Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

Similar documents
Chapter 3 Fourier Series Representation of Periodic Signals

ASSERTION AND REASON

Linear Algebra Existence of the determinant. Expansion according to a row.

How much air is required by the people in this lecture theatre during this lecture?

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

Integration by Guessing

National Quali cations

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

National Quali cations

CHAPTER 5d. SIMULTANEOUS LINEAR EQUATIONS

Probability & Statistics,

PURE MATHEMATICS A-LEVEL PAPER 1

page 11 equation (1.2-10c), break the bar over the right side in the middle

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

UNIT I FOURIER SERIES T

Problem Session (3) for Chapter 4 Signal Modeling

ESS 265 Spring Quarter 2005 Time Series Analysis: Some Fundamentals of Spectral Analysis

1985 AP Calculus BC: Section I

PREPARATORY MATHEMATICS FOR ENGINEERS

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Skyup's Media. Interpolation is the process of finding a function whose graph passes thr

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

Digital Signal Processing, Fall 2006

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

IIT JEE MATHS MATRICES AND DETERMINANTS

Chapter 9 Infinite Series

EXERCISE - 01 CHECK YOUR GRASP

New Advanced Higher Mathematics: Formulae

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Discrete Fourier Transform (DFT)

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

FOURIER ANALYSIS Signals and System Analysis

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

Lectures 5-8: Fourier Series

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

EEE 303: Signals and Linear Systems

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

TWO MARKS WITH ANSWER

Lectures 2 & 3 - Population ecology mathematics refresher

H2 Mathematics Arithmetic & Geometric Series ( )

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

ENGI 3424 Appendix Formulæ Page A-01

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Problem Value Score Earned No/Wrong Rec -3 Total

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

Engineering Mathematics (21)

IX. Ordinary Differential Equations

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities

15/03/1439. Lectures on Signals & systems Engineering

Discrete Fourier Transform. Nuno Vasconcelos UCSD

NET/JRF, GATE, IIT JAM, JEST, TIFR

A Simple Proof that e is Irrational

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Section 3: Antiderivatives of Formulas

Chapter 5. Chapter 5 125

19 Fourier Series and Practical Harmonic Analysis

10. Joint Moments and Joint Characteristic Functions

Limits Indeterminate Forms and L Hospital s Rule

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS L T P C

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

+ x. x 2x. 12. dx. 24. dx + 1)

terms of discrete sequences can only take values that are discrete as opposed to

MATH 174: Numerical Analysis. Lecturer: Jomar F. Rabajante 1 st Sem AY

STIRLING'S 1 FORMULA AND ITS APPLICATION

FOURIER SERIES. Series expansions are a ubiquitous tool of science and engineering. The kinds of

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Chapter Taylor Theorem Revisited

TOPIC 5: INTEGRATION

Name of the Student:

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Fourier Series and Applications

Ordinary Differential Equations

3.1 Laplace s Equation 3.2 The Method of Images 3.3 Separation of Variables

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

If a is any non zero real or imaginary number and m is the positive integer, then a...

Discrete Fourier Series and Transforms

Chapter 8 Approximation Methods, Hueckel Theory

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

Fourier Series and the Wave Equation

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Math 3B Midterm Review

Integration by Parts

MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

The limit comparison test

[Q. Booklet Number]

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Transcription:

LECTURE NOTES OF ENGINEERING MATHEMATICS III Su Cod: MAT) Vtusoutio.i COURSE CONTENT ) Numric Aysis ) Fourir Sris ) Fourir Trsforms & Z-trsforms ) Prti Diffrti Equtios 5) Lir Agr 6) Ccuus of Vritios Tt Book: Highr Egirig Mthmtics y Dr. B.S.Grw 6th Editio ) Kh Puishrs,Nw Dhi Rfrc Book: Advcd Egirig Mthmtics y E. Kryszig 8th Editio ) Joh Wiy & Sos, INC. Nw York DEFINITIONS : FOURIER SERIES Dr.A.T.Eswr Profssor d Hd Dprtmt of Mthmtics P.E.S.Cog of Egirig Mdy -57 A fuctio y = f) is sid to v, if f-) = f). Th grph of th v fuctio is wys symmtric out th y-is. A fuctio y=f) is sid to odd, if f-) = - f). Th grph of th odd fuctio is wys symmtric out th origi. Vtusoutio.i For mp, th fuctio f) = i [-,] is v s f-) = = f) d th fuctio f) = i [-,] is odd s f-) = - = -f). Th grphs of ths fuctios r show ow : Vtusoutio.i

Vtusoutio.i Grph of f) = Grph of f) = Not tht th grph of f) = is symmtric out th y-is d th grph of f) = is symmtric out th origi.. If f) is v d g) is odd, th h) = f) g) is odd h) = f) f) is v h) = g) g) is v For mp,. h) = cos is v, sic oth d cos r v fuctios. h) = si is v, sic d si r odd fuctios. h) = si is odd, sic is v d si is odd.. If f) is v, th. If f) is odd, th f ) d f ) d Vtusoutio.i For mp, d f ) d cos d cosd, s cos is v si d, s si is odd Vtusoutio.i

PERIODIC FUNCTIONS :- A priodic fuctio hs sic shp which Vtusoutio.i is rptd ovr d ovr gi. Th fudmt rg is th tim or somtims distc) ovr which th sic shp is dfid. Th gth of th fudmt rg is cd th priod. A gr priodic fuctio f) of priod T stisfis th coditio f+t) = f) Hr f) is r-vud fuctio d T is positiv r umr. As cosquc, it foows tht f) = f+t) = f+t) = f+t) =.. = f+t) Thus, f) = f+t), =,,,.. Th fuctio f) = si is priodic of priod sic Si+ ) = si, =,,,.. Th grph of th fuctio is show ow : Not tht th grph of th fuctio tw d is th sm s tht tw d d so o. It my vrifid tht ir comitio of priodic fuctios is so priodic. Vtusoutio.i FOURIER SERIES A Fourir sris of priodic fuctio cosists of sum of si d cosi trms. Sis d cosis r th most fudmt priodic fuctios. Th Fourir sris is md ftr th Frch Mthmtici d Physicist Jcqus Fourir 768 8). Fourir sris hs its ppictio i proms prtiig to Ht coductio, coustics, tc. Th sujct mttr my dividd ito th foowig su topics. Vtusoutio.i

FOURIER SERIES Vtusoutio.i Sris with ritrry priod FORMULA FOR FOURIER SERIES Cosidr r-vud fuctio f) which oys th foowig coditios cd Diricht s coditios :. f) is dfid i itrv,+), d f+) = f) so tht f) is priodic fuctio of priod.. f) is cotiuous or hs oy fiit umr of discotiuitis i th itrv,+).. f) hs o or oy fiit umr of mim or miim i th itrv,+). Aso, t Hf-rg sris Comp sris Hrmoic Aysis f ) d f )cos f )si d, d, Vtusoutio.i ),,,... ),,,... ) Th, th ifiit sris cos si ) is cd th Fourir sris of f) i th itrv,+). Aso, th r umrs,,,., d,,. r cd th Fourir cofficits of f). Th formu ), ) d ) r cd Eur s formu. It c provd tht th sum of th sris ) is f) if f) is cotiuous t. Thus w hv f) = cos si. 5) Suppos f) is discotiuous t, th th sum of th sris ) woud f ) f ) whr f + ) d f - ) r th vus of Vtusoutio.i f) immdity to th right d to th ft of f) rspctivy.

Prticur Css Cs i) Suppos =. Th f) is dfid ovr Vtusoutio.i th itrv,). Formu ), ), ) rduc to f ) d f )cos f )si d, d,,,... 6) Th th right-hd sid of 5) is th Fourir psio of f) ovr th itrv,). If w st =, th f) is dfid ovr th itrv, ). Formu 6) rduc to Aso, i this cs, 5) coms Cs ii) = f ) d f )cosd, =,,.. 7) f )sid =,,.. f) = cos si Suppos =-. Th f) is dfid ovr th itrv -, ). Formu ), ) ) rduc to f )cos d Vtusoutio.i f ) d 8) =,, 9) f )si d, Th th right-hd sid of 5) is th Fourir psio of f) ovr th itrv -, ). =,, If w st =, th f) is dfid ovr th itrv -, ). Formu 9) rduc to = f ) d Vtusoutio.i

f ) cosd, =,,.. ) Vtusoutio.i f ) sid =,,.. Puttig = PARTIAL SUMS i 5), w gt f) = cos si Th Fourir sris givs th ct vu of th fuctio. It uss ifiit umr of trms which is impossi to ccut. Howvr, w c fid th sum through th prti sum S N dfid s foows : N SN ) cos si whr N tks positiv itgr vus. I prticur, th prti sums for N=, r S ) cos si S ) cos si cos si If w drw th grphs of prti sums d compr ths with th grph of th origi fuctio f), it my vrifid tht S N ) pproimts f) for som rg N. Som usfu rsuts :. Th foowig ru cd Broui s grizd ru of itgrtio y prts is usfu i vutig th Fourir cofficits. ' '' uvd uv u v u... Hr u, u v,.. r th succssiv drivtivs of u d Vtusoutio.i v vd, v vd,... W iustrt th ru, through th foowig mps : cos si cos sid d 6 8 6 6. Th foowig itgrs r so usfu : Vtusoutio.i

cosd sid cos si Vtusoutio.i si cos. If is itgr, th si =, cos = -), si =, cos = Emps. Oti th Fourir psio of W hv, f) = i - < < f ) d ) d = f )cosd Hr w us itgrtio y prts, so tht si cos ) ) cosd cos si Vtusoutio.i ) )sid Usig th vus of, d i th Fourir psio ) w gt, f ) cos si Vtusoutio.i

) f ) si Vtusoutio.i This is th rquird Fourir psio of th giv fuctio.. Oti th Fourir psio of f)= - i th itrv -, ). Dduc tht Hr, cosch = d ) sih ) sih cosd sid cos si = si cos ) sih = Thus, sih sih f) = For =, =, th sris rducs to sih sih f)= = cos sih si Vtusoutio.i ) ) ) or = sih sih ) Vtusoutio.i

sih or = Thus, cosch ) Vtusoutio.i ) This is th dsird dductio.. Oti th Fourir psio of f) = ovr th itrv -, ). Dduc tht... 6 Th fuctio f) is v. Hc = f ) d= or = d = = Itgrtig y prts, w gt ) f ) cosd f ) d f )cosd, sic f)cos is v cosd si cos si Vtusoutio.i Aso, f )sid sic f)si is odd. Thus Vtusoutio.i

f ) 6 ) cos Hc,... 6. Oti th Fourir psio of, f ), Dduc tht 8 5 Th grph of f) is show ow. Hr, = f ) d=... Hr OA rprsts th i f)=, AB rprsts th i f)= -) d AC rprsts th i =. Not tht th grph is symmtric out th i AC, which i tur is pr to y-is. Hc th fuctio f) is v fuctio. f ) d Vtusoutio.i = d f )cosd cosd Vtusoutio.i f )cosd sic f)cos is v. Vtusoutio.i

si cos = Vtusoutio.i ) Aso, f )sid, sic f)si is odd Thus th Fourir sris of f) is For =, w gt or Thus, f ) ) cos f ) ) cos cos ) ) 8 ) or... 8 5 This is th sris s rquird. 5. Oti th Fourir psio of, f) =, Dduc tht 8 5 Hr,... Vtusoutio.i d d ) cosd cosd Vtusoutio.i

sid sid Vtusoutio.i ) Fourir sris is ) f) = ) cos si Not tht th poit = is poit of discotiuity of f). Hr f + ) =, f - )=- t =. Hc [ f ) f )] Th Fourir psio of f) t = coms [ ) ] Simpifyig w gt, or 8 [ 5 )... 6. Oti th Fourir sris of f) = - ovr th itrv -,). Th giv fuctio is v, s f-) = f). Aso priod of f) is --)= Hr = = ] f ) d= f ) d ) d Vtusoutio.i = Itgrtig y prts, w gt f )cos f )cos ) d ) d ) cos ) d s f) cos ) is v si ) Vtusoutio.i cos ) ) si )

) Vtusoutio.i f )si ) d =, sic f)si ) is odd. = Th Fourir sris of f) is f) = 7. Oti th Fourir psio of i f) = i Dduc tht 8 ) cos ) 5... Th priod of f) is Aso f-) = f). Hc f) is v Aso, / Vtusoutio.i = / / / / / / / / f ) d d si / f )cos d / f )cos d / ) f ) d Vtusoutio.i cos /

f )si Vtusoutio.i d Thus f) = puttig =, w gt f) = ) ) 8 or =... 5 Thus,... 8 5 NOTE cos Hr vrify th vidity of Fourir psio through prti sums y cosidrig mp. W rc tht th Fourir psio of f) = ovr -, ) is ) cos f ) Lt us dfi N ) cos SN ) Th prti sums corrspodig to N =,,..6 S ) S ) r cos cos cos S6 ) cos cos cos cos cos5 cos5 9 5 9 Th grphs of S, S, S 6 gist th grph of f) = r pottd idividuy d show ow : Vtusoutio.i Vtusoutio.i

Vtusoutio.i O compriso, w fid tht th grph of f) = coicids with tht of S 6 ). This vrifis th vidity of Fourir psio for th fuctio cosidrd. Ercis Chck for th vidity of Fourir psio through prti sums og with rvt grphs for othr mps so. HALF-RANGE FOURIER SERIES Th Fourir psio of th priodic fuctio f) of priod my coti oth si d cosi trms. My tim it is rquird to oti th Fourir psio of f) i th itrv,) which is rgrdd s hf itrv. Th dfiitio c tdd to th othr hf i such mr tht th fuctio coms v or odd. This wi rsut i cosi sris or si sris oy. Si sris : Suppos f) = ) is giv i th itrv,). Th w dfi f) = - -) i -,). Hc f) coms odd fuctio i -, ). Th Fourir sris th is Vtusoutio.i f ) si ) whr f )si d Th sris ) is cd hf-rg si sris ovr,). Puttig = i ), w oti th hf-rg Vtusoutio.i si sris of f) ovr, ) giv y

f ) si Vtusoutio.i Cosi sris : Lt us dfi f ) f )sid i,)... giv i -,)..i ordr to mk th fuctio v. Th th Fourir sris of f) is giv y f ) cos ) whr, f ) d f )cos Th sris ) is cd hf-rg cosi sris ovr,) Puttig = Emps : i ), w gt d Vtusoutio.i. Epd f) = -) s hf-rg si sris ovr th itrv, ). W hv, f ) whr Itgrtig y prts, w gt f )sid )sid ) f ) d ) cos f )cosd,,,.. Vtusoutio.i

Th si sris of f) is f ). Oti th cosi sris of Hr d ) cos si Vtusoutio.i ) si, f ) ovr, ), cosd ) d )cosd Prformig itgrtio y prts d simpifyig, w gt ) cos 8,,6,,... Thus, th Fourir cosi sris is cos cos6 cos f) =... 5 cos Vtusoutio.i. Oti th hf-rg cosi sris of f) = c- i <<c Hr c c ) d c c )cos d c c Itgrtig y prts d simpifyig w gt, c c Vtusoutio.i )

c ) Th cosi sris is giv y Vtusoutio.i Ercics: f) = c c ) cos c Oti th Fourir sris of th foowig fuctios ovr th spcifid itrvs :. f) = ovr -, ). f) = + ovr -, ). f) = ovr, ). f) = ovr -, ) ; Dduc tht... 5 5. f) = ovr -, ) ; Dduc tht... 8, 6. f) = ovr -, ), Dduc tht... 8, 7. f) =,, ovr -, ) Dduc tht 5... 8. f) = si ovr ; Dduc tht 9. f) =,, ovr -, ). f) = -) ovr,). f) = ovr -,). f) =, ), Vtusoutio.i Vtusoutio.i

Oti th hf-rg si sris of th foowig fuctios ovr th spcifid itrvs :. f) = cos ovr, ). f) = si ovr, ) 5. f) = - ovr, ) Vtusoutio.i Oti th hf-rg cosi sris of th foowig fuctios ovr th spcifid itrvs : 6. f) = ovr, ) 7. f) = si ovr, ) 8. f) = -) ovr,) 9. f) = k, k ), HARMONIC ANALYSIS Th Fourir sris of kow fuctio f) i giv itrv my foud y fidig th Fourir cofficits. Th mthod dscrid cot mpoyd wh f) is ot kow picity, ut dfid through th vus of th fuctio t som quidistt poits. I such cs, th itgrs i Eur s formu cot vutd. Hrmoic ysis is th procss of fidig th Fourir cofficits umricy. To driv th rvt formu for Fourir cofficits i Hrmoic ysis, w mpoy th foowig rsut : Th m vu of cotiuous fuctio f) ovr th itrv,) dotd y [f)] is dfid s f ) f ) d. Th Fourir cofficits dfid through Eur s formu, ), ), ) my rdfid s f ) d f )cos Vtusoutio.i f )si [ f )] d d f )cos f )si Usig ths i 5), w oti th Fourir sris of f). Th trm cos+ si is cd th first hrmoic or fudmt hrmoic, th trm cos+ si is cd th scod hrmoic d so o. Th mpitud of th first hrmoic is hrmoic is d so o. Vtusoutio.i d tht of scod

Emps. Fid th first two hrmoics of th Fourir sris of f) giv th foowig t : Vtusoutio.i Vtusoutio.i 5 f)...9.7.5.. Not tht th vus of y = f) r sprd ovr th itrv d f) = f ) =.. Hc th fuctio is priodic d so w omit th st vu f ) =. W prpr th foowig t to comput th first two hrmoics. y = f) cos cos si si ycos W hv Puttig, =,, w gt f )cos f )si [ ycos] [ ycos] [ y cos] [ ysi] ycos.) 6 6 ycos.) Vtusoutio.i 6 6 s th gth of itrv= = or =.67. ycos ysi. ysi 6..5 -.5.866.866.7 -.7...9 -.5 -.5.866 -.866 -.95 -.95.65 -.65 8.7 - -.7.7.5 -.5 -.5 -.866.866 -.75 -.75.99.99..5 -.5 -.866 -.866.6 -.6 -.9 -.9 Tot -. -..76 -.7

ysi [ ysi ].9 6 Vtusoutio.i ysi [ ysi].577 6 Th first two hrmoics r cos+ si d cos+ si. Tht is -.67cos +.9 si) d -.cos.577si). Eprss y s Fourir sris upto th third hrmoic giv th foowig vus : 5 y 8 5 7 6 Th vus of y t =,,,,,5 r giv d hc th itrv of shoud gth of th itrv = 6- = 6, so tht = 6 or =. Th Fourir sris upto th third hrmoic is or y cos si cos si cos < 6. Th si y cos si cos si cos si Put, th y cos si cos si cos si ) W prpr th foowig t usig th giv vus : = y ycos ycos ycos ysi ysi ysi 6 8 - -8 6.98 6.98 Vtusoutio.i 5-7.5-7.5 5.99 -.99 8 7-7 7-7 6 - - 6-5.96 5.96 5 - - -.7 -.7 Tot -8.5 Vtusoutio.i -.5 8.99 -.598

Usig ths i ), w gt [ f )] [ Vtusoutio.i y y] ) 6 [ y cos ] 6 8.5).8 [ ysi ].99) 6. [ y cos ] 6.5).5 [ ysi ] 6.598).866 [ y cos ] 8) 6.667 [ ysi ] y 7,8cos.)si.5cos.866si This is th rquird Fourir sris upto th third hrmoic. Vtusoutio.i.667cos. Th foowig t givs th vritios of priodic currt A ovr priod T : tscs) T/6 T/ T/ T/ 5T/6 T A mp).98..5. -.88 -.5.98 Show tht thr is costt prt of.75mp. i th currt A d oti th mpitud of th first hrmoic. Not tht th vus of A t t= d t=t r th sm. Hc At) is priodic fuctio of priod T. Lt us dot t. W hv T [ A] Acos t [ Acos ] ) T Asi t [ Asi ] T W prpr th foowig t: Vtusoutio.i

t t T A cos si Acos Asi Vtusoutio.i.98.98 T/6 6..5.866.65.58 T/.5 -.5.866 -.55.99 T/ 8. - -. T/ -.88 -.5 -.866..76 5T/6 -.5.5 -.866 -.5.65 Tot.5..7 Usig th vus of th t i ), w gt A.5 6.5 Acos. 6.7 Asi.7 6.6 Th Fourir psio upto th first hrmoic is A cos t T si t t.75.7cos.6si T T Th prssio shows tht A hs costt prt.75 i it. Aso th mpitud of th first hrmoic is t T Vtusoutio.i =.77. Vtusoutio.i

ASSIGNMENT :. Th dispcmt y of prt of mchism is tutd with corrspodig gur movmt of th crk. Eprss y s Vtusoutio.i Fourir sris upto th third hrmoic. 6 9 5 8 7 y.8...6.5..6.5..5.76.. Oti th Fourir sris of y upto th scod hrmoic usig th foowig t : 5 9 5 8 5 7 5 6 y..8.. -.5.8.. Oti th costt trm d th cofficits of th first si d cosi trms i th Fourir psio of y s giv i th foowig t : 5 y 9 8 8 6. Fid th Fourir sris of y upto th scod hrmoic from th foowig t : 6 8 Y 9. 8.. 7.8 7.5. 9. 5. Oti th first thr cofficits i th Fourir cosi sris for y, whr y is giv i th foowig t : 5 y 8 5 7 6 Vtusoutio.i 6. Th turig momt T is giv for sris of vus of th crk g = 75. Vtusoutio.i

6 9 5 8 Vtusoutio.i T 5 897 785 599 66 Oti th first four trms i sris of sis to rprst T d ccut T t = 75. Vtusoutio.i Vtusoutio.i