Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion

Similar documents
Simulation of Plane Motion of Semiautonomous Underwater Vehicle

Simulation of Spatial Motion of Self-propelled Mine Counter Charge

THRUST OPTIMIZATION OF AN UNDERWATER VEHICLE S PROPULSION SYSTEM

Optimization of Control of Unmanned Underwater Vehicle in Collision Situation

Research Article Investigation into the Dynamics and Control of an Underwater Vehicle-Manipulator System

Design of Advanced Control Techniques for an Underwater Vehicle

Autonomous Underwater Vehicles: Equations of Motion

Nonlinear Observer Design for Dynamic Positioning

Heriot-Watt University

1. INTRODUCTION. Fig. 1 SAUVIM

Quaternion Feedback Regulation of Underwater Vehicles Ola-Erik FJELLSTAD and Thor I. FOSSEN Abstract: Position and attitude set-point regulation of au

Quaternion-Based Tracking Control Law Design For Tracking Mode

Underactuated Dynamic Positioning of a Ship Experimental Results

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods

u (surge) X o p (roll) Body-fixed r o v (sway) w (heave) Z o Earth-fixed X Y Z r (yaw) (pitch)

Nonlinear Tracking Control of Underactuated Surface Vessel

DESIGN OF A HYBRID POWER/TORQUE THRUSTER CONTROLLER WITH LOSS ESTIMATION. Øyvind N. Smogeli, Asgeir J. Sørensen and Thor I. Fossen

A Sliding Mode Control based on Nonlinear Disturbance Observer for the Mobile Manipulator

Tuning and Modeling of Redundant Thrusters for Underwater Robots

Fuzzy Adaptive Control for Trajectory Tracking of Autonomous Underwater Vehicle

Simulation of Kinematic and Dynamic Models of an Underwater Remotely Operated Vehicle

Exam - TTK 4190 Guidance & Control Eksamen - TTK 4190 Fartøysstyring

TTK4190 Guidance and Control Exam Suggested Solution Spring 2011

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

Nonlinear Landing Control for Quadrotor UAVs

Trajectory tracking & Path-following control

Final Exam TTK4190 Guidance and Control

Control of the MARES Autonomous Underwater Vehicle

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Modeling and Motion Analysis of the MARES Autonomous Underwater Vehicle

Problem 1: Ship Path-Following Control System (35%)

Modeling and Control of 2-DOF Underwater Planar Manipulator

From PD to Nonlinear Adaptive Depth-Control of a Tethered Autonomous Underwater Vehicle

Modeling of a Hexapod Robot; Kinematic Equivalence to a Unicycle

Design and modelling of an airship station holding controller for low cost satellite operations

Design of a Heading Autopilot for Mariner Class Ship with Wave Filtering Based on Passive Observer

Mathematical Modelling and Dynamics Analysis of Flat Multirotor Configurations

SATELLITE ATTITUDE TRACKING BY QUATERNION-BASED BACKSTEPPING. Raymond Kristiansen,1 Per Johan Nicklasson,2 Jan Tommy Gravdahl,3

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Research Article Proportional-Derivative Observer-Based Backstepping Control for an Underwater Manipulator

Non Linear Submarine Modelling and Motion Control with Model in Loop

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Rigid Body Equations of Motion for Modeling and Control of Spacecraft Formations - Part 1: Absolute Equations of Motion.

DEVELOPMENT AND MATHEMATICAL MODELLING OF PLANNING TRAJECTORY OF UNMANNED SURFACE VEHICLE

Control of industrial robots. Centralized control

Depth Control of the ROV with Fuzzy and PID Smoother Controller

Passivity-based Formation Control for UAVs with a Suspended Load

Design Artificial Nonlinear Controller Based on Computed Torque like Controller with Tunable Gain

Chapter 4 The Equations of Motion

Exponential Controller for Robot Manipulators

Modeling the 3-DOF Dynamics of an Electrodynamic Maglev Suspension System with a Passive Sled

Computer Problem 1: SIE Guidance, Navigation, and Control

Trajectory-tracking control of a planar 3-RRR parallel manipulator

HOW TO INCORPORATE WIND, WAVES AND OCEAN CURRENTS IN THE MARINE CRAFT EQUATIONS OF MOTION. Thor I. Fossen

The Dynamics of Fixed Base and Free-Floating Robotic Manipulator

A nonlinear fault-tolerant thruster allocation architecture for underwater remotely operated vehicles

Analysis and Design of Hybrid AI/Control Systems

A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot

An Actuator Failure Tolerant Robust Control Approach for an Underwater Remotely Operated Vehicle

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

Real-time Motion Control of a Nonholonomic Mobile Robot with Unknown Dynamics

Mechanical Engineering Department - University of São Paulo at São Carlos, São Carlos, SP, , Brazil

Adaptive Setpoint Control for Autonomous Underwater Vehicles

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

Chapter 1. Introduction. 1.1 System Architecture

Nonlinear PD Controllers with Gravity Compensation for Robot Manipulators

Quadcopter Dynamics 1

Trigonometric Saturated Controller for Robot Manipulators

A Time-Varying Lookahead Distance Guidance Law for Path Following

Linköping University Electronic Press

Perturbation Method in the Analysis of Manipulator Inertial Vibrations

The PVTOL Aircraft. 2.1 Introduction

A Ship Heading and Speed Control Concept Inherently Satisfying Actuator Constraints

An Evaluation of UAV Path Following Algorithms

Control of UUVs Based upon Mathematical Models Obtained from Self-Oscillations Experiments

Nonlinear Formation Control of Marine Craft

Control of an Autonomous Underwater Vehicle subject to robustness constraints

Experimental Study on Adaptive Control of Underwater Robots

NONLINEAR PATH CONTROL FOR A DIFFERENTIAL DRIVE MOBILE ROBOT

Pitch Control of Flight System using Dynamic Inversion and PID Controller

Final Exam TTK 4190 Guidance and Control

Multi-layer Flight Control Synthesis and Analysis of a Small-scale UAV Helicopter

Handling Roll Constraints for Path Following of Marine Surface Vessels using Coordinated Rudder and Propulsion Control

Near-Hover Dynamics and Attitude Stabilization of an Insect Model

TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING

Case Study: The Pelican Prototype Robot

Full-scale identification by use of self-oscillations for overactuated marine surface vehicles

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

A Discussion About Seakeeping and Manoeuvring Models For Surface Vessels

Geometric Formation Control for Autonomous Underwater Vehicles

Journal for Research in Ship Technology, Ocean Engineering and Related Subjects. Founded by Prof. Dr.-Ing. Kurt Wendel in 1952 DRAFT!

Design of a Linear Model Predictive Controller for an Overactuated Triangular Floating Platform

About One Method of Avoiding Collision with Sailing Objects

TOWARD DEVELOPMENT OF CONTROL SYSTEMS FOR AIRSHIPS UNIFIED TO THEIR TECHNICAL CHARACTERISTICS AND ACTUATORS

Chapter 2 Review of Linear and Nonlinear Controller Designs

Autonomous Robotic Vehicles

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1.

Mathematical Modelling and 3D Simulation of a Virtual Robotic Fish

Robot Dynamics II: Trajectories & Motion

Global stabilization of an underactuated autonomous underwater vehicle via logic-based switching 1

Transcription:

Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 38 Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion j.garus@amw.gdynia.pl JERZ GARUS Faculty of Mechanical and Electrical Engineering aval University 81-13 Gdynia ul. Smidowicza 69 POLAD http://www.amw.gdynia.pl Abstract: - A paper describes a method of motion control of the underwater robotic vehicle to the problem of trajectory tracking. A multidimensional non-linear model expresses the robot s dynamics. Command signals are generated by an autopilot consisting of three independent controllers with a parameter adaptation law implemented. A quality of control is concerned without and in presence of environmental disturbances. The paper includes selected results of computer simulations to illustrate effectiveness of the proposed control system. Key-Words: - Underwater robot Autopilot on-linear control Tracking 1 Introduction Underwater Robotics has known an increasing interest in the last years. The main benefits of usage of Underwater Robotic Vehicles (URV can be removing a man from the dangers of the undersea environment and reduction in cost of exploration of deep seas. Currently it is common to use the URV to accomplish missions as the inspection of coastal and off-shore structures cable maintenance as well as hydrographical and biological surveys. In the military field it is employed in such tasks as surveillance intelligence gathering torpedo recovery and mine counter measures. The URV is considered being a floating platform carrying tools required for performing various functions. They include manipulator arms with interchangeable end-effectors cameras scanners sonars etc. An automatic control of such objects is a difficult problem caused by their nonlinear dynamics [1 2 4 5 6]. Moreover the dynamics can change according to the alteration of configuration to be suited to the mission. In order to cope with those difficulties the control system should be flexible. The conventional URV operates in crab-wise manner in 4 degrees of freedom (DOF with small roll and pitch angles that can be neglected during normal operations. Therefore its basic motion is movement in horizontal plane with some variation due to diving. The objective of the paper is to present a usage of the adaptive inverse dynamics algorithm to driving the robot along the desired trajectory in horizontal motion. It consists of the following four sections. Brief descriptions of dynamical and kinematical equations of motion of the floating object and the adaptive control law are presented in the next section. Section 3 provides some results of the simulation study. Conclusions are given in Section 4. 2 onlinear adaptive control law The general motion of marine vessels of 6 DOF describes the following vectors [3 4 5]: T η [ x y z ψ ] T v [ u w p q r] (1 τ [ Z K M ] T η the position and orientation vector in the inertial frame; x y z coordinates of position; ψ coordinates of orientation (Euler v angles; the linear and angular velocity vector with coordinates in the body-fixed frame; u w linear velocities along longitudinal transversal and vertical axes;

Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 39 p q r angular velocities about longitudinal transversal and vertical axes; τ a vector of forces and moments acting on the robot in the body-fixed frame; Z forces along longitudinal transversal and vertical axes; K M moments about longitudinal transversal and vertical axes. The nonlinear dynamical and kinematical equations of motion in body-fixed frame can be expressed as [4 5]: M v + C( v v + D( v v + g( η τ (2 M an inertia matrix (including added mass; C(v a matrix of Coriolis and centripetal terms (including added mass; D(v a hydrodynamic damping and lift matrix; g(η a vector of gravitational forces and moments. For the URVs there are parametric uncertainties in the dynamic model (2 and certain parameters are generally unknown. Hence parameter estimation is necessary in case of modelbased control. For this purpose it is assumed that the vehicle equations of motion are linear according to parameter vector p that is [8]: Mv + C( v v + D( v v + g( η ( η v p (3 where ( η v is a known matrix function of measured signals usually referred as the regressor matrix (dimension n r and p is a vector of the uncertain or unknown parameters. Let estimates of the matrices M C ( v D ( v and the vector g( η be described M ˆ Ĉ ( v Dˆ ( v and ĝ( η. If model parameters are known with some accuracy the following nonlinear control law can be applied [5 8]: τ Mu ˆ + Cˆ ( v u + Dˆ ( v u + gˆ( η K Ds (4 ( η u u pˆ K Ds K D positive definite diagonal matrix s e 2 + Λe 1 e1 η η d e 2 v v d. u v d Λe 1 Λ positive definite weighting matrix. Choosing the parameter update law as [4 8]: p T ˆ Γ ( η u u s (5 where Γ is a positive definite symmetric matrix guarantees stability of the control system and convergence s to zero. A block diagram of the control system with parameter adaptation law is shown in Fig. 1. Fig. 1. Diagram showing the parameter adaptation law 3 Simulation results A main task of the designed tracking control system is to minimize distance of attitude of the robot s centre of gravity to the desired trajectory under assumptions: 1. the robot can move with varying linear velocities u v and an angular velocity r; 2. its velocities u r and coordinates of position x y and heading ψ are measurable; 3. a desired trajectory is given by means of set of way-points with coordinates x ; {( } di y di 4. a reference trajectory between two successive way-points is defined as smooth and bounded curves; 5. the command signal τ consists of three components: τ τ and τ calculated using the control law (4. A structure of the proposed control system is depicted in Fig. 2. To validate the performance of the developed nonlinear control law simulations results using the MATLAB/Simulink environment are presented below. The model of the vehicle is based on a real construction of an underwater robot called Coral designed and built for the Polish avy. The URV is an open frame robot controllable in four degrees of freedom being 1.5 m long and having a propulsion system consisting of six thrusters. Displacement in horizontal plane is done by means of four ones which generate force up to ±75 assuring speed up to ±1.2 m/s and ±.6 m/s in x and y direction

Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 4 consequently. All parameters of the robot s dynamics are presented in the Appendix A. Fig. 2. The main parts of the control system umerical simulations have been made to confirm quality of the proposed control algorithm for the following assumptions: 1. the robot has to follow the desired trajectory beginning from ( m m passing target waypoints: (5 m m (8 m 3 m (8 m 8 m (3 m 8 m ( m 5 m and ending in ( m m; 2. the turning point is reached when the robot is inside of the.5 m circle of acceptance. An algorithm of control worked out basis on simplified URV model proposed in [4 9]: ( v v τ M d v + D d (6 where all kinematics and dynamics cross-coupling terms are neglected. Here M d and D d (v are diagonal matrices with the diagonal elements of the inertia and damping matrices consequently. Uncertainties in the above model are compensated in the designed control system. The robot model for horizontal motion of 3 DOF can be written in a form: m m m v + d u + d r + d u u τ v v τ r r τ (7 Define the parameter vector p in a form T p [ m equations (2 d m d m d ] can be written as: ( v v p τ (8 ( v u u u v v v r r r The regulation problem has been examined under interaction of external disturbances i.e. sea currents. To simulate such influence on robot s motion the current velocity V c was assumed to be slowly varying and having a fixed direction. For computer simulations it was calculated by using the 1 st order Gauss-Markov process [5]: V μ V ω (9 c + c where ω is a Gaussian white noise μ is a constant and Vc ( t V. c max Results of track-keeping in the presence of external disturbances and the courses of command signals are presented in Fig. 3. It can be seen that the proposed autopilot enhanced good tracking control of the desired trajectory in the spatial motion. The main advantage of the approach is using the simple nonlinear law to design controllers and its high performance for relative large sea current disturbances (comparable with resultant speed of the robot. Assuming that the true values of components of the vector p are unknown evaluation on the level of half of nominal value has been accepted. Time histories of estimated parameters during tracking are presented in Fig. 4. 4 Conclusions In the paper the nonlinear control system for the underwater robot has been described. The obtained results of simulation study with the autopilot consisting of three controllers with parameter adaptation law showed the presented control system to be simple and useful for the practical usage. Disturbances from the sea current were added to verify the performance correctness and robustness of the approach. A further work is devoted to the problem of tuning of the autopilot parameters in relation to the robot s dynamics.

Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 41 Fig. 3. Track-keeping control under interaction of sea current disturbances (average velocity.2 m/s and direction 135 : desired (d and real (r trajectories (upper plot x- y-position and error of position (2 nd 3 th plots course and its error (4 th plot commands (low plot.

Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 42 The URV model Appendix A The following set of parameters of the underwater robotic vehicle dynamics was used in the computer simulations: Fig. 4. Estimates of mass and damping coefficients: set value (s and estimate (e. 99 M 18 126 8 32 ; 29 References: [1] G. Antonelli F. Caccavale S. Sarkar M. West Adaptive Control of an Autonomous Underwater Vehicle: Experimental Results on ODI. IEEE Transactions on Control Systems Technology Vol. 9 o. 5 21 pp. 756-765. [2] J. Craven R. Sutton R. S. Burns Control Strategies for Unmanned Underwater Vehicles. Journal of avigation o. 51 1998 pp. 79-15. [3] R. Bhattacharyya Dynamics of Marine Vehicles John Wiley and Sons Chichester 1978. [4] T.I. Fossen Guidance and Control of Ocean Vehicles John Wiley and Sons Chichester 1994. [5] T.I. Fossen Marine Control Systems Marine Cybernetics AS Trondheim 22. [6] J. Garus Z. Kitowski on-linear Control of Motion of Underwater Robotic Vehicle in Vertical Plane. In. Mastorakis V. Mladenov (Eds: Recent Advances in Intelligent Systems and Signal Processing WSEAS Press 23 pp. 82-85. [7] J. Garus Z. Kitowski Trajectory Tracking Control of Underwater Vehicle in Horizontal Motion. WSEAS Transactions on Systems Vol. 3 o. 5 24 pp. 211-2115. [8] M.W. Spong M. Vidyasagar Robot Dynamics and Control John Wiley and Sons Chichester 1989. [9] J. K. uh Modelling and Control of Underwater Robotic Vehicles. IEEE Transactions on Systems Man and Cybernetics Vol. 15 o. 2 199 pp. 1475-1483. 1 D( v C.2 227 u 45 v + C11 C12 C21 C22 ( v 2 478 w + 1.6 3 p C 11 26w 28v C 12 26w 18u 2v 18u C 21 C 12 5r 6q C 22 5r p ; 6q p 14 q ; 13 r

( ( + cos( cos( sin( 279 sin( 279 cos( cos( 17 cos( sin( 17 cos( 17 sin( η g. Values of the matrices corresponding to the nonlinear control law (5 were as follows: 1 2 1 D K ; 1 5 2 Γ ; 2 1 5 Λ. Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 43