A SUMMARY OF RAINFALL AT THE CARNARVON EXPERIMENT STATION,

Similar documents
CHANGES IN RAINFALL SEASONALITY ( ) AT GROOTFONTEIN, SOUTH AFRICA

Seasonal Climate Watch February to June 2018

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

YACT (Yet Another Climate Tool)? The SPI Explorer

Drought in Southeast Colorado

WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities

2003 Water Year Wrap-Up and Look Ahead

Analysis of Historical Pattern of Rainfall in the Western Region of Bangladesh

P7.7 A CLIMATOLOGICAL STUDY OF CLOUD TO GROUND LIGHTNING STRIKES IN THE VICINITY OF KENNEDY SPACE CENTER, FLORIDA

DROUGHT IN MAINLAND PORTUGAL

Minnesota s Climatic Conditions, Outlook, and Impacts on Agriculture. Today. 1. The weather and climate of 2017 to date

Variability and trends in daily minimum and maximum temperatures and in diurnal temperature range in Lithuania, Latvia and Estonia

2003 Moisture Outlook

Climate also has a large influence on how local ecosystems have evolved and how we interact with them.

Colorado s 2003 Moisture Outlook

Seasonal Climate Watch November 2017 to March 2018

Seasonal Climate Watch April to August 2018

Sierra Weather and Climate Update

El Nino: Outlook VAM-WFP HQ September 2018

Jackson County 2013 Weather Data

Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center

Global Climates. Name Date

Changing Hydrology under a Changing Climate for a Coastal Plain Watershed

Presentation Overview. Southwestern Climate: Past, present and future. Global Energy Balance. What is climate?

2015 Fall Conditions Report

January 25, Summary

Variability of Reference Evapotranspiration Across Nebraska

South Eastern Australian Rainfall in relation to the Mean Meridional Circulation

CHAPTER-11 CLIMATE AND RAINFALL

What Does It Take to Get Out of Drought?

Geostatistical Analysis of Rainfall Temperature and Evaporation Data of Owerri for Ten Years

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh

Highlights of the 2006 Water Year in Colorado

The USWB Class A Evaporation Pan. Section 13.2 A-PAN EQUIVALENT REFERENCE POTENTIAL EVAPORATION R.E. Schulze and M. Maharaj

Champaign-Urbana 2000 Annual Weather Summary

Country Presentation-Nepal

THE CLIMATE OVER SRI LANKA YALA SEASON 2017

Seasonal Climate Watch September 2018 to January 2019

El Nino 2015 in South Sudan: Impacts and Perspectives. Raul Cumba

Funding provided by NOAA Sectoral Applications Research Project CLIMATE. Basic Climatology Colorado Climate Center

Seasonal Climate Watch June to October 2018

Validation of the Weather Generator CLIGEN with Precipitation Data from Uganda. W. J. Elliot C. D. Arnold 1

CHARACTERISTICS OF MONTHLY AND ANNUAL RAINFALL OF THE UPPER BLUE NILE BASIN

Jackson County 2014 Weather Data

Missouri River Basin Water Management Monthly Update

Communicating Climate Change Consequences for Land Use

GAMINGRE 8/1/ of 7

1. INTRODUCTION 2. HIGHLIGHTS

UPPLEMENT A COMPARISON OF THE EARLY TWENTY-FIRST CENTURY DROUGHT IN THE UNITED STATES TO THE 1930S AND 1950S DROUGHT EPISODES

Seasonal Climate Watch January to May 2016

Seasonal Climate Watch July to November 2018

AN ASSESSMENT OF THE RELATIONSHIP BETWEEN RAINFALL AND LAKE VICTORIA LEVELS IN UGANDA

PRELIMINARY ASSESSMENT OF SURFACE WATER RESOURCES - A STUDY FROM DEDURU OYA BASIN OF SRI LANKA

UK Flooding Feb 2003

The Climate of Oregon Climate Zone 4 Northern Cascades

Local Ctimatotogical Data Summary White Hall, Illinois

ANNUAL CLIMATE REPORT 2016 SRI LANKA

Average temperature ( F) World Climate Zones. very cold all year with permanent ice and snow. very cold winters, cold summers, and little rain or snow

The Climate of Payne County

Technical Note: Hydrology of the Lake Chilwa wetland, Malawi

Precipitation and Temperature Trend Analysis in Mekelle City, Northern Ethiopia, the Case of Illala Meteorological Station

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( )

Determine the trend for time series data

COUNTRY REPORT. Jakarta. July, th National Directorate of Meteorology and Geophysics of Timor-Leste (DNMG)

The Climate of Bryan County

OVERVIEW OF IMPROVED USE OF RS INDICATORS AT INAM. Domingos Mosquito Patricio

Missouri River Basin Water Management Monthly Update

Midwest and Great Plains Climate and Drought Update

A Report on a Statistical Model to Forecast Seasonal Inflows to Cowichan Lake

Operational Practices in South African Weather Service (SAWS)

A Review of the 2007 Water Year in Colorado

The Colorado Drought of 2002 in Perspective

Webinar and Weekly Summary February 15th, 2011

Climate Change and Water Supply Research. Drought Response Workshop October 8, 2013

What is happening to the Jamaican climate?

Drought Characterization. Examination of Extreme Precipitation Events

Using Reanalysis SST Data for Establishing Extreme Drought and Rainfall Predicting Schemes in the Southern Central Vietnam

Monthly Long Range Weather Commentary Issued: February 15, 2015 Steven A. Root, CCM, President/CEO

DROUGHT INDICES BEING USED FOR THE GREATER HORN OF AFRICA (GHA)

The Climate of Oregon Climate Zone 5 High Plateau

Assessment of the Impact of El Niño-Southern Oscillation (ENSO) Events on Rainfall Amount in South-Western Nigeria

Champaign-Urbana 2001 Annual Weather Summary

ANALYSIS OF CLIMATIC DATA FOR THE CHATEAU, MT RUAPHEHU ( ), IN RELATION TO CLIMATIC CHANGE

The Climate of Marshall County

Summary report for Ruamāhanga Whaitua Committee The climate of the Ruamāhanga catchment

The Climate of Murray County

Climate Change Impacts on Maple Syrup Yield

Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem

Missouri River Basin Water Management Monthly Update

A decision support system for predicting seasonal rainfall variations in sub-humid and semi-arid high country areas

Chapter-3 GEOGRAPHICAL LOCATION, CLIMATE AND SOIL CHARACTERISTICS OF THE STUDY SITE

particular regional weather extremes

P7: Limiting Factors in Ecosystems

Investigation of Rainfall Trend in Jorhat Town, Assam, India

ZUMWALT WEATHER AND CLIMATE ANNUAL REPORT ( )

CLIMATE OF THE ZUMWALT PRAIRIE OF NORTHEASTERN OREGON FROM 1930 TO PRESENT

"STUDY ON THE VARIABILITY OF SOUTHWEST MONSOON RAINFALL AND TROPICAL CYCLONES FOR "

Monthly Long Range Weather Commentary Issued: APRIL 1, 2015 Steven A. Root, CCM, President/CEO

The Climate of Texas County

PRELIMINARY DRAFT FOR DISCUSSION PURPOSES

Transcription:

A SUMMARY OF RAINFALL AT THE CARNARVON EXPERIMENT STATION, 1931-213 J.C.O. Du Toit 1#, L. van den Berg 1 & T.G. O Connor 2 1 Grootfontein Agricultural Development Institute, Private Bag X529, Middelburg (EC), 59 2 South African Environmental Observation Network, PO Box 26, Pretoria, 1 # E-mail: JustinDT@daff.gov.za INTRODUCTION The Carnarvon Experiment Station (31.86 S; 21.8939 E) lies in the Western Upper Karoo (Mucina & Rutherford, 26). A key feature of the station is the long-term research trials established in 1989, which have been maintained to date. The trials were originally set up to understand the effects of stocking rates on animal performance and veld composition, but currently are set to offer useful scientific insight into other issues such as biodiversity, degradation, the scale and pattern of ecosystem processes and functioning, and environmental responses to global change. An important (possibly the most important) driver of ecosystem processes in semi-arid or arid environments is rainfall. Rainfall patterns and trends have been described in Africa from continental (Nicholson, 1989) to local (Gertenbach, 198; Du Toit & O Connor, 214) scales, and South Africa has received significant attention (Tyson et al., 22; Kane, 29; MacKellar et al., 214). A particular focus of attention has been the interaction between rainfall and vegetation dynamics in the arid and semi-arid regions of the country (Hoffman & Cowling, 199, 1991; Hoffman et al., 1995, 29; Todd & Hoffman, 29). Cyclicity in rainfall in South Africa has been proposed at various temporal scales ranging from months to decades (Tyson, 1971; Dyer & Gosnell, 1978; Kane, 29; Jury, 213). Du Toit & O Connor (214) provided evidence from a site in the eastern Karoo that rainfall patterns may be related to two interacting cycles, one of approximately half a century, and the other of approximately 2 years. This report is a summary and interpretation of the monthly rainfall recorded at the Carnarvon Experiment Station, and a test of whether there is evidence of the double-cycle identified by Du Toit & O Connor (214). MATERIALS AND METHODS There were two independent data sets. The first was from the South African Weather Service, and the second was the records kept by the farm manager at the research station. The Weather Service data set comprised monthly rainfall data from 1931 to July 212. Years 1931 and 1998 to 26 inclusive had missing monthly data 27

and were removed from the data set. The farm data comprised a complete record of monthly rainfall from 1991 to the present-day (214). The first step was to construct a complete data set from 1932 to 214. This was done by using Weather Service data from 1932 to 1997 and farm data from 1998 to 214. Overlapping records (1991-1997 and 27-211) provided an opportunity to determine the similarity of the two independent rainfall data sets. Data were compared using a paired t-test, which showed that the two populations were not significantly different (t 143 =.835, P =.45). A linear regression was also highly significant (F 1,142 = 1433, P <.1; R 2 =.958) (Figure 1). Data were expressed seasonally from the local interpretation of the beginning of the growing season (1 September) until to 31 August of the following year. For the cyclicity analysis, seasonal rainfall data were smoothed using a 1 year running mean. A single-wave (Equation 1) and a double-wave regression (Equation 2) were fitted following the methods of Du Toit & O Connor (214). The best model was determined using Akaike information criterion (AIC) values. = cos +..Equation 1 = cos + + cos + Equation 2 28

12 1 Rainfall from farm (log mm) 8 6 4 2 2 4 6 8 1 12 Rainfall from South African Weather Service (log mm) Figure 1. Comparison of rainfall recorded by the South African Weather Service and by the Carnarvon Experiment Station RESULTS AND DISCUSSION Summary of annual data Summary parameters are given in Table 1. Rainfall distribution was positively skewed, meaning that there was a higher probability of experiencing a year of below average (mean) rainfall than above mean rainfall. This is an expected pattern for a semi-arid region in South Africa (Schulze et al., 1997). Table 1. Seasonal rainfall parameters at Carnarvon Parameter Number of seasons recorded 83 Value Average rainfall (mm) 215. Standard deviation (mm) 84.64 Coefficient of variation (%) 39.36 Minimum rainfall (mm) 61. Maximum rainfall (mm) 486.2 Range (mm) 425.2 Skewness 2.46 Years of above-mean rainfall 33 Years of below-mean rainfall 5 29

Summary of monthly data Rainfall was unimodal, peaking in March (Figure 2;). Rains from February to April comprised 45% of annual rainfall. Winter rain (June to August) was low, with an average of 24.3 mm, and comprising only 11% of the average annual total. 4 Rainfall (mm) 3 2 1 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Month Figure 2. Monthly distribution of rainfall at Carnarvon Experiment Station. Bars are standard errors; regression a 4-parameter rational function 3

Table 2. Monthly rainfall parameters at Carnarvon Mo nth Number of records Average (mm) Standard deviation (mm) Coefficient of variation (%) Minimum (mm) Maximum (mm) Range (mm) Jan 83 19.74 24.76 125.4 13.6 13.6 Feb 84 28.18 28.21 1.1 145.3 145.3 Mar 84 41.63 34.59 83.1 174. 174. Apr 84 27.53 26.56 96.5 114.7 114.7 May 84 15.7 15.2 1.9 66. 66. Jun 84 8.83 1.2 113.4 4. 4. Jul 84 7.72 13.6 169.1 56.7 56.7 Aug 84 7.76 14.31 184.3 93.3 93.3 Sep 84 7.61 14.5 184.8 73.5 73.5 Oct 84 13.83 14.53 15.1 65.1 65.1 Nov 84 19.35 24.9 124.5 18. 18. Dec 83 17.85 26.6 149. 132. 132. Time series descriptions In general, annual rainfall decreased until about 1972, when there were heavy rains. Rainfall increased from then until the present-day (Figure 3 and Figure 4). Before 1972, 36% of years experienced higher than average rainfall, while since 1972 this value is 43%. Since 1972 the months of December, January, February, and April received higher rainfall (Figure 5) than before 1972, while rainfall during the month of March remained consistently the highest. 31

2 Slow incline 6 5 Deviation from mean (mm) -2-4 -6 Decline Very fast incline 4 3 2 Rainfall (mm) -8 1-1 194 196 198 2 Time Figure 3. Rainfall expressed as cumulative deviation from the mean for Carnarvon, with periods of decline and incline annotated. Dots are seasonal rainfall 2 Rainfall (mm) 1-1 194 196 198 2 Year Figure 4. Annual rainfall at Carnarvon expressed as deviation from the mean 32

4 Rainfall 1931-1971 Rainfall 1972-213 Regression 1931-1971 Regression 1972-213 Rainfall (mm) 3 2 1 Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Month Figure 5. Average monthly rainfall (markers) for the periods 1931-1971 and 1972-213. Bars are standard errors; lines are rational model regressions Cyclicity There was evidence of double-wave cyclicity, with the double-wave regression providing a better model than the single-wave regression. The period of the first wave was 43 years, and the second wave 22 years. All parameters were highly significant. However, the high rainfall years in the mid-197s may have had an excessive influence, forcing the regression to identify the 43-year cycle where in reality the only true cycle is 22 years (43 being approximately double 22). Therefore, while this is interesting statistically, it should not be taken as evidence of two interacting cycles. The evidence for the 22-year cycle is stronger (there are more full cycles) and is a well-documented parameter of rainfall in South Africa (Tyson & Dyer, 1975, 1978; Dyer & Gosnell, 1978; Vines & others, 198; Jury & Levey, 1993; Kane, 29; Du Toit & O Connor, 214). 33

6 Rainfall (normalised to ; mm) 4 2-2 -4 194 196 198 2 22 Year Figure 6. Rainfall data smoothed using a running mean of 1 years for Carnarvon (each dot represents the previous 1 years rainfall). The regression is a double wave-form (see text) CONCLUSION Carnarvon Experiment Station rainfall data were typical of low-rainfall areas. Variation was high, and most years experienced below-average rainfall. The period from 1931-1971 was drier than after 1972, reflecting the general decrease in rainfall until 1971, and the sharp, then tapering, increase in rainfall thereafter. There was evidence of cyclicity, consistent of a 22-year period reported by many authors. The evidence of this cycle, as well as the recent higher-than-average rainfall is similar to the results from Grootfontein. In contrast, the Carnarvon site differed from the Grootfontein site in that there was limited evidence for a 4 to 6 year cycle, and the recent rainfall was not proportionally as high at Carnarvon. REFERENCES Du Toit, J.C.O. & O Connor, T.G., 214. Changes in rainfall pattern in the eastern Karoo, South Africa, over the past 123 years. Water SA. 4, 453 46. Dyer, T. & Gosnell, J., 1978. Long-term rainfall trends in the South African sugar industry. S. Afr. Sugar Technol. Assoc. 1, 1 8. Gertenbach, W.D., 198. Rainfall patterns in the Kruger National Park. Koedoe. 23, 35 43. Hoffman, M., Bond, W. & Stock, W., 1995. Desertification of the eastern Karoo, South Africa: conflicting paleoecological, historical, and soil isotopic evidence. Desertification in Developed Countries. pp. 159 177. Springer. 34

Hoffman, M., Carrick, P., Gillson, L. & West, A., 29. Drought, climate change and vegetation response in the succulent karoo, South Africa. South African Journal of Science. 15, 54 6. Hoffman, M.T. & Cowling, R., 199. Vegetation change in the semi-arid eastern Karoo over the last 2 years: an expanding Karoo-fact or fiction? South African Journal of Science. 86, 286 294. Hoffman, M. & Cowling, R., 1991. Phytochorology and endemism along aridity and grazing gradients in the lower Sundays River Valley, South Africa: implications for vegetation history. Journal of Biogeography. 189 21. Jury, M.R., 213. A return to wet conditions over Africa: 1995-21. Theoretical and applied climatology. 111, 471 481. Jury, M. & Levey, K., 1993. The eastern Cape drought. Water SA. 19, 133-137. Kane, R., 29. Periodicities, ENSO effects and trends of some South African rainfall series: an update. South African Journal of Science. 15, 199 27. MacKellar, N., New, M. & Jack, C., 214. Observed and modelled trends in rainfall and temperature for South Africa: 196-21. South African Journal of Science. 11, 51 63. Mucina, L. & Rutherford, M.C., 26. The Vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute. Nicholson, S.E., 1989. Long-term changes in African rainfall. Weather, 44, 46 56. Schulze, R.E., Maharaj, M., Lynch, S., Howe, B. & Melvil-Thomson, B., 1997. South African Atlas of Agrohydrology and -Climatology. Water Research Commission. Todd, S.W. & Hoffman, M.T., 29. A fence line in time demonstrates grazing-induced vegetation shifts and dynamics in the semiarid Succulent Karoo. Ecological Applications. 19, 1897 198. Tyson, P., 1971. Spatial variation of rainfall spectra in South Africa. Annals of the Association of American Geographers. 61, 711 72. Tyson, P.D., Lee-Thorp, J., Holmgren, K. & Thackeray, J., 22. Changing gradients of climate change in southern Africa during the past millennium: implications for population movements. Climatic Change. 52, 129 135. Tyson, P.D. & Dyer, T.G., 1975. Mean annual fluctuations of precipitation in the summer rainfall region of South Africa. South African Geographical Journal. 57, 15 11. Tyson, P. & Dyer, T., 1978. The predicted above-normal rainfall of the seventies and the likelihood of droughts in the eighties in South Africa. South African Journal of Science, 74. Vines, R., 198. Analyses of South African rainfall. South African Journal of Science, 76, 44 49. 35