CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters

Similar documents
Dark matter annihilation and decay factors in the Milky Way s dwarf spheroidal galaxies

Indirect dark matter searches with the Cherenkov Telescope Array

Emmanuel Moulin! on behalf of the CTA Consortium!!! Rencontres de Moriond 2013! Very High Energy Phenomena in the Universe! March 9-16, La Thuile,

CLUMPY: A public code for γ-ray and ν signals from dark matter structures.

the CTA Consortium represented by Aldo Morselli

THE MAGIC TELESCOPES. Major Atmospheric Gamma Imaging Cherenkov Telescopes

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Gamma-ray background anisotropy from Galactic dark matter substructure

Constraints on dark matter annihilation cross section with the Fornax cluster

DM subhalos: The obser vational challenge

Indirect Dark Matter Detection with Dwarf Galaxies

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Cherenkov Telescope Array (CTA)

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

Signal Model vs. Observed γ-ray Sky

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Search Results and Prospects from Atmospheric Cherenkov Telescopes. Andrew W Smith University of Marland, College Park / NASA GSFC

Recent highlights from VERITAS

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Structure of Dark Matter Halos

Miguel A. Sánchez Conde (Instituto de Astrofísica de Canarias)

Very High-Energy Gamma- Ray Astrophysics

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

Enhancement of Antimatter Signals from Dark Matter Annihilation

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

The Cherenkov Telescope Array

Probing Dark Matter in Galaxy Clusters using Neutrinos

Cross-Correlation of Cosmic Shear and Extragalactic Gamma-ray Background

Indirect Detection of Dark Matter with Gamma Rays

Princeton December 2009 The fine-scale structure of dark matter halos

Gamma-ray Observations of Galaxy Clusters!

Cherenkov Telescope Array

Constraining Dark Matter annihilation with the Fermi-LAT isotropic gamma-ray background

Searching for spectral features in the g-ray sky. Alejandro Ibarra Technische Universität München

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Indirect dark matter detection and the Galactic Center GeV Excess

VERITAS Observations of Starburst Galaxies. The Discovery of VHE Gamma Rays from a Starburst Galaxy

Impact of substructures on predictions of dark matter annihilation signals

Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies. Present status and future prospects

Andrea Albert (The Ohio State University) on behalf of The Fermi LAT Collaboration. HEP Seminar University of Virginia 12/05/12

Cherenkov Telescope Array Status Report. Salvatore Mangano (CIEMAT) On behalf of the CTA consortium

Fundamental Physics with GeV Gamma Rays

EGRET Excess of diffuse Galactic Gamma Rays as a Trace of the Dark Matter Halo

Status of the MAGIC telescopes

Probing Dark Matter with Cosmic Messengers

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Prospects for indirect dark matter detection with Fermi and IACTs

Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400

arxiv: v1 [astro-ph.im] 27 Aug 2012

Astroparticle Physics with IceCube

Indirect searches for dark matter with the Fermi LAT instrument

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

The Cherenkov Telescope Array. Kevin Meagher Georgia Institute of Technology

Searches for WIMP annihilation with GLAST

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

Astrometric Microlensing by Local Dark Matter Subhalos

Selecting Interesting Unidentified Sources

Astroparticle Physics

Measuring Dark Matter Properties with High-Energy Colliders

Sep. 13, JPS meeting

Constraining dark matter signal from a combined analysis of Milky Way satellites using the Fermi-LAT arxiv: v1 [astro-ph.

Searching for dark matter annihilation lines with HESS II. Knut Dundas Morå for the HESS collaboration

Measurement of the CR e+/e- ratio with ground-based instruments

Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy

Resolving the Extragalactic γ-ray Background

Indirect Dark Matter Searches: a Review Eric Charles SLAC National Lab.

Fermi-LAT Analysis of the Coma Cluster

EBL Studies with the Fermi Gamma-ray Space Telescope

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Formation and evolution of CDM halos and their substructure

Searching for dark matter. with gamma-ray anisotropies

Highlights from the Fermi Symposium

Gamma-ray Astrophysics

Masses of Dwarf Satellites of the Milky Way

Searching for WIMPs in deep radio observations of Gl Galactic dsphs

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

VERITAS Performance Gernot Maier

arxiv: v1 [astro-ph.he] 10 Jul 2009

ElisaBete de Gouveia Dal Pino (IAG-USP) On behalf of the CTA Collaboration

A search for dark matter annihilation in the newly discovered dwarf galaxy Reticulum II

4. Structure of Dark Matter halos. Hence the halo mass, virial radius, and virial velocity are related by

Dark matter indirect searches: Multi-wavelength and anisotropies

Positron Annihilation in the Milky Way and beyond

Gamma-Ray Astronomy from the Ground

Dark Matter Distributions of the Milky Way Satellites and Implications for Indirect Detection

PoS(ICRC2017)904. The VERITAS Dark Matter Program. Benjamin Zitzer. for the VERITAS Collaboration Affiliation

Astrophysical issues in indirect DM detection

DARK MATTER ANNIHILATION AT THE GALACTIC CENTER?

Recent Results on Dark Matter Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Ruling out dark matter interpretation of the galactic GeV excess by gamma-ray data of galaxy clusters

Fossils of the First Galaxies in the Local Group: True Fossils and Ghost Halos

TeV Future: APS White Paper

Particle Acceleration in the Universe

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Determining the Nature of Dark Matter with Astrometry

Fermi measurements of diffuse gamma-ray emission: results at the first-year milestone

Dark Matter in the Galactic Center

Transcription:

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters Moritz Hütten (MPP Munich) for the CTA consortium "The extreme Universe viewed in very-highenergy gamma rays 2018, La Palma, 12.10.2018 1. Introduction 2. Dark Galactic DM clumps 3. Galaxy clusters mhuetten@mpp.mpg.de

1. Introduction 2

Gravitational evidence for dark matter on all scales Reticulum II, 1504.03060 Dwarf galaxies small scales (pc) baryonic matter Baryonic matter dark matter Dark Matter large scales (Mpc) 3

Gravitational evidence for dark matter on all scales Reticulum II, 1504.03060 Dwarf galaxies Begemann (1991) small scales (pc) baryonic matter Baryonic matter Milky Way-like galaxies dark matter Dark Matter large scales (Mpc) 3

Gravitational evidence for dark matter on all scales Reticulum II, 1504.03060 Dwarf galaxies Begemann (1991) small scales (pc) baryonic matter Baryonic matter Milky Way-like galaxies dark matter Dark Matter large scales (Mpc) 1702.04348 Galaxy cluster substructure 3

Gravitational evidence for dark matter on all scales Reticulum II, 1504.03060 Dwarf galaxies Begemann (1991) small scales (pc) baryonic matter Baryonic matter Galaxy clusters dark matter Milky Way-like galaxies Dark Matter large scales (Mpc) 1702.04348 Chandra/HST image of Abell 1689 Galaxy cluster substructure 3

The dark matter γ-ray connection: indirect detection NASA/G. Dinderman (mass > GeV) 4

The dark matter γ-ray connection: indirect detection NASA/G. Dinderman (mass > GeV) 4

The dark matter γ-ray connection: indirect detection NASA/G. Dinderman typical astrophysical background γ-rays: (mass > GeV) m = 500 GeV + straight to observer + no absorption in the Galaxy - astrophysical background 4

Dark matter structures on all scales 140 Mpc x 100 Mpc 500 Mpc x 375 Mpc 0.8 Mpc x 0.6 Mpc DM d (sim ensity ulat ion) 0.4 Mpc x 0.3 Mpc Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 5

Dark matter structures on all scales 140 Mpc x 100 Mpc 500 Mpc x 375 Mpc DM d (sim ensity ulat ion) 0.8 Mpc x 0.6 Mpc Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 5

Dark matter structures on all scales 140 Mpc x 100 Mpc 500 Mpc x 375 Mpc DM d (sim ensity ulat ion) 0.8 Mpc x 0.6 Mpc Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 5

Dark matter structures on all scales 140 Mpc x 100 Mpc 500 Mpc x 375 Mpc DM d (sim ensity ulat ion) Satellite galaxies 0.8 Mpc x 0.6 Mpc Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 5

Dark matter structures on all scales 140 Mpc x 100 Mpc 500 Mpc x 375 Mpc DM d (sim ensity ulat ion) Satellite galaxies Segue I 0.8 Mpc x 0.6 Mpc LMC C Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 5

Dark matter structures on all scales 140 Mpc x 100 Mpc 500 Mpc x 375 Mpc Satellite galaxies Segue I Dark 0.8 Mpc x 0.6 Mpc clumps: too light to trigger star formation DM d (sim ensity ulat ion) LMC C Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 5

Dark matter structures on all scales 140 Mpc x 100 Mpc 500 Mpc x 375 Mpc 0.8 Mpc x 0.6 Mpc DM d (sim ensity ulat ion) 0.4 Mpc x 0.3 Mpc Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 6

Dark matter structures on all scales 500 Mpc x 375 Mpc 0.8 Mpc x 0.6 Mpc DM d (sim ensity ulat ion) 0.4 Mpc x 0.3 Mpc Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 6

Dark matter structures on all scales 500 Mpc x 375 Mpc DM d (sim ensity ulat ion) Assuming this was Perseus cluster (d = 80 Mpc) 0.8 Mpc x 0.6 Mpc 0.4 Mpc x 0.3 Mpc Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 6

Dark matter structures on all scales 500 Mpc x 375 Mpc DM d (sim ensity ulat ion) Assuming this was Perseus cluster (d = 80 Mpc) CTA field of view 0.8 Mpc x 0.6 Mpc (6 diameter) 0.4 Mpc x 0.3 Mpc Central 1 Mpc of the Perseus cluster (0.7 x 0.7 ) Springel et al. (2005) Diemand, Kuhlen, Madau (2006) color code: brighter = denser 6

The dark matter sky seen from Earth (annihilation) log (γ-ray intensity from DM annihilation), Galactic coordinates 22 23 24 7 synthetic map calculated with CLUMPY 1806.08639

The dark matter sky seen from Earth (annihilation) Galactic center + strong signal γ-ray backgrounds (Silk and Bloemen, 1987, ) log (γ-ray intensity from DM annihilation), Galactic coordinates 22 23 24 7 synthetic map calculated with CLUMPY 1806.08639

The dark matter sky seen from Earth (annihilation) Galactic center Milky Way satellite galaxies + no background lower fluxes 1504.02048, 1408.0002, + strong signal γ-ray backgrounds (Silk and Bloemen, 1987, ) log (γ-ray intensity from DM annihilation), Galactic coordinates 22 23 24 7 synthetic map calculated with CLUMPY 1806.08639

The dark matter sky seen from Earth (annihilation) Dark clumps + no background? brighter than satellites unknown position Galactic center Milky Way satellite galaxies + no background lower fluxes 1504.02048, 1408.0002, + strong signal γ-ray backgrounds (Silk and Bloemen, 1987, ) log (γ-ray intensity from DM annihilation), Galactic coordinates 22 23 24 7 synthetic map calculated with CLUMPY 1806.08639

The dark matter sky seen from Earth (annihilation) Galaxy clusters + massive DM targets far away γ-ray backgrounds Dark clumps + no background? brighter than satellites unknown position Galactic center Milky Way satellite galaxies + no background lower fluxes 1504.02048, 1408.0002, + strong signal γ-ray backgrounds (Silk and Bloemen, 1987, ) log (γ-ray intensity from DM annihilation), Galactic coordinates 22 23 24 7 synthetic map calculated with CLUMPY 1806.08639

The dark matter sky seen from Earth (annihilation) Galaxy clusters + massive DM targets far away γ-ray backgrounds Dark clumps + no background? brighter than satellites unknown position Galactic center Milky Way satellite galaxies + no background lower fluxes 1504.02048, 1408.0002, + strong signal γ-ray backgrounds (Silk and Bloemen, 1987, ) log (γ-ray intensity from DM annihilation), Galactic coordinates 22 23 24 7 synthetic map calculated with CLUMPY 1806.08639

Dark matter clumpiness matters! Annihilation Decay 8

Dark matter clumpiness matters! Flux searched for with γ-ray telescope Annihilation Decay 8

Dark matter clumpiness matters! Annihilation Secondary γ-rays after annihilation/decay Decay 8

Dark matter clumpiness matters! Annihilation Decay Unknown DM particle mass: parameter 8

Dark matter clumpiness matters! Annihilation Annihilation cross section Decay Particle lifetime 8

Dark matter clumpiness matters! Annihilation Decay Density distribution 8

Dark matter clumpiness matters! Annihilation Decay Density distribution What density targets do we need for CTA? 1. Bright: close and/or massive DM budget 2. Localized ( point-like ) 3. no astrophysical back-/foregrounds 8

2. Dark Galactic DM clumps 9

Dark clumps annihilation brightness Brightness in γ-rays (J-factor): conservative 10 4 counting all objects flux from annihilation ~ Hütten, Combet, Maier, Maurin (2016) 10 3 optimistic N X( J) 10 2 10 1 Estimated J-factors of known satellite galaxies counting all objects 10 0 10 1 10 17 10 18 10 19 10 20 10 21 many faint objects J-factor [GeV 2 cm 5 ] few bright objects 10

Dark clumps annihilation brightness Brightness in γ-rays (J-factor): conservative 10 4 counting all objects flux from annihilation ~ Close-by dark clumps bright DM targets Hütten, Combet, Maier, Maurin (2016) 10 3 optimistic N X( J) 10 2 10 1 Estimated J-factors of known satellite galaxies counting all objects 10 0 10 1 10 17 10 18 10 19 10 20 10 21 many faint objects J-factor [GeV 2 cm 5 ] few bright objects 10

Dark clumps annihilation profiles half-light radius ~ 0.14 log Intensity conservative l [deg] clumpy code, 1806.08639 b [deg] Take advantage of CTA s excellent angular resolution 11

Dark clumps annihilation profiles half-light radius ~ 0.14 Point-like emission from dark clumps log Intensity conservative l [deg] clumpy code, 1806.08639 b [deg] Take advantage of CTA s excellent angular resolution 11

But how to find the dark clumps? In a survey: Observing 25% of the sky with 500 hours (extragalactic survey benchmark): 25% of sky γ-ray brightest subhalo in the field (assume it is a dark clump) 22 23 24 12

But how to find the dark clumps? In a survey: Observing 25% of the sky with 500 hours (extragalactic survey benchmark): Chance detection 22 approximate CTA 236 diameter FOV 24 12

Survey sensitivity based on CTA South (prod2-3) 500h, 95% C.L. (Hütten, Combet, Maier, Maurin, 2016) 10 17 CTA dark subhalos, model HIGH CTA dark subhalos,! b b Di erent targets,! b b h vi [cm 3 s 1 ] 10 18 10 19 10 20 10 21 10 22 10 23 10 24 95%! b b 68% LOW (post-trial) HIGH LOW (post-trial) HIGH (pre-trial) (post-trial) Cosmic variance VERITAS, stacked dsph MAGIC, Segue 1 (158h) H.E.S.S., Gal. halo (254h) Fermi-LAT, stacked dsph CTA dark subhalos (HIGH) 10 25 10 26 10 27 thermal relic cross section 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 13

Survey sensitivity based on CTA South (prod2-3) 500h, 95% C.L. (Hütten, Combet, Maier, Maurin, 2016) 10 17 CTA dark subhalos, model HIGH CTA dark subhalos,! b b Di erent targets,! b b h vi [cm 3 s 1 ] 10 18 10 19 10 20 10 21 10 22 10 23! b b! b b + 10 12 10 11 10 10 10 9 [cm 2 s 1 sr 1 GeV 1 ] conservative model LOW (post-trial) optimistic HIGH (post-trial) model 10 11 10 10 10 9 10 8 [cm 2 s 1 sr 1 GeV 1 ] VERITAS, stacked dsph MAGIC, Segue 1 (158h) H.E.S.S., Gal. halo (254h) Fermi-LAT, stacked dsph CTA dark subhalos (HIGH) 10 10 10 9 10 8 10 7 [cm 2 s 1 sr 1 GeV 1 ] 10 24 Modeling systematics 10 25 10 26 10 27 thermal relic cross section 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 12 10 11 10 10 10 9 [cm 2 s 1 sr 1 GeV 1 ] 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 11 14

Survey sensitivity based on CTA South (prod2-3) 500h, 95% C.L. (Hütten, Combet, Maier, Maurin, 2016) 10 17 CTA dark subhalos, model HIGH CTA dark subhalos,! b b Di erent targets,! b b h vi [cm 3 s 1 ] 10 18 10 19 10 20 10 21 10 22 10 23! b b! b b + conservative model LOW (post-trial) optimistic HIGH (post-trial) model VERITAS, stacked dsph MAGIC, Segue 1 (158h) H.E.S.S., Gal. halo (254h) Fermi-LAT, stacked dsph CTA dark subhalos (HIGH) 10 24 10 25 10 26 10 27 thermal relic cross section 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 15

Survey sensitivity based on CTA South (prod2-3) 500h, 95% C.L. (Hütten, Combet, Maier, Maurin, 2016) h vi [cm 3 s 1 ] 10 17 10 18 10 19 10 20 10 21 10 22 10 23 CTA dark subhalos, model HIGH! b b! b b + CTA dark subhalos, LOW (post-trial) conservative model LOW HIGH (post-trial) optimistic HIGH (post-trial) (pre-trial) model! b b Di erent targets,! b b CTA Segue 1 (500h) CTA Gal. halo (500h, Einasto) VERITAS, stacked dsph MAGIC, Segue 1 (158h) H.E.S.S., Gal. halo (254h) Fermi-LAT, stacked dsph CTA dark subhalos (HIGH) 10 24 10 25 10 26 10 27 thermal relic cross section 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 10 2 10 3 10 4 10 5 WIMP mass m [GeV] 16

Chance detection probability: Subhalo algebra 1. Number of detectable objects rises linearly with ΔΩ : geometry + isotropy 2. Number of detectable objects rises with sqrt(t obs ): instrument background 3. Number of detectable objects rises inversely with sensitivity threshold N objects ( F sens ) ~ 1/F sens : subhalo source count distribution See Hütten et al. (2016), App. E, for details ΔΩ N FOV T obs /FOV <σv> N spots ( 2σ) π 300 100 min 10-24 cm 3 s -1 1 10-2 1 100 min 10-24 cm 3 s -1 3 10-3 10-2 1 1000 min 10-24 cm 3 s -1 1 10-2 10-2 1 100 min 10-23 cm 3 s -1 3 10-2 17

3. Galaxy clusters 18

The case of galaxy clusters: DM annihilation 10 4 10 3 Recall: All Galactic clumps 1104.3530 N X( J) 10 2 10 1 10 0 10 1 dwarf galaxies 10 17 10 18 10 19 10 20 10 21 J-factor [GeV 2 cm 5 ] 19

The case of galaxy clusters: DM annihilation 10 4 10 3 Recall: All Galactic clumps 1104.3530 N X( J) 10 2 10 1 10 0 10 1 dwarf galaxies 10 17 10 18 10 19 10 20 10 21 J-factor [GeV 2 cm 5 ] DM-annihilation brightness comparable to satellite galaxies 19

The case of galaxy clusters: DM annihilation 1104.3530 DM-annihilation brightness comparable to satellite galaxies Emission profiles more extended (typical half-light radii > 0.5 ) 19

The case of galaxy clusters: DM annihilation 1104.3530 DM-annihilation brightness comparable to satellite galaxies Emission profiles more extended (typical half-light radii > 0.5 ) Astrophysical backgrounds: γ-ray emitting galaxies (AGN, star-forming galaxies, CR interaction) Also expect diffuse emission from the inter-cluster medium (ICM) 19

DM annihilation profile of the Perseus cluster 3 orders of magnitude 0.5 Intensity proportional to without substructure random triaxiality 20

DM annihilation profile of the Perseus cluster 3 orders of magnitude 0.5 NCG 1275 MAGIC, E > 250 GeV 1602.03099 IC 310 Intensity proportional to without substructure random triaxiality 20

DM decay profile of the Perseus cluster 3 orders of magnitude 0.5 NCG 1275 MAGIC, E > 250 GeV 1602.03099 See MAGIC result 1806.11063: τ DM 10 27 s IC 310 Intensity proportional to random triaxiality (substructure irrelevant) 21

Cosmic-ray induced emission in the inter-cluster medium Spatial profile Spectral profile 1001.5023 1709.07997 Expectation Expectation 0.1 0.2 CTA s excellent angular resolution and energy range: disentangle the signals DM substructure extends annihilation profile 22

The CTA galaxy cluster working group (wg-phys-clusters) CTA galaxy cluster key science project: 300 hours allocated for CTA North Coordination: Moritz Hütten (MPP Munich) Judit Pérez-Romero, Miguel Sánchez-Conde (UAM Madrid) The team: R. Alfaro, G. Brunetti, S. Colafrancesco, C. Delgado, M. Doro, E. Fedorova, E. de Gouveia Dal Pino, S. Hernandez Cadena, M. Hütten, M. Lallena, S. Nuza, J. Pérez, O. Reimer, M. Sánchez-Conde, S. Zimmer Updated performance study on galaxy clusters in progress 23

Conclusions Hierarchical DM clustering: γ-ray clumps from annihilation/decay at various scales and distances Search for the smallest clumps in a TeV γ-ray survey with CTA (extragalactic key science project by-catch) Watch out for unidentified sources in the FOV: may be a Galactic DM clump Study the closest galaxy clusters: Perseus and Coma: Excellent observation conditions with CTA North Clusters: Constrain DM particle life times beyond τ DM > 10 27 s = 2 10 9 t Universe CTA excellent probe for TeV dark matter particle physics in various complementary targets 24

BACK UP 25

Perseus cluster also optimal target for DM decay 1709.07997 Perseus = 1203.1164 1806.11063 Perseus region already extensively studied by MAGIC telescopes: 0909.3267, 1009.2155, 1111.5544, 1310.8500, 1602.03099, 1806.11063: τ DM 10 27 s 26

Astrophysical merits of Perseus cluster observations 1709.07997 1709.07997 27

Brightest Galactic DM clumps: Properties Average mass and distance (from 10 4 runs): Fermi-LAT scenario CTA scenario Median properties of (f sky = 82.6%) (f sky = 25%) brightest subhalo within int =0.1 int =0.8 int =0.05 int =0.1  ÂD ı obs [kpc] 7+10 5 8 +11 6 7 +10 5 8 +12 6  1 2  log 10 ( Âm ı vir /M ) 7.7 +1.3 1.5 8.1 +1.2 1.6 7.4 +1.4 1.4 7.6 +1.4 1.5 1 log  10 J ı /GeV 2 cm 52 20.3 +0.4 0.3 20.7 +0.4 0.3 19.7 +0.3 0.3 19.9 +0.4 0.3 optimistic Fermi-LAT scenario CTA scenario Median properties of (f sky = 82.6%) (f sky = 25%) brightest subhalo within int =0.1 int =0.8 int =0.05 int =0.1 ÂD ı obs [kpc] 32+42 23 30 +42 22 20 +27 15 19 +26 14 log 10 ( Âm ı vir /M ) 8.7 +0.9 1.3 8.6 +0.9 1.3 8.7 +0.8 1.4 8.7 +0.9 1.4 1 log  10 J ı /GeV 2 cm 52 18.9 +0.3 0.2 19.1 +0.3 0.3 19.4 +0.3 0.3 19.8 +0.4 0.3 conservative 28

Dark clumps decay brightness Number of subhalos brighter than a given flux/ J-factor: # of subhalos brighter than J Nsub( D) 10 4 10 3 10 2 10 1 10 0 10 1 10 2 flux > 100 GeV in Crab units for! b b, =10 26 s, m = 500 GeV 10 7 10 6 10 5 10 4 10 3 25% of the sky, dwarf-like objects included Sculptor dsphg 15 16 17 18 19 20 Astrophysical D-factor in log 10 (D/GeV cm 2 ) CTA survey sensitivity model 1 model 2 model 3 model 4 model 5 model 6 model 4 parameters 7 model 168 models model dashed 9 lines: model higher 10 c(m) model 11 model 12 model 13 model 14 model 15 model 16 work done by Rungployphan Kieokaew, 2015!29