The method of teepet decent i probably the bet known procedure for ænding aymptotic behavior of integral of the form Z è1è Ièè = gèzè e f èzè dz; C wh

Similar documents
Introduction to Laplace Transform Techniques in Circuit Analysis

Riemann s Functional Equation is Not Valid and its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

Riemann s Functional Equation is Not a Valid Function and Its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

The Hassenpflug Matrix Tensor Notation

Manprit Kaur and Arun Kumar

Bogoliubov Transformation in Classical Mechanics

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

Problem Set 8 Solutions

Laplace Transformation

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

EE Control Systems LECTURE 14

DIFFERENTIAL EQUATIONS Laplace Transforms. Paul Dawkins

SECTION x2 x > 0, t > 0, (8.19a)

EE Control Systems LECTURE 6

Design By Emulation (Indirect Method)

SOME RESULTS ON INFINITE POWER TOWERS

Approximate Analytical Solution for Quadratic Riccati Differential Equation

Convergence criteria and optimization techniques for beam moments

Preemptive scheduling on a small number of hierarchical machines

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

Question 1 Equivalent Circuits

Bernoulli s equation may be developed as a special form of the momentum or energy equation.

March 18, 2014 Academic Year 2013/14

An Inequality for Nonnegative Matrices and the Inverse Eigenvalue Problem

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

THE THERMOELASTIC SQUARE

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Automatic Control Systems. Part III: Root Locus Technique

arxiv: v2 [math.nt] 30 Apr 2015

Lecture 3. January 9, 2018

t=4m s=0 u=0 t=0 u=4m s=4m 2

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations

Chapter 13. Root Locus Introduction

The Secret Life of the ax + b Group

ON THE APPROXIMATION ERROR IN HIGH DIMENSIONAL MODEL REPRESENTATION. Xiaoqun Wang

DIFFERENTIAL EQUATIONS

UNIT 15 RELIABILITY EVALUATION OF k-out-of-n AND STANDBY SYSTEMS

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment

Control Systems Analysis and Design by the Root-Locus Method

Finite Element Truss Problem

Coordinate independence of quantum-mechanical q, qq. path integrals. H. Kleinert ), A. Chervyakov Introduction

Interaction of Pile-Soil-Pile in Battered Pile Groups under Statically Lateral Load

THE BICYCLE RACE ALBERT SCHUELLER

Codes Correcting Two Deletions

Hyperbolic Partial Differential Equations

TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL

Math 273 Solutions to Review Problems for Exam 1

Singular perturbation theory

Copyright 1967, by the author(s). All rights reserved.

6. KALMAN-BUCY FILTER

Lecture 23 Date:

Midterm 3 Review Solutions by CC

Feedback Control Systems (FCS)

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

PHYSICS LAB Experiment 5 Fall 2004 FRICTION

Lie series An old concept going back to Sophus Lie, but already used by Newton and made rigorous by Cauchy. Widely exploited, e.g.

Lecture 9: Shor s Algorithm

New bounds for Morse clusters

Notes on the geometry of curves, Math 210 John Wood

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

5.5 Application of Frequency Response: Signal Filters

List coloring hypergraphs

Asymptotic Values and Expansions for the Correlation Between Different Measures of Spread. Anirban DasGupta. Purdue University, West Lafayette, IN

Lecture 10 Filtering: Applied Concepts

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Chapter 4. The Laplace Transform Method

arxiv:math/ v4 [math.ag] 1 Aug 2007

L 2 -transforms for boundary value problems

CHAPTER TWO: THE GEOMETRY OF CURVES

Some Sets of GCF ϵ Expansions Whose Parameter ϵ Fetch the Marginal Value

Unbounded solutions of second order discrete BVPs on infinite intervals

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

HELICAL TUBES TOUCHING ONE ANOTHER OR THEMSELVES

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Design of Digital Filters

Computers and Mathematics with Applications. Sharp algebraic periodicity conditions for linear higher order

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

arxiv: v1 [math.mg] 25 Aug 2011

A Generalisation of an Expansion for the Riemann Zeta Function Involving Incomplete Gamma Functions

AN EXAMPLE FOR THE GENERALIZATION OF THE INTEGRATION OF SPECIAL FUNCTIONS BY USING THE LAPLACE TRANSFORM

A note on the bounds of the error of Gauss Turán-type quadratures

0 of the same magnitude. If we don t use an OA and ignore any damping, the CTF is

online learning Unit Workbook 4 RLC Transients

c n b n 0. c k 0 x b n < 1 b k b n = 0. } of integers between 0 and b 1 such that x = b k. b k c k c k

Research Article Fixed Points and Stability in Nonlinear Equations with Variable Delays

Laplace Adomian Decomposition Method for Solving the Nonlinear Volterra Integral Equation with Weakly Kernels

Sampling and the Discrete Fourier Transform

EELE 3332 Electromagnetic II Chapter 10

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1.

Linear Motion, Speed & Velocity

ME2142/ME2142E Feedback Control Systems

Final Comprehensive Exam Physical Mechanics Friday December 15, Total 100 Points Time to complete the test: 120 minutes

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim

Transcription:

UNIFORM ASYMPTOTIC EXPANSIONS R. Wong Department of Mathematic City Univerity of Hong Kong Tat Chee Ave Kowloon, Hong Kong for NATOèASI Special Function 2000 1

The method of teepet decent i probably the bet known procedure for ænding aymptotic behavior of integral of the form Z è1è Ièè = gèzè e f èzè dz; C where fèzè and gèzè are analytic function, i a large poitive parameter, and C i a contour in the z-plane. It wa introduced by Debye è1909è in a paper concerning Beel function of large order. Debye' baic idea i to deform the contour C into a new path of integration C 0 o that the following condition hold: èaè C 0 pae through one or more zero of f 0 èzè. èbè the imaginary part of fèzè i contant onc 0. If we write z = x + iy and fèzè =uèx; yè+ivèx; yè and uppoe that z 0 = x 0 + iy 0 i a zero of f 0 èzè, then it i known that èx 0 ;y 0 è i a addle point of uèx; yè and the new curve vèx; yè = vèx 0 ;y 0 è give the teepet path on the urface u = uèx; yè in the Carteian pace èx; y; uè. For implicity, we hall aume that z 0 i a imple zero of f 0 èzè o that f 00 èz 0 è 6= 0. On the teepet path C 0,wehave è2è fèzè =fèz 0 è, t 2 ; where t i real and uually increae monotonically to +1. Changing variable from z to t give Z 1 Ièè =e f èz 0è gèzè dz dt e,t2 dt: By expanding fèzè into a Taylor erie at z 0 and ubtituting it into è2è, we have by reverion 2 z, z 0 =,f 00 èz 0 è t + c 2 t 2 + æææ Thu, a a ært approximation, we obtain Ièè gèz 0 èe f èz 2 0è,f 00 èz 0 è Z 1 e,t2 dt; which in turn yield è3è Ièè gèz 0 èe f èz,2 0è f 00 èz 0 è : 2

If fèzè ha more than one addle point, then the full contribution to the aymptotic behavior of the integral Ièè can be obtained by adding the contribution from all relevant addle point. For intance, if fèzè ha two imple addle point, ay z + and z,, then the aymptotic behavior of Ièè i given by è4è Ièè gèz e f èz,2 +è f 00 èz + gèz,è e f èz,2,è f 00 èz, è : We hall aume that Re fèz =Refèz, è, for otherwie one of the term on the right-hand ide of formula è4è will dominate the other. For a detailed dicuion of the teepet decent method, we refer to Copon ë2, Chapter 7ë or Wong ë6, Chapter II, Sec. 4ë. The above ituation i completely changed when the function fèzè i allowed to depend on an auxiliary parameter æ; the very form of the aymptotic approximation in è4è change when the two addle point z + and z, coalece. To be more peciæc, we conider the integral Z è5è Iè; æè = gèzè e f èz;æè dz; C and uppoe that there exit a critical value of æ, ay æ = æ 0, uch that for æ 6= æ 0, the two ditinct addle point z + and z, in è4è are of multiplicity 1,but at æ = æ 0, thee two point coincide and give a ingle addle point z 0 of multiplicity 2. Thu f z èz 0 ;æ 0 è=f zz èz 0 ;æ 0 è=0; f zzz èz 0 ;æ 0 è 6= 0; and f z èz + ; æè =f z èz, ;æè=0; f zz èz æ ;æ 0 è 6= 0 for æ 6= æ 0. Since z æ! z 0 and hence f zz èz æ ;æè! 0 a æ! æ 0, the approximation in è4è i not valid in a neighborhood of æ 0. To obtain an aymptotic expanion for Iè; æè a!1, which hold uniformly for æ in a neighborhood of æ 0, Cheter, Friedman and Urell è1957è introduced in what i now regarded a a claic paper, the cubic tranformation è6è fèz;æè = 1 3 u3, u + ; where and are function of æ. Thee function are determined by the condition that the tranformation z! u i one-to-one and analytic in a neighborhood of z 0 for all æ in a neighborhood of æ 0, i.e., in a neighborhood of the two addle point. Making the tranformation è6è, 3

the integral in è5è i reduced to the canonical form è7è where C æ i the image of C and Iè; æè =e Z C æ ' 0 èuè e èu3=3,uè du; ' 0 èuè =gèzè dz du : To obtain an aymptotic expanion for the lat integral, we ue a method of Bleitein è1967è and write è8è ' 0 èuè =a 0 + b 0 u +èu 2, èè 0 èuè; where the coeæcient a 0 and b 0 can be determined by etting u = æ p on two ide of the equation. Inerting è8è in è7è give è9è Iè; æè =e V è 2=3 è a 0 + V 0 è 2=3 è b 0 1=3 + I 1è; æè ; 2=3 where è10è and è11è Z V èè = e v3=3,v dv C æ Z I 1 è; æè = èu 2, è e èu3=3,uè è 0 èuèdu: C æ For implicity, let u aume that the coeæcient in è6è i real, and that the contour C æ can be deformed into one which begin at 1 e,i=3, pae through p, and end at 1 e i=3. Thu, we have è12è V èè = Ai èè; where Aièè i the Airy function. To the integral I 1 è; æè we apply an integration by part, and the reult i I 1 è; æè = 1 Z è13è ' 1 èuè e èu3=3,uè du; C æ 4

where ' 1 èuè =è 0 0 èuè. In view of the factor 1 in è13è, it i anticipated that the integral I 1è; æè i of a lower aymptotic order than the ært two term on the right-hand ide of equation è9è. Hence, a a ært approximation, we obtain from è9è and è12è è14è Iè; æè e Ai è 2=3 è a 0 +Ai0 è 2=3 è b 0 : 1=3 2=3 The integral I 1 è; æè i exactly of the ame form a the one in è7è. Hence, the above procedure can be repeated, and will lead to an inænite aymptotic expanion. A detailed dicuion of thi method can be found in Bleitein and Handelman ë1, Chapter 9ë or Wong ë6, Chapter VIIë. In recent invetigation of aymptotic behavior of ome orthogonal polynomial, we have encountered ituation in which there are two critical value of æ, ay æ + and æ,, uch that for æ 6= æ æ there are two ditinct addle point z + and z, of multiplicity 1,but at æ = æ æ, thee two point coincide and give addle point æ of multiplicity 2. Thu, è15è f z è æ ;æ æ è=f zz è æ ;æ æ è=0; f zzz è æ ;æ æ è 6= 0; and è16è f z èz + ;æè=f z èz, ;æè=0; f zz èz æ ;æè 6= 0 for æ 6= æ æ. The following example provide concrete illutration of uch ituation. EXAMPLE 1. one can get the integral repreentation where x = næ; æ 2 è0; 1è, è17è Meixner polynomial m n èx; æ;cè; ee ë3ë. From their generating function, 1 n! m nèx; æ;cè = 1 Z, nf èz;æè dz e zè1, zè æ ; fèz;æè =æ log 1, z,æ logè1, zè, log z c and, i a circle centered at the origin with radiu le than min è1; jcjè. EXAMPLE 2. Meixner-Pollaczek polynomial M n èx; æ;è; ee ë4ë. By the ame argument, one alo ha the integral repreentation 1 n! M nèx; æ;è= 1 Z ëè1 + æzè 2 + z 2 ë,=2 nf èz;æè dz e z ; C 5

where x = næ; æ 2 è0; 1è, è18è z fèz;æè =æ tan, log z 1+æz and C i a circle centered at the origin with radiu 1= p 1+æ 2. If we put z 0 =,æ + i 1+æ 2 and z 0 = r 0 e i 0 with r 0 = 1 p 1+æ 2 ; then è18è can alo be written a è19è fèz;æè = æ 2i log èz, z 0è, æ 2i logèz, z 0è, log z + æè, 0 è: EXAMPLE 3. repreentation where p=q; æ x=n; n=n, Krawtchouk polynomial K èn è n èx; p; qè; ee ë5ë. They have the integral Kn N èx; p; qè = pn,æn Z C Nfèz;æè dz e z ; è20è fèz;æè =è1, æè logè1, zè+æ logè + zè, log z and C i a mall cloed contour urrounding z =0. In all three example above, the large variable i n èor Nè. A imple function which exhibit two addle point coalecing at two ditinct place i given by è21è èèu; è =, log u + u, u2 2 : The addle point occur at è22è u æ = æ p 2, 4 ; 2 and they coincide when = æ2 p. If we put d =,, 1 2 èé0è and z = p in the integral repreentation of the parabolic cylinder function è23è Uèd; zè =,è 1 2, dè e,z2 =4 e zu, 1 2 u2 u d, 1 2 du; 6

we obtain è24è Uè,, 1 2 ; p è=,è +1è e,2 =4,=2 e èèu;è du u : We now return to the integral Iè; æè in equation è5è, and uppoe that fèz;æè atiæe the condition in è15è and è16è. To derive an aymptotic expanion for Iè; æè, a!1, which hold uniformly in a region containing both æ + and æ,,we compare it with the integral in è24è. Thi ugget that we make the tranformation z $ uèzè deæned by è25è fèz;æè =èèu; è+æ; where æ i a contant to be determined, and require uè0è = 0. Changing variable from z to u, the integral in è5è become è26è Iè; æè =e æ èuè e èèu;è du u ; where è27è èuè =gèzè è uèu; è f z èz;æè u: The contour C in the z-plane hould ært be deformed into a teepet decent path; it will than be mapped into the loop path hown in è26è in the u-plane. Put 0 èuè =èuè, and write è28è 0 èuè =a 0 + b 0 u +èu, u èu, u, èh 0 èuè; where u + and u, are given in è22è. By etting u = u + and u = u, on two ide of the equation, one ænd that the coeæcient a 0 and b 0 can be expreed in term of 0 èu and 0 èu, è. For implicity, let u deæne the new function è29è W èx; è e x2 =4 Uè,, 1 2 ;xè: Clearly and from è23è W è p ;è= W x è p ;è=,è +1è,è +1è,=2 1=2,=2 e èèu;è du u ; e èèu;è du: 7

Subtituting è28è in è26è give è30è where Iè; æè = " 1 =,è +1è =2 e æ a 0 W è p ;è+ b 0 p W x è p ;è+" 1 ;,è +1è An integration by part give,=2 e èèu;è èu, u èu, u, èh 0 èuè du u : " 1 = 1,è +1è,=2 e èèu;è 1 èuè du u ; where 1 èuè =uh 0 0 èuè. Neglecting the error term " 1,wehave from è30è, a a ært approximation, Iè; æè,è +1è =2 e æ a 0 W è p ;è+ b 0 p W x è p ;è : Thi proce can again be repeated to yield an inænite aymptotic expanion. REFERENCES 1. N. Bleitein and R. A. Handelman, Aymptotic Expanion of Integral, Holt, Rinehart and Winton, New York, 1975. èreprint in 1986 by Dover Publication, New York.è 2. E. T. Copon, Aymptotic Expanion, Cambridge Tract in Math. and Math. Phy. No. 55, Cambridge Univerity Pre, London, 1965. 3. X. -S. Jin and R. Wong, Uniform Aymptotic Expanion for Meixner Polynomial, Contr. Approx., 14 è1998è, 113 í 150. 4. X. -C. Li and R. Wong, On the Aymptotic of the Meixner-Pollaczek Polynomial and Their Zero, Contr. Approx., to appear. 5. X. -C. Li and R. Wong, A Uniform Aymptotic Expanion for Krawtchouk Polynomial, J. Approx. Theory, to appear. 6. R. Wong, Aymptotic Approximation of Integral, Academic Pre, Boton, 1989. 8