

Overlap Optimization in Semiconductor Waveguides by Wafer Bonding

Payam Abolghasem, Jun-Bo Han, Dongpeng Kang, Bhavin J. Bijlani, Student Member, IEEE, and Amr S. Helmy, Senior Member, IEEE.

HARNESSING effective ultrafast nonlinear (NL) interactions

INTRODUCTION TO NONLINEAR OPTICAL EFFECTS IN MOLECULES AND POLYMERS

ECE 484 Semiconductor Lasers

NONLINEAR OPTICS C H A P T E R

Nonlinear Optics (NLO)

arxiv: v1 [physics.optics] 11 May 2008

Polariton laser in micropillar cavities

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Optical Beam Instability and Coherent Spatial Soliton Experiments

Two-dimensional nonlinear frequency converters

Evaluation of Second Order Nonlinearity in Periodically Poled

Simultaneous optical parametric oscillation and intracavity second-harmonic generation based on a hexagonally poled lithium tantalate

Abstract. momentum states of phase locked harmonic pulses in semiconductors, at UV and extreme

TEL AVIV UNIVERSITY. Time to frequency mapping of optical pulses using accelerating quasi-phase-matching

A tutorial on meta-materials and THz technology

OPTI 511L Fall A. Demonstrate frequency doubling of a YAG laser (1064 nm -> 532 nm).

Broadband Nonlinear Frequency Conversion

SECOND HARMONIC GENERATION IN PERIODICALLY POLED NONLINEAR CRYSTALS WITH 1064 nm GAUSSIAN LASER PULSES

Grading. Class attendance: (1 point/class) x 9 classes = 9 points maximum Homework: (10 points/hw) x 3 HW = 30 points maximum

Blue-green Emitting Semiconductor Disk Lasers with Intra-Cavity Frequency Doubling

Highly Nonlinear Fibers and Their Applications

Sub-wavelength electromagnetic structures

4: birefringence and phase matching

DEVELOPMENT OF HIGH-POWER PICOSECOND FIBER-BASED ULTRAVIOLET SOURCE

THE generation of coherent light sources at frequencies

TUNABLE MULTI-CHANNEL FILTERING USING 1-D PHOTONIC QUANTUM WELL STRUCTURES

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

arxiv: v1 [physics.optics] 16 Feb 2013

Polarization-dependent nonlinear refraction and two-photon absorption in GaAs/ AlAs superlattice waveguides below the half-bandgap

Supplementary Figure 1: SAW transducer equivalent circuit

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

The Gouy phase shift in nonlinear interactions of waves

Advanced Vitreous State The Physical Properties of Glass

Lecturers for Week 1

Singly resonant optical parametric oscillator for mid infrared

Conical second harmonic generation in KDP crystal assisted by optical elastic scattering

Robust adiabatic sum frequency conversion

Periodically Poled Lithium Niobate Waveguides for Quantum Frequency Conversion

Nonlinear Electrodynamics and Optics of Graphene

Phase-matching temperature shifts in blue generation by frequency doubling of femtosecond pulses in KNbO 3

Erwin Schrödinger and his cat

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

THz QCL sources based on intracavity difference-frequency mixing

Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Photon Pair Production using non-linear waveguides

A Laser Frequency Doubling Application in Ion Trapping. Zach Simmons UW Physics REU Summer 2006

Second harmonic of laser radiation for IR-range in mixed AgGa 0.6. In 0.4. Se 2

Geometrical representation of sum frequency generation and adiabatic frequency conversion

Nanocomposite photonic crystal devices

Slowdown of group velocity of light in PPLN by employing electro-optic effect

NONLINEAR FREQUENCY CONVERSION IN A CRYSTALLINE WHISPERING-GALLERY MODE DISK

Nonlinear optics with quantum-engineered intersubband metamaterials

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Quasi-phase matching via femtosecond laser induced domain inversion in lithium niobate waveguides

Theoretical Analysis of the TE Mode Cerenkov Type Second Harmonic Generation in Ion-Implanted X-Cut Lithium Niobate Planar Waveguides

Collective effects in second-harmonic generation from plasmonic oligomers

Wave Turbulence and Condensation in an Optical Experiment

Idler-efficiency-enhanced long-wave infrared beam generation using aperiodic orientation-patterned GaAs gratings

Modelization of RGB lasers based on QPM structures with. independent control of laser intensities by electrooptic effect

Optical Parametric Generation

Coherent Microwave Generation in a Nonlinear Photonic Crystal

4. Integrated Photonics. (or optoelectronics on a flatland)

Electromagnetic Properties of Materials Part 2

Generation of supercontinuum light in photonic crystal bers

THERE is an increasing amount of experimental interest

(Introduction) Linear Optics and Nonlinear Optics

Linear and nonlinear optical properties of MgO:LiTaO 3

Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal

Nonreciprocal polarization converter consisting of asymmetric waveguide with ferrimagnetic Ce:YIG

Transcription:

Nonlinear second order χ () interactions in III-V semiconductors 1. Generalities : III-V semiconductors & nd ordre nonlinear optics. The strategies for phase-matching 3. Photonic crystals for nd ordre nonlinear optics 1 Quadratic nonlinear interaction Second Harmonic Generation χ () Parametric generation 1 χ () Conservation requirements : Energy 1 + = Phase velocity k = k -k 1 k = 0 Group velocity v g = v g, - v g,ι = 0 ι

Key parameters for SHG I Conversion efficiency ( z) = π 0 ε cλ Characteristic of the NL material Intensity dependence Phase mismatch : k=k -k Coherence length : L c =π/ k Ex. : III-V semiconductors @ 1,5µm high d eff but too small L c ~ µm [ d ] n eff 1 n [ I ] SH intensity 1,00 0,75 0,50 0,5 sin k ( ) kz z at best Interferential phasematching term 0,00 0 1 3 4 3 z/l kl=π kl=π/ kl=0 Les semiconducteurs III-V et l ONL du nd ordre Advantages High second order susceptibility : for example GaAs : d 14 =10pm/V @ 1.55µm. - Possibility of integration Problems Highly dispersive material L c =1.6µm @ 1.55µm! - Symmetry 43m : III-V are isotropic Birefringent phasematching is impossible - Difficulties imposed by usual [001] epitaxy z=[001] k E θ y=[010] φ x=[100] d eff (u. a.) 1,0 0,8 0,6 0,4 0, TM φ=π/4 TM φ=0 TE 0,0 4 0 10 0 30 40 50 60 70 80 90 θ en degrès

Semiconductors : some important parameters 5 Semiconductors : some important parameters 6

Semiconductors : advantages and drawbacks Take benefit from high semiconductor NL susceptibility at 1.55 µm Take benefit from semiconductor technologies Compatibility with vertical or waveguide devices compatibility with VCSELS and other vertical devices Problem! Semiconductor are very dispersive and non-birefringent materials No phase matching : k=k -k L c =π/ k ~ µm 7 Solutions with periodic media, also an «old» history Periodically poled χ () : the Quasi-Phase-Matching was proposed in the seminal nonlinear paper of NLO in 196 J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 17, 1918 1939 (196) +χ() -χ() Periodicity dielectric constant : k E e E o n o k n e Form birefringence J. P. van der Ziel, Appl. Phys. Lett. 6, 60 (1975). Anomalous dispersion N. Bloembergen and J. Sievers, APL 17, 483 (1970). J. P. van der Ziel, Appl. Phys. Lett. 8, 437 (1976). A. Yariv, and P. Yeh, J. Opt. Soc. Am. 67, 438 (1977). 8 Needs strong refraction index contrast!

k The Quasi Phase Matching First proposition : to inverse the component of the NL tensor each L c, Armstrong et al. Phys. Rev. 17, 1918 (196). Generalization : Fejer et al. IEEE J. Quantum Electron. 8, 631 (199). d 1 d l 1 l SHG equation : k k dz K p Λ p= dξ + j = ξ n c p= z j( K p k ) z d e p j ξ = n c ( L) d L pξ The NL periodicity allows to conservate the momentum χ () periodical Intensité du SH (u.a) 10 5 K p π = p Λ d eff p ( ) = + z = p= +χ () -χ () +χ () -χ () +χ () -χ () +χ () 0 +χ () 0 +χ () 0 0 0 1 3 4 5 6 Distance de propagation (L c ) d p e jk p z 9 Quasi Pase Matching at long wavelength Difficult or Impossible at wavelengths < 8µm 10

Experimental demonstrations of QPM in III-Vs (1/) 1/ Epitaxial re-growth on a oriented substrate Al 50% Ga 50% As 1µm Al 60% Ga 40% As µm Al 60% Ga 40% As µm S. J. B. Yoo et al., Appl. Phys. Lett. 66, 3410 (1995) Al Ga O 3 SiO MPQA 44% GaAs 50Å 14Å 5Å 0% 44% 0% 44% χ () MPQA Massif J. S. Aitchison et al., IEEE J. Sel. Top. Quantum Electron. 4, 695 (1998). 11 II-VI Semiconductor Waveguide ZnTe <100>CdTe GaAs <100> GaAs <100> GaAs <100> GaAs <100> <111>CdTe <100>CdTe ZnTe <100>CdTe ZnTe GaAs <100> GaAs <100>

III-V Semiconductor Waveguide In 0.5 Ga 0.5 P GaAs <001> Bonding GaAs <001> Al 0.8 Ga 0. As GaAs GaAs <001> In 0.5 Ga 0.5 P GaAs Al 0.8 Ga 0. As GaAs <001> <001> <001> <110> <110> Compromise between losses and efficiency

Parametric generation and Optical Parametric Oscillator pump χ () idler signal Seed pump χ () idler signal pump χ () idler signal 15 Parametric generation and Optical Parametric Oscillator 16

First semiconductor OPO GaAs L=11 mm QPM : alternance of [110] et [-110] orientations (period : 61, µm) Mirors of OPO : external - PM between1,8 et,01 µm - Excellent agreement theorie/exp - Tunability :,4 to 3,1 µm for signal and 5,8 to 9,1 µm for idler 17 Experimental demonstrations of QPM in III-Vs : microcavity / QPM in a microcavity résonante FF SH L c C. Simonneau et al., Opt. Lett., 1775 (1997). QPM condition SH power (µw) 35 30 5 0 15 10 5 0 0 50 100 150 00 50 Fundamental power (mw) 18

Experimental demonstrations of QPM in III-Vs : microcavity Reflectivity 1,0 0,5 0,0 1,0 0,5 760 780 800 80 840 Fabry-Pérot resonance 0,0 1450 1500 1550 1600 1650 1700 1750 Wavelength (nm) C. Simonneau et al., Opt. Lett., 1775 (1997). SH power (µw) 35 30 5 0 15 10 5 0 0 50 19 100 150 00 50 Fundamental power (mw) Experimental demonstrations of QPM in III-Vs : microcavity 0