Posets, homomorphisms, and homogeneity

Similar documents
Posets, homomorphisms and homogeneity

Homomorphism-homogeneous relational structures

The random graph. Peter J. Cameron University of St Andrews Encontro Nacional da SPM Caparica, 14 da julho 2014

Homogeneous Structures and Ramsey Classes

Some more notions of homomorphism-homogeneity

Homogeneous structures

Generalized Pigeonhole Properties of Graphs and Oriented Graphs

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

The universal triangle-free graph has finite big Ramsey degrees

GENERALIZED PIGEONHOLE PROPERTIES OF GRAPHS AND ORIENTED GRAPHS

Ramsey theory of homogeneous structures

Ramsey theory, trees, and ultrafilters

Tree sets. Reinhard Diestel

THE UNIVERSAL HOMOGENEOUS TRIANGLE-FREE GRAPH HAS FINITE RAMSEY DEGREES

Fractal property of the graph homomorphism order

DO FIVE OUT OF SIX ON EACH SET PROBLEM SET

Retracts of universal homogeneous structures

Distinguishing Number of Countable Homogeneous Relational Structures

THE UNIVERSAL HOMOGENEOUS TRIANGLE-FREE GRAPH HAS FINITE BIG RAMSEY DEGREES

Sum-free sets. Peter J. Cameron University of St Andrews

Sum-free sets. Peter J. Cameron University of St Andrews

What is... Fraissé construction?

Relations. Relations. Definition. Let A and B be sets.

Universal homogeneous causal sets

COUNTABLY COMPLEMENTABLE LINEAR ORDERINGS

Part II. Logic and Set Theory. Year

Banach-Mazur game played in partially ordered sets

Faithful embedding on finite orders classes

More Model Theory Notes

Regular and synchronizing transformation monoids

Countable locally 2-arc-transitive bipartite graphs

Ramsey Theory. May 24, 2015

2. Prime and Maximal Ideals

Graph homomorphisms. Peter J. Cameron. Combinatorics Study Group Notes, September 2006

Böttcher, Julia and Foniok, Jan Ramsey properties of permutations

Countable locally 2-arc-transitive bipartite graphs

Oligomorphic permutation groups

Dynamical properties of the Automorphism Groups of the Random Poset and Random Distributive Lattice

Graphs, matroids and the Hrushovski constructions

Infinite Designs: The Interplay Between Results in the Finite and Infinite Case

arxiv: v1 [math.lo] 12 Apr 2017

Easy and hard homogenizable structures

Structural Ramsey theory and topological dynamics I

FINITE IRREFLEXIVE HOMOMORPHISM-HOMOGENEOUS BINARY RELATIONAL SYSTEMS 1

Chapter 1 : The language of mathematics.

Axioms for Set Theory

Mekler s construction and generalized stability

Infinite Limits of Other Random Graphs

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract

Countable 1-transitive trees

On Better-Quasi-Ordering Countable Series-Parallel Orders

SELF-DUAL UNIFORM MATROIDS ON INFINITE SETS

Endomorphism Monoids of Graphs and Partial Orders

2.2 Lowenheim-Skolem-Tarski theorems

Self-complementary circulant graphs

Classifying classes of structures in model theory

March 3, The large and small in model theory: What are the amalgamation spectra of. infinitary classes? John T. Baldwin

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

Fraïssé Limits, Hrushovski Property and Generic Automorphisms

Sequences of height 1 primes in Z[X]

Dynamical properties of the Automorphism Groups of the Random Poset and Random Distributive Lattice

Relation between Graphs

Exercises for Unit VI (Infinite constructions in set theory)

FORCING SUMMER SCHOOL LECTURE NOTES

Muchnik and Medvedev Degrees of Π 0 1

(9-5) Def Turing machine, Turing computable functions. (9-7) Def Primitive recursive functions, Primitive recursive implies Turing computable.

TWO PROBLEMS ON HOMOGENEOUS STRUCTURES, REVISITED

On an algebra related to orbit-counting. Peter J. Cameron. Queen Mary and Westeld College. London E1 4NS U.K. Abstract

Diagonalize This. Iian Smythe. Department of Mathematics Cornell University. Olivetti Club November 26, 2013

Sets and Motivation for Boolean algebra

Computability Theoretic Properties of Injection Structures

AMS regional meeting Bloomington, IN April 1, 2017

Math 455 Some notes on Cardinality and Transfinite Induction

Math 3012 Applied Combinatorics Lecture 14

(C) The rationals and the reals as linearly ordered sets. Contents. 1 The characterizing results

A Class of Partially Ordered Sets: III

Simple homogeneous structures

Lattice Theory Lecture 4. Non-distributive lattices

Chapter One. Affine Coxeter Diagrams

Chapter 8. P-adic numbers. 8.1 Absolute values

Foundations of Mathematics

On poset Boolean algebras

Axioms of separation

4. Images of Varieties Given a morphism f : X Y of quasi-projective varieties, a basic question might be to ask what is the image of a closed subset

Semigroup-valued metric spaces

Matroid intersection, base packing and base covering for infinite matroids

Introductory Analysis I Fall 2014 Homework #5 Solutions

Permutation models, topological groups and Ramsey actions

Induced Saturation of Graphs

Root systems and optimal block designs

Connectivity and tree structure in finite graphs arxiv: v5 [math.co] 1 Sep 2014

The power graph of a finite group, II

int cl int cl A = int cl A.

arxiv:math/ v1 [math.gm] 21 Jan 2005

Limits of cubes E1 4NS, U.K.

REU 2007 Transfinite Combinatorics Lecture 9

STRUCTURES WITH MINIMAL TURING DEGREES AND GAMES, A RESEARCH PROPOSAL

UMASS AMHERST MATH 300 SP 05, F. HAJIR HOMEWORK 8: (EQUIVALENCE) RELATIONS AND PARTITIONS

Durham Research Online

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Transcription:

Posets, homomorphisms, and homogeneity Peter J. Cameron p.j.cameron@qmul.ac.uk Dedicated to Jarik Nešetřil on his sixtieth birthday

HAPPY BIRTHDAY JARIK!

Summary Jarik Nešetřil has made deep contributions to all three topics in the title, and we began thinking about connections between them when I spent six weeks in Prague in 2004. In this talk I want to survey the three topics and their connections. I will be reporting a theorem by my student Debbie Lockett.

Summary Jarik Nešetřil has made deep contributions to all three topics in the title, and we began thinking about connections between them when I spent six weeks in Prague in 2004. In this talk I want to survey the three topics and their connections. I will be reporting a theorem by my student Debbie Lockett. Homogeneous and generic structures

Summary Jarik Nešetřil has made deep contributions to all three topics in the title, and we began thinking about connections between them when I spent six weeks in Prague in 2004. In this talk I want to survey the three topics and their connections. I will be reporting a theorem by my student Debbie Lockett. Homogeneous and generic structures Construction of the generic poset

Summary Jarik Nešetřil has made deep contributions to all three topics in the title, and we began thinking about connections between them when I spent six weeks in Prague in 2004. In this talk I want to survey the three topics and their connections. I will be reporting a theorem by my student Debbie Lockett. Homogeneous and generic structures Construction of the generic poset Homomorphisms and homomorphism-homogeneity

Summary Jarik Nešetřil has made deep contributions to all three topics in the title, and we began thinking about connections between them when I spent six weeks in Prague in 2004. In this talk I want to survey the three topics and their connections. I will be reporting a theorem by my student Debbie Lockett. Homogeneous and generic structures Construction of the generic poset Homomorphisms and homomorphism-homogeneity Homomorphism-homogeneous posets

Universality and homogeneity A countable relational structure M belonging to a class P is universal if every finite or countable structure in P is embeddable in M (as induced substructure);

Universality and homogeneity A countable relational structure M belonging to a class P is universal if every finite or countable structure in P is embeddable in M (as induced substructure); homogeneous if every isomorphism between finite substructures of M can be extended to an automorphism of M (an isomorphism M M).

Universality and homogeneity A countable relational structure M belonging to a class P is universal if every finite or countable structure in P is embeddable in M (as induced substructure); homogeneous if every isomorphism between finite substructures of M can be extended to an automorphism of M (an isomorphism M M). The age of a relational structure M is the class C of all finite structures embeddable in M.

Fraïssé s Theorem In about 1950, Fraïssé gave a necessary and sufficient condition on a class C of finite structures for it to be the age of a countable homogeneous structure M.

Fraïssé s Theorem In about 1950, Fraïssé gave a necessary and sufficient condition on a class C of finite structures for it to be the age of a countable homogeneous structure M. The key part of this condition is the amalgamation property: two structures in C with isomorphic substructures can be glued together so that the substructures are identified, inside a larger structure in C.

Fraïssé s Theorem In about 1950, Fraïssé gave a necessary and sufficient condition on a class C of finite structures for it to be the age of a countable homogeneous structure M. The key part of this condition is the amalgamation property: two structures in C with isomorphic substructures can be glued together so that the substructures are identified, inside a larger structure in C. Moreover, if C satisfies Fraïssé s conditions, then M is unique up to isomorphism; we call it the Fraïssé limit of C.

Ramsey theory There is a close connection between homogeneity and Ramsey theory. Hubička and Nešetřil have shown that, if a countably infinite structure carries a total order and the class of its finite substructures is a Ramsey class, then the infinite structure is homogeneous.

Ramsey theory There is a close connection between homogeneity and Ramsey theory. Hubička and Nešetřil have shown that, if a countably infinite structure carries a total order and the class of its finite substructures is a Ramsey class, then the infinite structure is homogeneous. This gives a programme for determining the Ramsey classes: first find classes satisfying the amalgamation property, and then decide whether they have the Ramsey property. The converse is false in general, but Jarik Nešetřil recently showed that the class of finite metric spaces is a Ramsey class.

The random graph The class of all finite graphs is obviously a Fraïssé class. Let R be its Fraïssé limit. Then R is the unique countable universal homogeneous graph;

The random graph The class of all finite graphs is obviously a Fraïssé class. Let R be its Fraïssé limit. Then R is the unique countable universal homogeneous graph; R is the countable random graph; that is, if edges of a countable graph are chosen independently with probability 1 2, then the resulting graph is isomorphic to R with probability 1 (Erdős and Rényi);

The random graph The class of all finite graphs is obviously a Fraïssé class. Let R be its Fraïssé limit. Then R is the unique countable universal homogeneous graph; R is the countable random graph; that is, if edges of a countable graph are chosen independently with probability 1 2, then the resulting graph is isomorphic to R with probability 1 (Erdős and Rényi); R is the generic countable graph (this is an analogue of the Erdős Rényi theorem, with Baire category replacing measure).

Constructions of R There are a number of simple explicit constructions for R, the first of which was given by Rado.

Constructions of R There are a number of simple explicit constructions for R, the first of which was given by Rado. My favourite is the following: the vertices are the primes congruent to 1 mod 4; join p to q if p is a quadratic residue mod q.

Constructions of R There are a number of simple explicit constructions for R, the first of which was given by Rado. My favourite is the following: the vertices are the primes congruent to 1 mod 4; join p to q if p is a quadratic residue mod q. Another one (relevant to what will follow) is: Take any countable model of the Zermelo Fraenkel axioms for set theory; join x to y if either x y or y x.

Constructions of R There are a number of simple explicit constructions for R, the first of which was given by Rado. My favourite is the following: the vertices are the primes congruent to 1 mod 4; join p to q if p is a quadratic residue mod q. Another one (relevant to what will follow) is: Take any countable model of the Zermelo Fraenkel axioms for set theory; join x to y if either x y or y x. We do not need all of ZF for this; in particular, Choice is not required. The crucial axiom turns out to be Foundation.

The generic poset In similar fashion, the class of all finite posets is a Fraïssé class; let P be its Fraïssé limit. We call P the generic poset.

The generic poset In similar fashion, the class of all finite posets is a Fraïssé class; let P be its Fraïssé limit. We call P the generic poset. P is the unique countable homogeneous universal poset;

The generic poset In similar fashion, the class of all finite posets is a Fraïssé class; let P be its Fraïssé limit. We call P the generic poset. P is the unique countable homogeneous universal poset; P is the generic countable poset. (It is not clear how to define the notion of countable random poset, but no sensible definition will give P.)

The generic poset In similar fashion, the class of all finite posets is a Fraïssé class; let P be its Fraïssé limit. We call P the generic poset. P is the unique countable homogeneous universal poset; P is the generic countable poset. (It is not clear how to define the notion of countable random poset, but no sensible definition will give P.) Schmerl classified all the countable homogeneous posets. Apart from P, there are only an infinite antichain and some trivial modifications of the totally ordered set Q.

The generic poset In similar fashion, the class of all finite posets is a Fraïssé class; let P be its Fraïssé limit. We call P the generic poset. P is the unique countable homogeneous universal poset; P is the generic countable poset. (It is not clear how to define the notion of countable random poset, but no sensible definition will give P.) Schmerl classified all the countable homogeneous posets. Apart from P, there are only an infinite antichain and some trivial modifications of the totally ordered set Q. There is no known direct construction of P similar to the constructions of R. I now outline a nice recursive construction by Hubička and Nešetřil.

Set theory with an atom Take a countable model of set theory with a single atom. Now let M be any set not containing. Put M L = {A M : / A}, M R = {B \ { } : B M}. Then neither M L nor M R contains.

Set theory with an atom Take a countable model of set theory with a single atom. Now let M be any set not containing. Put M L = {A M : / A}, M R = {B \ { } : B M}. Then neither M L nor M R contains. In the other direction, given two sets P, Q whose elements don t contain, let (P Q) = P {B { } : B Q}. Then (P Q) doesn t contain. Moreover, for any set M not containing, we have M = (M L M R ).

Set theory with an atom Take a countable model of set theory with a single atom. Now let M be any set not containing. Put M L = {A M : / A}, M R = {B \ { } : B M}. Then neither M L nor M R contains. In the other direction, given two sets P, Q whose elements don t contain, let (P Q) = P {B { } : B Q}. Then (P Q) doesn t contain. Moreover, for any set M not containing, we have M = (M L M R ). Note that any set not containing can be represented in terms of sets not involving by means of the operation (..) For example, {, { }} is ({ } { }).

The generic poset Let P be the collection of the sets M not containing defined by the following recursive properties: Correctness: M L M R P and M L M R = ; Ordering: For all A M L and B M R, we have ({A} A R ) ({B} B L ) =. Completeness: A L M L for all A M L, and B R M R for all B M R.

The generic poset Let P be the collection of the sets M not containing defined by the following recursive properties: Correctness: M L M R P and M L M R = ; Ordering: For all A M L and B M R, we have ({A} A R ) ({B} B L ) =. Completeness: A L M L for all A M L, and B R M R for all B M R. Now we put M N if ({M} M R ) ({N} N L ) =.

The generic poset Let P be the collection of the sets M not containing defined by the following recursive properties: Correctness: M L M R P and M L M R = ; Ordering: For all A M L and B M R, we have ({A} A R ) ({B} B L ) =. Completeness: A L M L for all A M L, and B R M R for all B M R. Now we put M N if ({M} M R ) ({N} N L ) =. Theorem The above-defined structure is isomorphic to the generic poset P.

Homomorphisms A homomorphism f : M N between relational structures of the same type is a map which preserves the relations. For example, if M and N are posets with the strict order relation <, then a f is a homomorphism if and only if x < y f (x) < f (y).

Homomorphisms A homomorphism f : M N between relational structures of the same type is a map which preserves the relations. For example, if M and N are posets with the strict order relation <, then a f is a homomorphism if and only if x < y f (x) < f (y). As usual, a monomorphism is a one-to-one homomorphism, and an isomorphism is a bijective homomorphism whose inverse is also a homomorphism.

Homomorphisms A homomorphism f : M N between relational structures of the same type is a map which preserves the relations. For example, if M and N are posets with the strict order relation <, then a f is a homomorphism if and only if x < y f (x) < f (y). As usual, a monomorphism is a one-to-one homomorphism, and an isomorphism is a bijective homomorphism whose inverse is also a homomorphism. Thus, homomorphisms of the non-strict order relation in posets are not the same as homomorphisms of the strict order; but monomorphisms for the two relations are the same.

Homomorphisms A homomorphism f : M N between relational structures of the same type is a map which preserves the relations. For example, if M and N are posets with the strict order relation <, then a f is a homomorphism if and only if x < y f (x) < f (y). As usual, a monomorphism is a one-to-one homomorphism, and an isomorphism is a bijective homomorphism whose inverse is also a homomorphism. Thus, homomorphisms of the non-strict order relation in posets are not the same as homomorphisms of the strict order; but monomorphisms for the two relations are the same. For most of this talk I will consider the strict order.

Notions of homogeneity We say that a relational structure X has property HH if every homomorphism between finite substructures of X can be extended to a homomorphism of X. Similarly, X has property MH if every monomorphism between finite substructures extends to a homomorphism. There are six properties of this kind that can be considered: HH, MH, IH, MM, IM, and II. (It is not reasonable to extend a map to one satisfying a stronger condition!) Note that II is equivalent to the standard notion of homogeneity defined earlier.

Notions of homogeneity We say that a relational structure X has property HH if every homomorphism between finite substructures of X can be extended to a homomorphism of X. Similarly, X has property MH if every monomorphism between finite substructures extends to a homomorphism. There are six properties of this kind that can be considered: HH, MH, IH, MM, IM, and II. (It is not reasonable to extend a map to one satisfying a stronger condition!) Note that II is equivalent to the standard notion of homogeneity defined earlier. These properties are related as follows (strongest at the top): II MM HH IM MH IH

Extensions of P We can recognise P by the property that, if A, B and C are pairwise disjoint finite subsets with the properties that A < B, no element of A is above an element of C, and no element of B is below an element of C, then there exists a point z which is above A, below B, and incomparable with C.

Extensions of P We can recognise P by the property that, if A, B and C are pairwise disjoint finite subsets with the properties that A < B, no element of A is above an element of C, and no element of B is below an element of C, then there exists a point z which is above A, below B, and incomparable with C. Extensions of P (posets X with the same point set, in which x < y in P implies x < y in X) can be recognised by a similar property: if A and B are finite disjoint sets with A < B, then there exists a point z satisfying A < z < B.

Extensions of P We can recognise P by the property that, if A, B and C are pairwise disjoint finite subsets with the properties that A < B, no element of A is above an element of C, and no element of B is below an element of C, then there exists a point z which is above A, below B, and incomparable with C. Extensions of P (posets X with the same point set, in which x < y in P implies x < y in X) can be recognised by a similar property: if A and B are finite disjoint sets with A < B, then there exists a point z satisfying A < z < B. Using this, it can be shown that any extension of P has the properties MM and HH (and hence all the earlier properties except II).

Properties If an IH poset P is not an antichain, then it has the following property: for any finite set Q, the set {z : z < Q} has no maximal element and {z : z > Q} has no minimal element.

Properties If an IH poset P is not an antichain, then it has the following property: for any finite set Q, the set {z : z < Q} has no maximal element and {z : z > Q} has no minimal element. This is easy to see in the case Q = (so that P has no least or greatest element). In general, suppose that Q < z, and z < z. Extend the isomorphism fixing Q and mapping z to z; if z is the image of z, then Q < z < z.

Properties If an IH poset P is not an antichain, then it has the following property: for any finite set Q, the set {z : z < Q} has no maximal element and {z : z > Q} has no minimal element. This is easy to see in the case Q = (so that P has no least or greatest element). In general, suppose that Q < z, and z < z. Extend the isomorphism fixing Q and mapping z to z; if z is the image of z, then Q < z < z. Taking Q to be a singleton, we see that P is dense.

X-free posets We say that a countable poset is X-free if it satisfies the following: If A and B are 2-element antichains with A < B, then there does not exist a point z with A < z < B. Such a point z together with A and B would form the poset X.

X-free posets We say that a countable poset is X-free if it satisfies the following: If A and B are 2-element antichains with A < B, then there does not exist a point z with A < z < B. Such a point z together with A and B would form the poset X. Take a discrete tree T; for each pair (x, y) in T such that y covers x, add a copy of the open rational interval (0, 1) between x and y; and delete the points of T. This poset is vacuously X-free, and also has the property that for any finite Q, {z : z < Q} has no maximal element and {z : z > Q} has no minimal element.

X-free posets We say that a countable poset is X-free if it satisfies the following: If A and B are 2-element antichains with A < B, then there does not exist a point z with A < z < B. Such a point z together with A and B would form the poset X. Take a discrete tree T; for each pair (x, y) in T such that y covers x, add a copy of the open rational interval (0, 1) between x and y; and delete the points of T. This poset is vacuously X-free, and also has the property that for any finite Q, {z : z < Q} has no maximal element and {z : z > Q} has no minimal element. Any poset with these two properties can be shown to be HH and MM. This gives 2 ℵ 0 non-isomorphic HH and MM posets.

Lockett s Theorem Theorem For a countable poset which is not an antichain, the properties IM, IH, MM, MH, HH are all equivalent.

Lockett s Theorem Theorem For a countable poset which is not an antichain, the properties IM, IH, MM, MH, HH are all equivalent. A countable poset P has one of these properties if and only if one of the following holds: P is an antichain; P is the union of incomparable copies of Q; P is an extension of the generic poset P; P is X-free and, for any finite set Q, {z : z < Q} has no maximal element and {z : z > Q} has no minimal element.

Lockett s Theorem Theorem For a countable poset which is not an antichain, the properties IM, IH, MM, MH, HH are all equivalent. A countable poset P has one of these properties if and only if one of the following holds: P is an antichain; P is the union of incomparable copies of Q; P is an extension of the generic poset P; P is X-free and, for any finite set Q, {z : z < Q} has no maximal element and {z : z > Q} has no minimal element. Thus, for posets, the earlier diagram simplifies: II IM = IH = MM = MH = HH

Non-strict orders Mono- and isomorphisms of non-strict orders are the same as for strict orders. So the classes MM and IM still coincide. However, the others are larger: a finite chain is HH, for example.

Non-strict orders Mono- and isomorphisms of non-strict orders are the same as for strict orders. So the classes MM and IM still coincide. However, the others are larger: a finite chain is HH, for example. Lockett has shown that the diagram for non-strict partial order is II IM = MM IH = MH = HH

Graphs For graphs, it is not true that the five classes coincide. Jarik and I showed that a countable MH graph either is an extension of the random graph R (containing it as a spanning subgraph), or has bounded claw size. Apart from disjoint unions of complete graphs (containing no K 1,2 ), no examples with bounded claw size are known. Extensions of R are MM and HH.

Graphs For graphs, it is not true that the five classes coincide. Jarik and I showed that a countable MH graph either is an extension of the random graph R (containing it as a spanning subgraph), or has bounded claw size. Apart from disjoint unions of complete graphs (containing no K 1,2 ), no examples with bounded claw size are known. Extensions of R are MM and HH. The homogeneous (II) graphs were all found by Lachlan and Woodrow. They are disjoint unions of complete graphs and their complements; the Fraïssé limit of the class of K n -free graphs (n 3) and its complement; and the random graph. We don t know what happens for IH or IM.