Uvod. Rezonantno raspršenje atomskim jezgrama Veoma precizna mjerenja na energetskoj skali Komplikacije Primjena

Similar documents
Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

Mossbauer Effect. Ahmad Ali Ohyda. 1 Ahmad Faraj Abuaisha. 2 Abu-Bakr Mohammad Alrotob. 3 Basher M. Ismail. 4. Abstract

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

RFSS: Lecture 6 Gamma Decay

Mossbauer Spectroscopy

PHYSICS 359E: EXPERIMENT 2.2 THE MOSSBAUER EFFECT: RESONANT ABSORPTION OF (-RAYS

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments

3. Perturbed Angular Correlation Spectroscopy

Chapter 10: Multi- Electron Atoms Optical Excitations

Instrumentelle Analytik in den Geowissenschaften (PI)

APEX CARE INSTITUTE FOR PG - TRB, SLET AND NET IN PHYSICS

Electric and magnetic multipoles

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4

Atomic Structure and Atomic Spectra

(b) The wavelength of the radiation that corresponds to this energy is 6

Conclusion. 109m Ag isomer showed that there is no such broadening. Because one can hardly

Introduction to Modern Physics

Chapter 8 Magnetic Resonance

RFSS: Lecture 2 Nuclear Properties

Basic concepts of Mößbauer spectroscopy (Mossbauer)

ORGANIC - EGE 5E CH NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Nuclear hyperfine interactions

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur?

Worksheet III. E ion = -Z eff 2 /n 2 (13.6 ev)

Molekularne vibracije i IR (infra crvena spektroskopija)

Drickamer type. Disk containing the specimen. Pressure cell. Press

Magnetic Resonance Spectroscopy ( )

A complete solution to the Mössbauer problem, all in one place

NMR Dynamics and Relaxation

Nuclear Shell Model. Experimental evidences for the existence of magic numbers;

14. Structure of Nuclei

Nuclear and Radiation Physics

Lattice dynamics, phase transitions and spin relaxation in [Fe(C 5 H 5 ) 2 ]PF 6

Perspectives in Mossbauer Spectroscopy

Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts)

Rb, which had been compressed to a density of 1013

Nuclear Physics and Astrophysics

1. neopentyl benzene. 4 of 6

Lesson 5 The Shell Model

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

Electronic Spectra of Complexes

The Mössbauer Effect

Ferdowsi University of Mashhad

Optimizacija Niza Čerenkovljevih teleskopa (CTA) pomoću Monte Carlo simulacija

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

EPR and Mössbauer Spectroscopies

Modern Physics Departmental Exam Last updated November 2013

CHAPTER 12 TEST REVIEW

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface

CHEMISTRY 121 PRACTICE EXAM 2

SPIN-PARITIES AND HALF LIVES OF 257 No AND ITS α-decay DAUGHTER 253 Fm

Lecture 2: Atom and Bonding Semester /2013

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Q1. Intensity of M+1 peak x Intensity of M peak 2.57% x 46.60% Number of carbon atoms = Number of carbon atoms =

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11.

Mössbauer Spectroscopy. Carsten Krebs Department of Chemistry Department of Biochemistry and Molecular Biology The Pennsylvania State University

Chem 481 Lecture Material 1/30/09

Unit 11 Instrumentation. Mass, Infrared and NMR Spectroscopy


Atomic Structure Ch , 9.6, 9.7

Lecture 4: Nuclear Energy Generation

Hyperfine interactions

13. Basic Nuclear Properties

Quantum Mechanics. Exam 3. Photon(or electron) interference? Photoelectric effect summary. Using Quantum Mechanics. Wavelengths of massive objects

Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

NJCTL.org 2015 AP Physics 2 Nuclear Physics

THE NATURE OF THE ATOM. alpha particle source

64-311/5: Atomic and Molecular Spectra

Magentic Energy Diagram for A Single Electron Spin and Two Coupled Electron Spins. Zero Field.

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

Chapter V: Interactions of neutrons with matter

The Electronic Structure of Atoms

Biophysical Chemistry: NMR Spectroscopy

ANDHRA UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS

Chapter 9: Electrons and the Periodic Table

Lecture 02 Nuclear Magnetic Resonance Spectroscopy Principle and Application in Structure Elucidation

English CPH E-Book Theory of CPH Section 2 Experimental Foundation of CPH Theory Hossein Javadi

X-Ray Photoelectron Spectroscopy (XPS)-2

Angular Correlation Experiments

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

c E If photon Mass particle 8-1

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

Nuclear Spectroscopy: Radioactivity and Half Life

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Bohr s Correspondence Principle

Neutron Interactions with Matter

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Contour Plots Electron assignments and Configurations Screening by inner and common electrons Effective Nuclear Charge Slater s Rules

Chapter 1 Atomic Structure

Chapters 31 Atomic Physics

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Inorganic Spectroscopic and Structural Methods

Atomic Spectroscopy II

Transcription:

Mössbouerov efekt

Uvod Rezonantno raspršenje γ-zračenja na atomskim jezgrama Veoma precizna mjerenja na energetskoj skali Komplikacije Primjena

Udarni presjek za raspršenje (apsorpciju) elektromagnetskog zračenja energije E na jezgri σ σ Γ 2 = σ γ rasp. 0 4( E E ) 2 +Γ 2 r ΓΓ γ = σ aps. 0 4( E E ) 2 +Γ 2 r Γ širina pobuđenog stanja Γ γ parcijalna širina za emisiju gama zračenja Nuklearna stanja su uska ΔE=10-7 ev E r ~MeV Rezonantno ponašanje

Energija odboja i uvjet za rezonantno ponašanje anje P= p 2 2 P p 1 E ( γ R= = = ) 2 M 2 M 2 M c 2 Γ 2R

Primjer A=100 E γ =66keV R=0.02eV Γ=10-7 ev Treba spriječiti odboj ako želimo rezonantno ponašanje!!!

Uloga Dopplerova efekta Impuls izvora P i Pokrata 2 2 2 ( Pi p) P i p pp R = = 2M 2M 2M M 2 P i ε = 2M D= 2 ε R i E = E R = E R+ Dcosφ γ r r Proširenje linije reda veličine ine D = 2 R ε

Problem Pojava Dopplerova proširenja malo povećava vjerojatnost rezonantne apsorpcije ali bitno umanjuje rezonantni efekt smanjujući i snažno no rezonantni vrh Za optimalno korištenja rezonantnog raspršenja trebalo bi istovremeno eliminirati odboj i smanjiti Dopplerov efekt

Recoil-free emisija ili apsorpcija Jezgra se nalazi u čvrstoj matrici (kristalu) koji je pothlađen

Mössbauerov spektar za identični izvor i apsorber

Jednostavni spektar - ovisnost relativnog gibanja izvora

Shema eksperimentalnog uređaja Štit oko detektora Štit oko izvora Apsorber Detektor Detektor S+FT+B Štit oko detektora Rotirajući izvor

Raspad 57 Co to 57 Fe za 14.4 kev Mössbauerovu gama zraku. Za izotop 57 Fe širina linije iznosi 5x10-9 ev. U usporedbi s Mössbauerovom energijom gama zračenja od 14.4 kev dobivamo rezoluciju u omjeru 1:10 12

Eksperimentalni uređaj

Modulacija - Uvjeti Izomerski pomak Kvadrupolno cijepanje Magnetsko cijepanje Nuklearna stanja moraju imati različite ite radijuse Elektronska stanja moraju imati dobaro prekrivanje s jezgrom (s-stanja)( stanja) Valne funkcije moraju biti osjetljive na vanjsku (kemijsku) promjenu

Rudolph L. Mössbauer 1957 Nobelova nagrada 1961 Elements of the periodic table which have known Mössbauer isotopes (shown in red font). Those which are used the most are shaded with black

Izomerni pomak The isomer shift arises due to the non-zero volume of the nucleus and the electron charge density due to s-electronss within it. This leads to a monopole (Coulomb( Coulomb) interaction, altering the nuclear energy levels. Any difference in the s-electron environment between the source and absorber thus produces a shift in the resonance energy of the transition. This shifts the whole spectrum positively or negatively depending upon the s-electron density,, and sets the centroid of the spectrum. As the shift cannot be measured directly it is quoted relative to a known absorber. For example 57 Fe Mössbauer spectra will often be quoted relative to alpha-iron at room temperature. The isomer shift is useful for determining valency states, ligand bonding states, electron shielding and the electron-drawing power of electronegative groups. For example, the electron configurations for Fe 2+ and Fe 3+ are (3d)6 and (3d)5 respectively. The ferrous ions have less s-electrons at the nucleus due to the greater screening of the d-electrons. Thus ferrous ions have larger positive isomer shifts than ferric ions.

Izomerni pomak Z- redni broj, e- naboj elektrona, R- efektivni radijus nukleona, c- brzina svjetlosti, E γ - energija Mössbauerovog gama kvanta ρ(0) gustoća (elektronska) stanja oko jezgre za izvor i apsorber ΔR = R pobuđeno R osnovno.

Kvadrupolno cijepanje Nuclei in states with an angular momentum quantum number I>1/2 have a non-spherical charge distribution. This produces a nuclear quadrupole moment. In the presence of an asymmetrical electric field (produced by an asymmetric electronic charge distribution or ligand arrangement) this splits the nuclear energy levels. The charge distribution is characterised by a single quantity called the Electric Field Gradient (EFG). In the case of an isotope with a I=3/2 excited state, such as 57 Fe or 119 Sn, the excited state is split into two substates mi=±1/2 and mi=±3/2. The magnitude of splitting, Δ,, is related to the nuclear quadrupole moment, Q, and the principle component of the EFG, V zz, by the relation Δ=eQV zz /2.

Shema kvadrupolnog cijepanja

Magnetsko cijepanje In the presence of a magnetic field the nuclear spin moment experiences a dipolar interaction with the magnetic field ie Zeeman splitting. There are many sources of magnetic fields that can be experienced by the nucleus. This magnetic field splits nuclear levels with a spin of I into (2I+1) substates. Transitions between the excited state and ground state can only occur where mi changes by 0 or 1. The line positions are related to the splitting of the energy levels,, but the line intensities are related to the angle between the Mössbauer gamma-ray and the nuclear spin moment.

Shema magnetskog cijepanja

Primjena istraživanje ivanje Marsa

Laboratorijsko opažanje anje gravitacijskog pomaka M=E/c 2 masa fotona ΔE/E= E/E=mgh/mc 2 =gh/c 2

Literatura - www http://www.cmp.liv.ac.uk/techniques_mossbauer.php http://www.webres.com/mossbauer.html http://faculty.knox.edu/cschulz/m%c3%b6ssbauer/index.html http://physics.berea.edu/~lahamer/mossbauer.html Http://www.mossp2000.com/effect/index.html#

Literatura - knjige Mössbauer Spectroscopy and its Applications, T E Cranshaw, B W Dale, G O Longworth and C E Johnson, (Cambridge Univ. Press: Cambridge) 1985 Mössbauer Spectroscopy, D P E Dickson and F J Berry, (Cambridge Univ. Press: Cambridge) 1986 The Mössbauer Effect, H Frauenfelder, (Benjamin: New York) 1962 Principles of Mössbauer Spectroscopy, T C Gibb, (Chapman and Hall: London) 1977 Mössbauer Spectroscopy, N N Greenwood and T C Gibb, (Chapman and Hall: London) 1971 Chemical Applications of Mössbauer Spectroscopy, V I Goldanskii and R H Herber ed., (Academic Press Inc: London) 1968 Mössbauer Spectroscopy Applied to Inorganic Chemistry Vols. 1-3, G J Long, ed., (Plenum: New York) 1984-1989 Mössbauer Spectroscopy Applied to Magnetism and Materials Science Vol. 1, G J Long and F Grandjean, eds., (Plenum: New York) 1993