Microlocal analysis and inverse problems Lecture 4 : Uniqueness results in admissible geometries

Similar documents
Microlocal analysis and inverse problems Lecture 3 : Carleman estimates

THE CALDERÓN PROBLEM AND NORMAL FORMS

An inverse source problem in optical molecular imaging

Hyperbolic inverse problems and exact controllability

THE ATTENUATED RAY TRANSFORM ON SIMPLE SURFACES

DETERMINING A MAGNETIC SCHRÖDINGER OPERATOR FROM PARTIAL CAUCHY DATA

DETERMINING A FIRST ORDER PERTURBATION OF THE BIHARMONIC OPERATOR BY PARTIAL BOUNDARY MEASUREMENTS

Recent progress on the explicit inversion of geodesic X-ray transforms

COMPLEX SPHERICAL WAVES AND INVERSE PROBLEMS IN UNBOUNDED DOMAINS

INVERSE BOUNDARY VALUE PROBLEMS FOR THE MAGNETIC SCHRÖDINGER EQUATION

THE ATTENUATED RAY TRANSFORM FOR CONNECTIONS AND HIGGS FIELDS

A SHARP STABILITY ESTIMATE IN TENSOR TOMOGRAPHY

THE CALDERÓN PROBLEM FOR CONNECTIONS. Mihajlo Cekić

Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities

Before you begin read these instructions carefully.

Recovery of anisotropic metrics from travel times

A few words about the MTW tensor

A local estimate from Radon transform and stability of Inverse EIT with partial data

Inverse problems for hyperbolic PDEs

The Karcher Mean of Points on SO n

Wave equation on manifolds and finite speed of propagation

LOCAL LENS RIGIDITY WITH INCOMPLETE DATA FOR A CLASS OF NON-SIMPLE RIEMANNIAN MANIFOLDS

On stable inversion of the attenuated Radon transform with half data Jan Boman. We shall consider weighted Radon transforms of the form

LECTURE NOTES ON GEOMETRIC OPTICS

APPLICATIONS OF DIFFERENTIABILITY IN R n.

MICROLOCAL ANALYSIS METHODS

Transport Continuity Property

Travel Time Tomography and Tensor Tomography, I

1. Geometry of the unit tangent bundle

LECTURE 15: COMPLETENESS AND CONVEXITY

Deforming conformal metrics with negative Bakry-Émery Ricci Tensor on manifolds with boundary

THERMOACOUSTIC TOMOGRAPHY ARISING IN BRAIN IMAGING

THE BOUNDARY RIGIDITY PROBLEM IN THE PRESENCE OF A MAGNETIC FIELD

On L p resolvent and Carleman estimates on compacts manifolds

Numerical Methods for geodesic X-ray transforms and applications to open theoretical questions

The oblique derivative problem for general elliptic systems in Lipschitz domains

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

PICARD S THEOREM STEFAN FRIEDL

Complex geometrical optics solutions for Lipschitz conductivities

Local semiconvexity of Kantorovich potentials on non-compact manifolds

GABRIEL P. PATERNAIN, MIKKO SALO, AND GUNTHER UHLMANN

The Schrödinger propagator for scattering metrics

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS

arxiv: v1 [math.dg] 24 Feb 2017

The X-ray transform for a non-abelian connection in two dimensions

CALCULUS ON MANIFOLDS. 1. Riemannian manifolds Recall that for any smooth manifold M, dim M = n, the union T M =

YERNAT M. ASSYLBEKOV AND PLAMEN STEFANOV

THE LINEARIZED CALDERÓN PROBLEM IN TRANSVERSALLY ANISOTROPIC GEOMETRIES

ASYMPTOTIC BEHAVIOR OF GENERALIZED EIGENFUNCTIONS IN N-BODY SCATTERING

Rigidity and Non-rigidity Results on the Sphere

Microlocal Analysis : a short introduction

A new class of pseudodifferential operators with mixed homogenities

THE GEODESIC RAY TRANSFORM ON RIEMANNIAN SURFACES WITH CONJUGATE POINTS

Analysis in weighted spaces : preliminary version

Optimal Transportation. Nonlinear Partial Differential Equations

arxiv: v2 [math.dg] 26 Feb 2017

Some topics in sub-riemannian geometry

LOCAL AND GLOBAL BOUNDARY RIGIDITY AND THE GEODESIC X-RAY TRANSFORM IN THE NORMAL GAUGE

Reduction of Homogeneous Riemannian structures

Inégalités de dispersion via le semi-groupe de la chaleur

Nonlinear stabilization via a linear observability

1 First and second variational formulas for area

arxiv: v2 [math.ap] 13 Sep 2015

Chap. 1. Some Differential Geometric Tools

Topological properties of Z p and Q p and Euclidean models

Microlocal Methods in X-ray Tomography

satisfying the following condition: If T : V V is any linear map, then µ(x 1,,X n )= det T µ(x 1,,X n ).

BOUNDARY RIGIDITY AND STABILITY FOR GENERIC SIMPLE METRICS

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Asymptotics of generalized eigenfunctions on manifold with Euclidean and/or hyperbolic ends

Transversality. Abhishek Khetan. December 13, Basics 1. 2 The Transversality Theorem 1. 3 Transversality and Homotopy 2

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018

LECTURE 16: CONJUGATE AND CUT POINTS

INTRINSIC MEAN ON MANIFOLDS. Abhishek Bhattacharya Project Advisor: Dr.Rabi Bhattacharya

Quasi-conformal minimal Lagrangian diffeomorphisms of the

On the exponential map on Riemannian polyhedra by Monica Alice Aprodu. Abstract

Hamiltonian flows, cotangent lifts, and momentum maps

Math Topology II: Smooth Manifolds. Spring Homework 2 Solution Submit solutions to the following problems:

A local estimate from Radon transform and stability of Inverse EIT with partial data

MORERA THEOREMS VIA MICROLOCAL ANALYSIS. Josip Globevnik and Eric Todd Quinto

Vector fields Lecture 2

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS

1 )(y 0) {1}. Thus, the total count of points in (F 1 (y)) is equal to deg y0

Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on

The inverse conductivity problem with power densities in dimension n 2

Notes on quotients and group actions

Distances, volumes, and integration

Differential Geometry Exercises

Virasoro hair on locally AdS 3 geometries

ERRATUM TO AFFINE MANIFOLDS, SYZ GEOMETRY AND THE Y VERTEX

Visibility estimates in Euclidean and hyperbolic germ-grain models and line tessellations

An Overview of Mathematical General Relativity

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Surfaces JWR. February 13, 2014

Inversions of ray transforms on simple surfaces

SYMPLECTIC GEOMETRY: LECTURE 5

C 1 regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two

arxiv: v2 [math.ap] 8 Sep 2008

ON L p RESOLVENT ESTIMATES FOR LAPLACE-BELTRAMI OPERATORS ON COMPACT MANIFOLDS

Magnetic wells in dimension three

Transcription:

Microlocal analysis and inverse problems Lecture 4 : Uniqueness results in admissible geometries David Dos Santos Ferreira LAGA Université de Paris 13 Wednesday May 18 Instituto de Ciencias Matemáticas, Madrid David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 1 / 24

Outline Introduction 1 Introduction 2 Complex Geometrical Optics 3 Attenuated X-ray transform 4 Uniqueness of unbounded potentials David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 2 / 24

Introduction Introduction It is time now to state some precise uniqueness results. So far we have seen that: 1 In order to have Carleman estimates with opposite weights, one has to work with limiting Carleman weights. This is in order to comply with Hörmander s (necessary) criterium of solvability for non-selfadjoint operators. 2 On Riemannian manifolds, the existence of LCW is a limiting condition. It implies that manifolds have to be locally conformal to a product. 3 For reasons related to the global solvability of the transport equation, we will ask that the manifolds under scope be globally conformal to a product. 4 In fact, we need more conditions: for reasons related to the global solvability of the eikonal eqution, we ask the cutlocus of the manifold to be empty. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 3 / 24

Introduction Introduction It is time now to state some precise uniqueness results. So far we have seen that: 1 In order to have Carleman estimates with opposite weights, one has to work with limiting Carleman weights. This is in order to comply with Hörmander s (necessary) criterium of solvability for non-selfadjoint operators. 2 On Riemannian manifolds, the existence of LCW is a limiting condition. It implies that manifolds have to be locally conformal to a product. 3 For reasons related to the global solvability of the transport equation, we will ask that the manifolds under scope be globally conformal to a product. 4 In fact, we need more conditions: for reasons related to the global solvability of the eikonal eqution, we ask the cutlocus of the manifold to be empty. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 3 / 24

Introduction Introduction It is time now to state some precise uniqueness results. So far we have seen that: 1 In order to have Carleman estimates with opposite weights, one has to work with limiting Carleman weights. This is in order to comply with Hörmander s (necessary) criterium of solvability for non-selfadjoint operators. 2 On Riemannian manifolds, the existence of LCW is a limiting condition. It implies that manifolds have to be locally conformal to a product. 3 For reasons related to the global solvability of the transport equation, we will ask that the manifolds under scope be globally conformal to a product. 4 In fact, we need more conditions: for reasons related to the global solvability of the eikonal eqution, we ask the cutlocus of the manifold to be empty. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 3 / 24

Introduction Introduction It is time now to state some precise uniqueness results. So far we have seen that: 1 In order to have Carleman estimates with opposite weights, one has to work with limiting Carleman weights. This is in order to comply with Hörmander s (necessary) criterium of solvability for non-selfadjoint operators. 2 On Riemannian manifolds, the existence of LCW is a limiting condition. It implies that manifolds have to be locally conformal to a product. 3 For reasons related to the global solvability of the transport equation, we will ask that the manifolds under scope be globally conformal to a product. 4 In fact, we need more conditions: for reasons related to the global solvability of the eikonal eqution, we ask the cutlocus of the manifold to be empty. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 3 / 24

Introduction Admissible geometries The former remarks justify the introduction of: Definition A compact Riemannian manifold (M, g), with dimension n 3 and with boundary M, is called admissible if M R M 0 for some (n 1)-dimensional simple manifold (M 0, g 0 ), and if g = c(e g 0 ) where e is the Euclidean metric on R and c is a smooth positive function on M. Definition Here, a compact manifold (M 0, g 0 ) with boundary is simple if for any p M 0 the exponential map exp p with its maximal domain of definition is a diffeomorphism onto M 0, and if M 0 is strictly convex (that is, the second fundamental form of M 0 M 0 is positive definite). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 4 / 24

Introduction Admissible geometries The former remarks justify the introduction of: Definition A compact Riemannian manifold (M, g), with dimension n 3 and with boundary M, is called admissible if M R M 0 for some (n 1)-dimensional simple manifold (M 0, g 0 ), and if g = c(e g 0 ) where e is the Euclidean metric on R and c is a smooth positive function on M. Definition Here, a compact manifold (M 0, g 0 ) with boundary is simple if for any p M 0 the exponential map exp p with its maximal domain of definition is a diffeomorphism onto M 0, and if M 0 is strictly convex (that is, the second fundamental form of M 0 M 0 is positive definite). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 4 / 24

Introduction Admissible geometries The former remarks justify the introduction of: Definition A compact Riemannian manifold (M, g), with dimension n 3 and with boundary M, is called admissible if M R M 0 for some (n 1)-dimensional simple manifold (M 0, g 0 ), and if g = c(e g 0 ) where e is the Euclidean metric on R and c is a smooth positive function on M. Definition Here, a compact manifold (M 0, g 0 ) with boundary is simple if for any p M 0 the exponential map exp p with its maximal domain of definition is a diffeomorphism onto M 0, and if M 0 is strictly convex (that is, the second fundamental form of M 0 M 0 is positive definite). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 4 / 24

Introduction Main results (smooth potentials) Theorem Let (M, g) be admissible, and let q 1 and q 2 be two smooth functions on M. If Λ g,q1 = Λ g,q2, then q 1 = q 2. (In fact, we have results for anisotropic magnetic Schrödinger operators). Theorem Let (M, g 1 ) and (M, g 2 ) be two admissible Riemannian manifolds in the same conformal class. If Λ g1 = Λ g2, then g 1 = g 2. The above theorems were proved in a joint paper with Carlos Kenig, Mikko Salo and Gunther Uhlmann. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 5 / 24

Introduction Main results (smooth potentials) Theorem Let (M, g) be admissible, and let q 1 and q 2 be two smooth functions on M. If Λ g,q1 = Λ g,q2, then q 1 = q 2. (In fact, we have results for anisotropic magnetic Schrödinger operators). Theorem Let (M, g 1 ) and (M, g 2 ) be two admissible Riemannian manifolds in the same conformal class. If Λ g1 = Λ g2, then g 1 = g 2. The above theorems were proved in a joint paper with Carlos Kenig, Mikko Salo and Gunther Uhlmann. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 5 / 24

Introduction Main results (unbounded potentials) Theorem Let (M, g) be admissible and let q 1, q 2 be complex functions in L n/2 (M). If Λ g,q1 = Λ g,q2, then q 1 = q 2. The above theorem was proved in a joint paper with Carlos Kenig and Mikko Salo. From the point of view of unique continuation, the regularity L n/2 is optimal. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 6 / 24

Introduction Main results (unbounded potentials) Theorem Let (M, g) be admissible and let q 1, q 2 be complex functions in L n/2 (M). If Λ g,q1 = Λ g,q2, then q 1 = q 2. The above theorem was proved in a joint paper with Carlos Kenig and Mikko Salo. From the point of view of unique continuation, the regularity L n/2 is optimal. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 6 / 24

Outline Complex Geometrical Optics 1 Introduction 2 Complex Geometrical Optics 3 Attenuated X-ray transform 4 Uniqueness of unbounded potentials David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 7 / 24

Complex Geometrical Optics Reminder of the formal WKB expansion Conjugated operator : P ϕ = e ϕ/h h 2 g e ϕ/h P ϕ = P ϕ Principal symbol : p ϕ = ξ 2 dϕ 2 + 2i ξ, dϕ We have g (e 1 h (ϕ+iψ) a) = e 1 h ϕ P ϕ (e i h ψ a) = e 1 h (h (ϕ+iψ) 0 p ϕ (x, dψ) [ + 2h (grad g ϕ + igrad g ψ)a + 1 ] 2 g(ϕ + iψ)a ) + h 2 g a. Eikonal equation: p ϕ (x, dψ) = 0 Transport equation: (grad g ϕ + igrad g ψ)a + 1 2 g(ϕ + iψ)a = 0 David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 8 / 24

Complex Geometrical Optics Reminder of the formal WKB expansion Conjugated operator : P ϕ = e ϕ/h h 2 g e ϕ/h P ϕ = P ϕ Principal symbol : p ϕ = ξ 2 dϕ 2 + 2i ξ, dϕ We have g (e 1 h (ϕ+iψ) a) = e 1 h ϕ P ϕ (e i h ψ a) = e 1 h (h (ϕ+iψ) 0 p ϕ (x, dψ) [ + 2h (grad g ϕ + igrad g ψ)a + 1 ] 2 g(ϕ + iψ)a ) + h 2 g a. Eikonal equation: p ϕ (x, dψ) = 0 Transport equation: (grad g ϕ + igrad g ψ)a + 1 2 g(ϕ + iψ)a = 0 David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 8 / 24

Complex Geometrical Optics Reminder of the formal WKB expansion Conjugated operator : P ϕ = e ϕ/h h 2 g e ϕ/h P ϕ = P ϕ Principal symbol : p ϕ = ξ 2 dϕ 2 + 2i ξ, dϕ We have g (e 1 h (ϕ+iψ) a) = e 1 h ϕ P ϕ (e i h ψ a) = e 1 h (h (ϕ+iψ) 0 p ϕ (x, dψ) [ + 2h (grad g ϕ + igrad g ψ)a + 1 ] 2 g(ϕ + iψ)a ) + h 2 g a. Eikonal equation: p ϕ (x, dψ) = 0 Transport equation: (grad g ϕ + igrad g ψ)a + 1 2 g(ϕ + iψ)a = 0 David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 8 / 24

Complex Geometrical Optics Reminder of the formal WKB expansion Conjugated operator : P ϕ = e ϕ/h h 2 g e ϕ/h P ϕ = P ϕ Principal symbol : p ϕ = ξ 2 dϕ 2 + 2i ξ, dϕ We have g (e 1 h (ϕ+iψ) a) = e 1 h ϕ P ϕ (e i h ψ a) = e 1 h (h (ϕ+iψ) 0 p ϕ (x, dψ) [ + 2h (grad g ϕ + igrad g ψ)a + 1 ] 2 g(ϕ + iψ)a ) + h 2 g a. Eikonal equation: p ϕ (x, dψ) = 0 Transport equation: (grad g ϕ + igrad g ψ)a + 1 2 g(ϕ + iψ)a = 0 David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 8 / 24

Complex Geometrical Optics Complex geometrical optics (eikonal equation) We suppose that the metric has the form ( ) 1 0 g(x) = c(x) 0 g 0 (x ) and we choose ϕ(x) = x 1. We have dϕ = dx 1 and grad g ϕ = c 1 x1. Eikonal equation: dψ 2 g = dϕ 2 g = c 1 dϕ, dψ g = c 1 x1 ψ We choose ψ to be independent of x 1, and solution to dψ g0 = 1. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 9 / 24

Complex Geometrical Optics Complex geometrical optics (eikonal equation) We suppose that the metric has the form ( ) 1 0 g(x) = c(x) 0 g 0 (x ) and we choose ϕ(x) = x 1. We have dϕ = dx 1 and grad g ϕ = c 1 x1. Eikonal equation: dψ 2 g = dϕ 2 g = c 1 dϕ, dψ g = c 1 x1 ψ We choose ψ to be independent of x 1, and solution to dψ g0 = 1. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 9 / 24

Complex Geometrical Optics Complex geometrical optics (eikonal equation) Eikonal equation: dψ 2 g 0 = 1 In simple manifolds, it is easy to give explicit solutions of this eikonal equation ψ(x) = d g0 (x, ω 0 ), ω 0 M \ M where d g0 is the geodesical distance ( M is a simple extension of M). We have grad g0 ψ = (dψ) = exp 1 ω 0 (x ) ψ(x ) In fact, one can use geodesical polar coordinates x = exp ω0 (rθ), r = d g0 (x, ω 0 ) > 0, θ S ω0 M. In those coordinates, the metric reads g 0 = dr 2 + h 0 (r) David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 10 / 24

Complex Geometrical Optics Complex geometrical optics (eikonal equation) Eikonal equation: dψ 2 g 0 = 1 In simple manifolds, it is easy to give explicit solutions of this eikonal equation ψ(x) = d g0 (x, ω 0 ), ω 0 M \ M where d g0 is the geodesical distance ( M is a simple extension of M). We have grad g0 ψ = (dψ) = exp 1 ω 0 (x ) ψ(x ) In fact, one can use geodesical polar coordinates x = exp ω0 (rθ), r = d g0 (x, ω 0 ) > 0, θ S ω0 M. In those coordinates, the metric reads g 0 = dr 2 + h 0 (r) David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 10 / 24

Complex Geometrical Optics Complex geometrical optics (eikonal equation) Eikonal equation: dψ 2 g 0 = 1 In simple manifolds, it is easy to give explicit solutions of this eikonal equation ψ(x) = d g0 (x, ω 0 ), ω 0 M \ M where d g0 is the geodesical distance ( M is a simple extension of M). We have grad g0 ψ = (dψ) = exp 1 ω 0 (x ) ψ(x ) In fact, one can use geodesical polar coordinates x = exp ω0 (rθ), r = d g0 (x, ω 0 ) > 0, θ S ω0 M. In those coordinates, the metric reads g 0 = dr 2 + h 0 (r) David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 10 / 24

Complex Geometrical Optics Complex geometrical optics (transport equation) Transport equation: c 1 x1 a + igrad g ψa + 1 2 g(ϕ + iψ)a = 0 In polar coordinates grad g0 ψ = r, L gradg0 ψ = r, g0 ψ = 1 ( 1/2 ψ ) g 0 1/2 g 0 = 1 r r 2 r log g 0 hence the transport equation reads and can easily be solved where h is a holomorphic function. x1 a + r a + 1 4 r log g 0 a = 0 a = h(x 1 + ir) g 0 1/4 b(θ) David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 11 / 24

Complex Geometrical Optics Complex geometrical optics (transport equation) Transport equation: c 1 x1 a + igrad g ψa + 1 2 g(ϕ + iψ)a = 0 In polar coordinates grad g0 ψ = r, L gradg0 ψ = r, g0 ψ = 1 ( 1/2 ψ ) g 0 1/2 g 0 = 1 r r 2 r log g 0 hence the transport equation reads and can easily be solved where h is a holomorphic function. x1 a + r a + 1 4 r log g 0 a = 0 a = h(x 1 + ir) g 0 1/4 b(θ) David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 11 / 24

Complex Geometrical Optics Complex geometrical optics (L p case) Proposition Assume that q L n/2 (M). Let ω M 0 \ M 0 be a fixed point, let λ R be fixed, and let b C (S n 2 ) be a function. Write x = (x 1, r, θ) where (r, θ) are polar normal coordinates with center ω in ( M 0, g 0 ). For τ sufficiently large outside a countable set, there exists u 0 H 1 (M) satisfying where r 0 satisfies ( g + q)u = 0 in M, u = e τx 1 (e iτr g 1/4 e iλ(x 1+ir) b(θ) + r) τ r L 2 (M) + r H 1 (M) + r 2n 1. L n 2 (M) David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 12 / 24

Outline Attenuated X-ray transform 1 Introduction 2 Complex Geometrical Optics 3 Attenuated X-ray transform 4 Uniqueness of unbounded potentials David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 13 / 24

Attenuated X-ray transform Simple manifolds Definition A compact manifold (M 0, g 0 ) with boundary is simple if for any p M 0 the exponential map exp p with its maximal domain of definition is a diffeomorphism onto M 0, and if M 0 is strictly convex (that is, the second fundamental form of M 0 M 0 is positive definite). 1 Simple manifolds are non-trapping. 2 Simple manifolds are diffeomorphic to a ball. 3 A hemisphere is not simple. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 14 / 24

Attenuated X-ray transform Simple manifolds Definition A compact manifold (M 0, g 0 ) with boundary is simple if for any p M 0 the exponential map exp p with its maximal domain of definition is a diffeomorphism onto M 0, and if M 0 is strictly convex (that is, the second fundamental form of M 0 M 0 is positive definite). 1 Simple manifolds are non-trapping. 2 Simple manifolds are diffeomorphic to a ball. 3 A hemisphere is not simple. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 14 / 24

Attenuated X-ray transform Simple manifolds Definition A compact manifold (M 0, g 0 ) with boundary is simple if for any p M 0 the exponential map exp p with its maximal domain of definition is a diffeomorphism onto M 0, and if M 0 is strictly convex (that is, the second fundamental form of M 0 M 0 is positive definite). 1 Simple manifolds are non-trapping. 2 Simple manifolds are diffeomorphic to a ball. 3 A hemisphere is not simple. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 14 / 24

Attenuated X-ray transform Simple manifolds Definition A compact manifold (M 0, g 0 ) with boundary is simple if for any p M 0 the exponential map exp p with its maximal domain of definition is a diffeomorphism onto M 0, and if M 0 is strictly convex (that is, the second fundamental form of M 0 M 0 is positive definite). 1 Simple manifolds are non-trapping. 2 Simple manifolds are diffeomorphic to a ball. 3 A hemisphere is not simple. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 14 / 24

Attenuated X-ray transform Attenuated X-ray transform The unit sphere bundle : SM 0 = { S x, S x = (x, ξ) Tx M 0 ; ξ g = 1 }. x M 0 Boundary: (SM 0 ) = {(x, ξ) SM 0 ; x M 0 } union of inward and outward pointing vectors: ± (SM 0 ) = { (x, ξ) SM 0 ; ± ξ, ν 0 }. Denote by t γ(t, x, ξ) the unit speed geodesic starting at x in direction ξ, and let τ(x, ξ) be the time when this geodesic exits M 0. Godesic ray transform with constant attenuation λ: T λ f(x, ξ) = τ(x,ξ) 0 f(γ(t, x, ξ))e λt dt, (x, ξ) + (SM 0 ). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 15 / 24

Attenuated X-ray transform Attenuated X-ray transform The unit sphere bundle : SM 0 = { S x, S x = (x, ξ) Tx M 0 ; ξ g = 1 }. x M 0 Boundary: (SM 0 ) = {(x, ξ) SM 0 ; x M 0 } union of inward and outward pointing vectors: ± (SM 0 ) = { (x, ξ) SM 0 ; ± ξ, ν 0 }. Denote by t γ(t, x, ξ) the unit speed geodesic starting at x in direction ξ, and let τ(x, ξ) be the time when this geodesic exits M 0. Godesic ray transform with constant attenuation λ: T λ f(x, ξ) = τ(x,ξ) 0 f(γ(t, x, ξ))e λt dt, (x, ξ) + (SM 0 ). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 15 / 24

Attenuated X-ray transform Attenuated X-ray transform The unit sphere bundle : SM 0 = { S x, S x = (x, ξ) Tx M 0 ; ξ g = 1 }. x M 0 Boundary: (SM 0 ) = {(x, ξ) SM 0 ; x M 0 } union of inward and outward pointing vectors: ± (SM 0 ) = { (x, ξ) SM 0 ; ± ξ, ν 0 }. Denote by t γ(t, x, ξ) the unit speed geodesic starting at x in direction ξ, and let τ(x, ξ) be the time when this geodesic exits M 0. Godesic ray transform with constant attenuation λ: T λ f(x, ξ) = τ(x,ξ) 0 f(γ(t, x, ξ))e λt dt, (x, ξ) + (SM 0 ). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 15 / 24

Attenuated X-ray transform Injectivity of the attenuated X-ray transform Proposition Let (M 0, g 0 ) be a simple manifold. There exists ε > 0 such that if λ is a real number with λ < ε and if f C (M), then the condition T λ f(x, ξ) = 0 for all (x, ξ) + (SM 0 ) implies that f = 0. This was known when λ = 0. The proof in the attenuated case uses perturbation arguments. What about nonsmooth functions? David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 16 / 24

Attenuated X-ray transform Injectivity of the attenuated X-ray transform Proposition Let (M 0, g 0 ) be a simple manifold. There exists ε > 0 such that if λ is a real number with λ < ε and if f C (M), then the condition T λ f(x, ξ) = 0 for all (x, ξ) + (SM 0 ) implies that f = 0. This was known when λ = 0. The proof in the attenuated case uses perturbation arguments. What about nonsmooth functions? David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 16 / 24

Attenuated X-ray transform Injectivity of the attenuated X-ray transform Proposition Let (M 0, g 0 ) be a simple manifold. There exists ε > 0 such that if λ is a real number with λ < ε and if f C (M), then the condition T λ f(x, ξ) = 0 for all (x, ξ) + (SM 0 ) implies that f = 0. This was known when λ = 0. The proof in the attenuated case uses perturbation arguments. What about nonsmooth functions? David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 16 / 24

Normal operator Attenuated X-ray transform Notations: µ(x, ξ) = ξ, ν(x) and dn is the volume form on N. Scalar product: (h, h) L 2 µ ( + (SM 0 )) = h hµ d( (SM 0 )) Adjoint of the ray transform: + (SM 0 ) T λ h(x) = S x e λτ(x, ξ) h(ϕ τ(x, ξ) (x, ξ)), ds x (ξ), x M 0. where ϕ t (x, ξ) = (γ(t, x, ξ), γ(t, x, ξ)) is the geodesic flow. Lemma T λ T λ is a self-adjoint elliptic pseudodifferential operator of order 1 in M int 0. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 17 / 24

Normal operator Attenuated X-ray transform Notations: µ(x, ξ) = ξ, ν(x) and dn is the volume form on N. Scalar product: (h, h) L 2 µ ( + (SM 0 )) = h hµ d( (SM 0 )) Adjoint of the ray transform: + (SM 0 ) T λ h(x) = S x e λτ(x, ξ) h(ϕ τ(x, ξ) (x, ξ)), ds x (ξ), x M 0. where ϕ t (x, ξ) = (γ(t, x, ξ), γ(t, x, ξ)) is the geodesic flow. Lemma T λ T λ is a self-adjoint elliptic pseudodifferential operator of order 1 in M int 0. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 17 / 24

Normal operator Attenuated X-ray transform Notations: µ(x, ξ) = ξ, ν(x) and dn is the volume form on N. Scalar product: (h, h) L 2 µ ( + (SM 0 )) = h hµ d( (SM 0 )) Adjoint of the ray transform: + (SM 0 ) T λ h(x) = S x e λτ(x, ξ) h(ϕ τ(x, ξ) (x, ξ)), ds x (ξ), x M 0. where ϕ t (x, ξ) = (γ(t, x, ξ), γ(t, x, ξ)) is the geodesic flow. Lemma T λ T λ is a self-adjoint elliptic pseudodifferential operator of order 1 in M int 0. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 17 / 24

Normal operator Attenuated X-ray transform Notations: µ(x, ξ) = ξ, ν(x) and dn is the volume form on N. Scalar product: (h, h) L 2 µ ( + (SM 0 )) = h hµ d( (SM 0 )) Adjoint of the ray transform: + (SM 0 ) T λ h(x) = S x e λτ(x, ξ) h(ϕ τ(x, ξ) (x, ξ)), ds x (ξ), x M 0. where ϕ t (x, ξ) = (γ(t, x, ξ), γ(t, x, ξ)) is the geodesic flow. Lemma T λ T λ is a self-adjoint elliptic pseudodifferential operator of order 1 in M int 0. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 17 / 24

Attenuated X-ray transform Injectivity of the attenuated X-ray transform (non-smooth case) Lemma Let (M 0, g 0 ) be an (n 1)-dimensional simple manifold, and let f L 1 (M 0 ). Consider the integrals S n 2 τ(ω,θ) 0 f(r, θ)e λr b(θ) dr dθ where (r, θ) are polar normal coordinates in (M 0, g 0 ) centered at some ω M 0, and τ(ω, θ) is the time when the geodesic r (r, θ) exits M 0. If λ is sufficiently small, and if these integrals vanish for all ω M 0 and all b C (S n 2 ), then f = 0. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 18 / 24

Attenuated X-ray transform Using Elliptic regularity Preliminary step: extend (M 0, g 0 ) to a slightly larger simple manifold and f by zero. In this way we can assume that f is compactly supported in M int 0. Let b also depend on ω and change notations to write τ(x,ξ) e λt f(γ(t, x, ξ))b(x, ξ) dt ds x (ξ) = 0. S x 0 Next we make the choice b(x, ξ) = h(x, ξ)µ(x, ξ) and integrate the last identity over M 0 to obtain τ(x,ξ) e λt f(γ(t, x, ξ))h(x, ξ)µ dt d( (SM 0 )) = 0. + (SM 0 ) 0 By adjunction, we get f(x)tλ h(x) dv (x) = 0 M 0 for all h C 0 (( +(SM 0 )) int ). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 19 / 24

Attenuated X-ray transform Using Elliptic regularity Preliminary step: extend (M 0, g 0 ) to a slightly larger simple manifold and f by zero. In this way we can assume that f is compactly supported in M int 0. Let b also depend on ω and change notations to write τ(x,ξ) e λt f(γ(t, x, ξ))b(x, ξ) dt ds x (ξ) = 0. S x 0 Next we make the choice b(x, ξ) = h(x, ξ)µ(x, ξ) and integrate the last identity over M 0 to obtain τ(x,ξ) e λt f(γ(t, x, ξ))h(x, ξ)µ dt d( (SM 0 )) = 0. + (SM 0 ) 0 By adjunction, we get f(x)tλ h(x) dv (x) = 0 M 0 for all h C 0 (( +(SM 0 )) int ). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 19 / 24

Attenuated X-ray transform Using Elliptic regularity Preliminary step: extend (M 0, g 0 ) to a slightly larger simple manifold and f by zero. In this way we can assume that f is compactly supported in M int 0. Let b also depend on ω and change notations to write τ(x,ξ) e λt f(γ(t, x, ξ))b(x, ξ) dt ds x (ξ) = 0. S x 0 Next we make the choice b(x, ξ) = h(x, ξ)µ(x, ξ) and integrate the last identity over M 0 to obtain τ(x,ξ) e λt f(γ(t, x, ξ))h(x, ξ)µ dt d( (SM 0 )) = 0. + (SM 0 ) 0 By adjunction, we get f(x)tλ h(x) dv (x) = 0 M 0 for all h C 0 (( +(SM 0 )) int ). David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 19 / 24

Attenuated X-ray transform Using Elliptic regularity Choose h = T λ ϕ for ϕ C0 Since T λ T λ is self-adjoint, we have (M int 0 ) so that M 0 f(x)t λ T λϕ(x) dv (x) = 0. M 0 (T λ T λf(x))ϕ(x) dv (x) = 0 for all test functions ϕ, so T λ T λf = 0. By ellipticity, since f was compactly supported in M0 int, it follows that f C0 (M int 0 ). One can now use the injectivity result for f smooth to conclude that f = 0. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 20 / 24

Attenuated X-ray transform Using Elliptic regularity Choose h = T λ ϕ for ϕ C0 Since T λ T λ is self-adjoint, we have (M int 0 ) so that M 0 f(x)t λ T λϕ(x) dv (x) = 0. M 0 (T λ T λf(x))ϕ(x) dv (x) = 0 for all test functions ϕ, so T λ T λf = 0. By ellipticity, since f was compactly supported in M0 int, it follows that f C0 (M int 0 ). One can now use the injectivity result for f smooth to conclude that f = 0. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 20 / 24

Outline Uniqueness of unbounded potentials 1 Introduction 2 Complex Geometrical Optics 3 Attenuated X-ray transform 4 Uniqueness of unbounded potentials David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 21 / 24

Using CGOs Uniqueness of unbounded potentials Starting point: If q = q 1 q 2 where M qu 1 u 2 dv g = 0 with b C (S n 2 ) and u 1 = e τ(x 1+ir) ( g 1/4 e iλ(x 1+ir) b(θ) + r 1 ), u 2 = e τ(x 1+ir) ( g 1/4 + r 2 ). r j L 2n n 2 (M) = O(1), r j L 2 (M) = o(1) as τ. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 22 / 24

Using CGOs Uniqueness of unbounded potentials Noting that dv g = g 1/2 dx 1 dr dθ, we obtain that qe iλ(x1+ir) b(θ) dx 1 dr dθ = q(a 1 r 2 + a 2 r 1 + r 1 r 2 ) dv M The RHS converges to 0 as τ. Taking the limit as τ, we obtain that 0 M S n 2 q(x 1, r, θ)e iλ(x 1+ir) b(θ) dx 1 dr dθ = 0. This statement is true for all choices of ω M 0 \ M 0, for all real numbers λ, and for all functions b C (S n 2 ). Hence f λ (r, θ)e λr b(θ) dr dθ = 0 S n 2 where f λ L 1 (M 0 ) is the function given by 0 f λ (r, θ) = e iλx 1 q(x 1, r, θ) dx 1. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 23 / 24

Using CGOs Uniqueness of unbounded potentials Noting that dv g = g 1/2 dx 1 dr dθ, we obtain that qe iλ(x1+ir) b(θ) dx 1 dr dθ = q(a 1 r 2 + a 2 r 1 + r 1 r 2 ) dv M The RHS converges to 0 as τ. Taking the limit as τ, we obtain that 0 M S n 2 q(x 1, r, θ)e iλ(x 1+ir) b(θ) dx 1 dr dθ = 0. This statement is true for all choices of ω M 0 \ M 0, for all real numbers λ, and for all functions b C (S n 2 ). Hence f λ (r, θ)e λr b(θ) dr dθ = 0 S n 2 where f λ L 1 (M 0 ) is the function given by 0 f λ (r, θ) = e iλx 1 q(x 1, r, θ) dx 1. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 23 / 24

Using CGOs Uniqueness of unbounded potentials Noting that dv g = g 1/2 dx 1 dr dθ, we obtain that qe iλ(x1+ir) b(θ) dx 1 dr dθ = q(a 1 r 2 + a 2 r 1 + r 1 r 2 ) dv M The RHS converges to 0 as τ. Taking the limit as τ, we obtain that 0 M S n 2 q(x 1, r, θ)e iλ(x 1+ir) b(θ) dx 1 dr dθ = 0. This statement is true for all choices of ω M 0 \ M 0, for all real numbers λ, and for all functions b C (S n 2 ). Hence f λ (r, θ)e λr b(θ) dr dθ = 0 S n 2 where f λ L 1 (M 0 ) is the function given by 0 f λ (r, θ) = e iλx 1 q(x 1, r, θ) dx 1. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 23 / 24

End of the proof Uniqueness of unbounded potentials If λ is sufficiently small, it follows that f λ = 0. Since q(, r, θ) is a compactly supported function in L 1 (R) for a.e. (r, θ), the Paley-Wiener theorem shows that q(, r, θ) = 0 for such (r, θ). Consequently q 1 = q 2. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 24 / 24

End of the proof Uniqueness of unbounded potentials If λ is sufficiently small, it follows that f λ = 0. Since q(, r, θ) is a compactly supported function in L 1 (R) for a.e. (r, θ), the Paley-Wiener theorem shows that q(, r, θ) = 0 for such (r, θ). Consequently q 1 = q 2. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 24 / 24

End of the proof Uniqueness of unbounded potentials If λ is sufficiently small, it follows that f λ = 0. Since q(, r, θ) is a compactly supported function in L 1 (R) for a.e. (r, θ), the Paley-Wiener theorem shows that q(, r, θ) = 0 for such (r, θ). Consequently q 1 = q 2. David Dos Santos Ferreira (LAGA) Inverse Problems 4 ICMAT 24 / 24