ITTC Propeller Benchmark

Similar documents
ITTC Propeller Benchmark

Potsdam Propeller Test Case (PPTC) Test Case Description

ENGR 4011 Resistance & Propulsion of Ships Assignment 4: 2017

CFD Analysis of a Propeller Flow and Cavitation

Propeller Loads of Large Commercial Vessels at Crash Stop

Numerical Investigation of the Hydrodynamic Performances of Marine Propeller

A Study on Effects of Blade Pitch on the Hydrodynamic Performances of a Propeller by Using CFD

VERIFICATION AND VALIDATION OF RESISTANCE AND PROPULSION COMPUTATION

ITTC Recommended Procedures

Full scale thruster performance and load determination based on numerical simulations

Conjugate Heat Transfer Analysis of a high loaded convection cooled Vane with STAR-CCM+

Performance characteristics of turbo blower in a refuse collecting system according to operation conditions

Efficient Prediction of Crashback Performance of Controllable Pitch Propellers

Propeller Analysis Using RANS/BEM Coupling Accounting for Blade Blockage

Study on Extrapolation Method for Self-Propulsion Test with Pre-Swirl Device *

Particles Removal from a Moving Tube by Blowing Systems: A CFD Analysis

Influence of Flow Transition on Open and Ducted Propeller Characteristics

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Motivation. Coupling of overset grids. Incompressible finite-volume methods. Non-conservative interpolation of field values Mass defect

DETERMINING OPTIMUM GEOMETRY FOR A BOW THRUSTER PROPELLER

STAR-CCM+: NACA0012 Flow and Aero-Acoustics Analysis James Ruiz Application Engineer January 26, 2011

CFD Analysis of Scale Effects on Conventional and Tip-Modified Propellers

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

Initial and Boundary Conditions

Numerical and Experimental Characterization of a CP Propeller Unsteady Cavitation at Different Pitch Settings

Explicit algebraic Reynolds stress models for internal flows

Computation of Unsteady Flows With Moving Grids

Drag and Torque on Locked Screw Propeller

Draft Tube calculations using OpenFOAM-1.5dev and validation with FLINDT data

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017 June 25-30, 2017, Trondheim, Norway

On the Use of the γ Re θ Transition Model for the Prediction of the Propeller Performance at Model-Scale

NUMERICAL STUDY OF THE EFFECT OF BLADE SZE ON PUMPING EFFECTIVENESS OF A PADDLE IMPELLER IN AN UNBAFFLED MIXING VESSEL

DDES of Wetted and Cavitating Marine Propeller for CHA Underwater Noise Assessment

On the advanced extrapolation method for a new type of podded propulsor via CFD simulations and model measurements

Maneuvering predictions in the early design phase using CFD generated PMM data

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Study of the hydrodynamic flow around a 70m sailing boat for powering, wave pattern and propeller efficiency prediction

CFD with OpenSource software

Chapter 3. CFD Analysis of Radiator

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics

Makoto Uchida. Yuuki Matsumoto

Hydro-Structure Analysis of Composite Marine Propeller under Pressure Hydrodynamic Loading

Implementing Vortex Lattice Representation of Propeller Sections

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH

FLOW PATTERN STUDY OF A CENTRIFUGAL PUMP USING CFD METHODS CONCENTRATING ON VOLUTE TONGUE ROLE

Evaluation of Propeller Virtual Mass and Damping Coefficients by URANS- Method

Analysis of Heat Transfer in Pipe with Twisted Tape Inserts

The Numerical Investigation on Hydrodynamic Performance of Twisted Rudder during Self-propulsion

Comparison of Different Techniques for Modelling of Flow Field and Homogenization in Stirred Vessels*

An Overview of Impellers, Velocity Profile and Reactor Design

A combined CFD and network approach for a simulated turbine blade cooling system

Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance A. Farid Ayad *, H. M. Abdalla,A. S. Abo El-Azm Egyptian Armed Forces, Egypt

The Calculations of Propeller Induced Velocity by RANS and Momentum Theory

SOE3213/4: CFD Lecture 3

Design of Test Section for Coriolis Rig and Numerical Simulation of Cooling Flow Through Test Section

IMPACT OF SOME GEOMETRICAL ASPECTS ON THE TANDEM CO-ROTATING PROPELLER HYDRODYNAMIC CHARACTERISTICS

Calculation of the Flow around the KVLCC2M Tanker

Flow field in the compressor blade cascade NACA

Develpment of NSCBC for compressible Navier-Stokes equations in OpenFOAM : Subsonic Non-Reflecting Outflow

Application of 2D URANS in fluid structure interaction problems of rectangular cylinders

Design of Multistage Turbine

Numerical Analysis of Unsteady Open Water Characteristics of Surface Piercing Propeller

NUMERICAL SIMULATION OF THE UNSTEADY AERODYNAMICS IN AN AXIAL COUNTER-ROTATING FAN STAGE

INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING

Numerical Prediction Of Torque On Guide Vanes In A Reversible Pump-Turbine

Cavitating Flow Calculations for the E779A Propeller in Open Water and Behind Conditions: Code Comparison and Solution Validation

Propellers and Ducted Fans

AN UNCERTAINTY ESTIMATION EXAMPLE FOR BACKWARD FACING STEP CFD SIMULATION. Abstract

Shear stress and shear rates for µ-slides y-shaped based on Computational Fluid Dynamics (CFD)

Numerical Investigation of the Impact of SES-Waterjet Interactions and Flow Non-uniformity on Pump Performance

Turbulent Boundary Layers & Turbulence Models. Lecture 09

IDENTIFICATION OF SHIP PROPELLER TORSIONAL VIBRATIONS

Numerical Investigation of Scale Effect for Propeller Boss Cap Fins

CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments

NUMERICAL INVESTIGATION OF VERTICAL AXIS WIND TURBINE WITH TWIST ANGLE IN BLADES

Modified Porosity Distributed Resistance Combined to Flamelet Combustion Model for Numerical Explosion Modelling

The CFD Investigation of Two Non-Aligned Turbines Using Actuator Disk Model and Overset Grids

Unsteady Aerodynamic Simulations of Floating Offshore Wind Turbines with Overset Grid Technology

Air Drag on a Stratospheric Balloon in Tropical Regions. H.P. Lee, K.M. Lim, B.C. Khoo, Q. Sun

Numerical analysis of propeller exciting force in oblique flow

C1.2 Ringleb flow. 2nd International Workshop on High-Order CFD Methods. D. C. Del Rey Ferna ndez1, P.D. Boom1, and D. W. Zingg1, and J. E.

PARAMETRIC STUDY PERFORMANCE OF A CENTRIFUGAL PUMP BASED ON SIMPLE AND DOUBLE-ARC BLADE DESIGN METHODS

A numerical investigation of tip clearance flow in Kaplan water turbines

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

Analysis of Counter-Rotating Wind Turbines

Differential relations for fluid flow

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

ABSTRACT I. INTRODUCTION

Parallel Computations of Unsteady Three-Dimensional Flows in a High Pressure Turbine

Three-Dimension Numerical Simulation of Discharge Flow in a Scroll Air Compressor

LARGE EDDY SIMULATION OF FLOW OVER NOZZLE GUIDE VANE OF A TRANSONIC HIGH PRESSURE TURBINE

Study on the Performance of a Sirocco Fan (Flow Around the Runner Blade)

Numerical calculation for cavitation flow of inducer

A Discussion of Low Reynolds Number Flow for the Two-Dimensional Benchmark Test Case

Studying Fluid Mechanics for Better Understanding Simulation Technologies. A Special Approach for Maritime Universities

Numerical calculations of the hydrodynamic performance of the contra-rotating propeller (CRP) for high speed vehicle

Near-Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

Description and validation of the rotordisksource class for propeller performance estimation

Simulation of Flow Pattern through a Three-Bucket Savonius. Wind Turbine by Using a Sliding Mesh Technique

DYNAMIC POSITIONING CONFERENCE. October 13-14, Thrusters. Voith Schneider Propeller - An Efficient Propulsion System for DP Controlled Vessels

Transcription:

ITTC Propeller Benchmark PPTC PPTC, Propeller P1727 - VP1304 Report 4488 Potsdam, March April 2016 2016 Schiffbau-Versuchsanstalt Potsdam GmbH, Marquardter Chaussee 100, 14469 Potsdam Tel. +49 331 56712-0, Fax +49 331 56712-49, www.sva-potsdam.de

PPTC Propeller Page 2 ITTC Propeller Benchmark ITTC Propeller Benchmark PPTC Propeller - VP1304 PPTC, P1727 Client Contractor Schiffbau-Versuchsanstalt Potsdam GmbH Marquardter Chaussee 100 14469 Potsdam Tel. +49 331 56712-0 Fax +49 331 56712-49 Author Dipl.-Ing. R. Grabert Dipl.-Ing. L. Lübke M. Sc. R. Klose Dipl.-Ing U. Barkmann Potsdam, 30/03/2016 30/08/2017 Management Author

PPTC Propeller Page 3 Content 1 Introduction...6 1.1 Propeller benchmark...6 1.2 Paticipants...7 1.3 Propeller...8 1.4 PPTC - VP1304... 9 1.5 PPTC - VP1304, main data...10 1.6 PPTC - VP1304, 3D... 11 2 Overview...12 2.1 Open water characteristic - thrust model scale... 12 2.2 Open water characteristic - torque model scale...13 2.3 Open water characteristic - efficiency model scale...14 2.4 Open water characteristic - thrust...15 2.5 Open water characteristic - torque...16 2.6 Open water characteristic - efficiency...17 3 Statistics...18 3.1 Tables - model scale... 18 3.2 Tables -...19 3.3 Diagrams - Thrust...20 3.4 Diagrams - Torque...21 3.5 Diagrams - Efficiency...22 3.6 Diagrams - Difference CFD and EFD... 23 3.7 Diagrams - Relative difference CFD and EFD...24 4 Result EFD...25 4.1 Open Water Characteristic...25 4.2 EFD - Statistics...26 5 Result R01... 27 5.1 R01 - Open water characteristic...27 5.2 R01 - Differences CFD and EFD...28 5.3 R01 - Radial distribution tables...29 5.4 R01 - Radial distribution diagrams...30 5.5 R01 - Questionaire part I...31 5.5 R01 - Questionaire part II... 32 6 Result R02... 33 6.1 R02 - Open water characteristic...33 6.2 R02 - Differences CFD and EFD...34 6.3 R02 - Radial distribution tables...35 6.4 R02 - Radial distribution diagrams...36 6.5 R02 - Questionaire part I...37 6.5 R02 - Questionaire part II... 38 7 Result R03... 39

PPTC Propeller Page 4 Content 7.1 R03 - Open water characteristic...39 7.2 R03 - Differences CFD and EFD...40 7.3 R03 - Radial distribution tables...41 7.4 R03 - Radial distribution diagrams...42 7.5 R03 - Questionaire part I...43 7.5 R03 - Questionaire part II... 44 8 Result R04... 45 8.1 R04 - Open water characteristic...45 8.2 R04 - Differences CFD and EFD...46 8.3 R04 - Radial distribution tables...47 8.4 R04 - Radial distribution diagrams...48 8.5 R04 - Questionaire part I...49 9 Result R05... 47 9.1 R05 - Open water characteristic...47 9.2 R05 - Differences CFD and EFD...48 9.3 R05 - Radial distribution tables...49 9.4 R05 - Radial distribution diagrams...50 9.5 R05 - Questionaire part I...51 9.5 R05 - Questionaire part II... 52 10 Result R06... 53 10.1 R06 - Open water characteristic...53 10.2 R06 - Differences CFD and EFD...54 10.3 R06 - Radial distribution tables...55 10.4 R06 - Radial distribution diagrams...56 10.5 R06 - Questionaire part I...57 10.5 R06 - Questionaire part II... 58 11 Result R07... 59 11.1 R07 - Open water characteristic...59 11.2 R07 - Differences CFD and EFD...60 11.3 R07 - Radial distribution tables...61 11.4 R07 - Radial distribution diagrams...62 11.5 R07 - Questionaire part I...63 11.5 R07 - Questionaire part II... 64 12 Result R08... 65 12.1 R08 - Open water characteristic...65 12.2 R08 - Differences CFD and EFD...66 12.3 R08 - Radial distribution tables...67 12.4 R08 - Radial distribution diagrams...68 12.5 R08 - Questionaire part I...69 12.5 R08 - Questionaire part II... 70

PPTC Propeller Page 5 Content 13 Result R10... 71 13.1 R10 - Open water characteristic...71 13.2 R10 - Differences CFD and EFD...72 13.3 R10 - Radial distribution tables...73 13.4 R10 - Radial distribution diagrams...74 13.5 R10 - Questionaire part I...75 13.5 R10 - Questionaire part II... 76 14 Result R11... 77 14.1 R11 - Open water characteristic...77 14.2 R11 - Differences CFD and EFD...78 14.3 R11 - Radial distribution tables...79 14.4 R11 - Radial distribution diagrams...80 14.5 R11 - Questionaire part I...81 14.5 R11 - Questionaire part II... 82 15 Result R12... 83 15.1 R12 - Open water characteristic...83 15.2 R12 - Differences CFD and EFD...84 15.3 R12 - Radial distribution tables...85 15.4 R12 - Radial distribution diagrams...86 15.5 R12 - Questionaire part I...87 15.5 R12 - Questionaire part II... 88 16 Result R14... 89 16.1 R14 - Open water characteristic...89 16.2 R14 - Differences CFD and EFD...90 16.3 R14 - Radial distribution tables...91 16.4 R14 - Radial distribution diagrams...92 16.5 R14 - Questionaire part I...93 16.5 R14 - Questionaire part II... 94 17 Result R15... 95 17.1 R15 - Open water characteristic...95 17.2 R15 - Differences CFD and EFD...96 17.3 R15 - Radial distribution tables...97 17.4 R15 - Radial distribution diagrams...98 17.5 R15 - Questionaire part I...99 17.5 R15 - Questionaire part II... 100 18 Result R16... 101 18.1 R16 - Open water characteristic...101 18.2 R16 - Differences CFD and EFD...102 18.3 R16 - Radial distribution tables...103 18.4 R16 - Radial distribution diagrams...104 18.5 R16 - Questionaire part I...105

PPTC Propeller Page 6 1 Introduction 1 1.1 Propeller benchmark 1 The current ITTC scaling method for propellers is well proven and in use by the majority of the institutions. Nevertheless, problems with applying this method for unconventional propellers like Kappel or CLT propellers occurred and a need to update the procedure has arisen. Therefore the propulsion committee of the 27 th ITTC conference has been asked to initiate a benchmark test for CFD calculations, with the intention to investigate the capabilities of CFD to predict scale effects on the propeller performance. Two different types of propellers had to be investigated, a conventional and an unconventional propeller. For this purpose the controllable pitch propeller VP1304 was used to study the scale effects for a conventional propeller. The VP1304 was already published by the SVA Potsdam in the course of the propeller workshop under the acronym PPTC (Potsdam Propeller Test Case) held at the smp 11 conference in Hamburg. During the period of the 27 th ITTC no free geometry of an unconventional propeller was available. Therefore the propulsion committee of the 28 th ITTC conference has continued this work. SVA Potsdam has provided P1727 as an example for an unconventional propeller. It has been designed by SVA Potsdam for the ongoing research project "TIP RAKE - Further development of the prognosis methods for tip rake propellers", funded by the German Federal Ministry for Economic Affairs and Energy. In the course of the ITTC benchmark, both propellers were investigated in and model scale. Excel sheets were provided for the submission of the computational results. The evaluation of the results is anonymous. Despite the comparison of the CFD results with EFD results is not the main topic of this investigation, EFD results are presented, too. Open water tests have been carried out in SVA Potsdam for both propellers. Furthermore the ITTC scaling method was applied to the open water test results and plotted together with the full scale CFD results. These curves shall show the current state. Within this report the results of the conventional propeller are presented. The results of the unconventional propeller can be found in report 4487. Table 1 shows all participants in alphabetic order and which propeller has been calculated by each of them. Within the report each result is numbered in chronologic order of incoming. Table 2 lists the main data of both propellers.

PPTC Propeller Page 7 1 Introduction 1.2 Paticipants 2 Institute PPTC TRP VP1304 P1727 China Ship Scientific Research Center X X Dalian University of Technology X X Hamburgische Schiffbau-Versuchsanstalt X X Hyundai Maritime Research Institute X X Indian Institute of Technology Madras X Istanbul Technical University X X Japan Marine United Corporation X X Krylov State Research Centre X X Marine Design & Research Institute of China X Pusan National University X Samsung Ship Model Basin X X Schiffbau-Versuchsanstalt Potsdam X X Shanghai Jiao Tong University X X Shanghai Ship and Shipping Research Institute X Ship Design and Research Centre Gdansk X X SSPA Sweden AB X Total results 14 13

PPTC Propeller Page 8 1 Introduction 1.3 Propeller 3 PPTC TRP Propeller VP1304 P1727 Scale ratio l [-] 12 1 31.428 1 Propeller diameter D [mm] 250 3000 238.6 7500 Pitch at r /R = 0.70 P 0.7 [mm] 408.8 4905 200.6 6305 Pitch at r /R = 0.75 P 0.75 [mm] 407.4 4889 191 6003 Mean pitch P mean [mm] 391.9 4703 195.5 6143 Chord length at r /R = 0.70 C 0.7 [mm] 104.2 1250 56.4 1772 Chord length at r /R = 0.75 C 0.75 [mm] 106.3 1276 55.6 1748 Thickness at r /R = 0.75 t 0.75 [mm] 3.8 46 2.9 92 Pitch ratio Mean pitch ratio P 0.7 /D P mean /D [-] [-] 1.635 1.568 0.841 0.819 Area ratio A E /A 0 [-] 0.779 0.444 Skew ϴ eff [ ] 18.8 25.7 Rake at r /R = 0.70 ε 0.7 [ ] -9 Rake at r /R = 0.75 ε 0.75 [ ] -8.8 Hub diameter ratio d h /D [-] 0.3 0.154 Number of blades Z [-] 5 4 Direction of rotation right-handed right-handed Operation point model full PPTC Propeller VP1304 scale scale ratio Water density Kinematic viscosity of Rate of revolutions λ r n n [kg/m 3 ] [m²/s] [1/s] 12.00 999.00 1.139E-06 15.00 1.00 1025.87 1.188E-06 4.33

Ø72.46 Ø72.46 PPTC Propeller Page 9 1 Introduction 1.4 PPTC - VP1304 4 VP1304 x (t max )/ c x (f max )/ c R R0.15 45% P/D 52% r/r 00 1.00 95 0.95 90 0.90 85 0.85 80 75 0.75 70 0.70 45% 52% 60 45% 52% 50 0.50 40 R1 30 45% 0.30 0% R1 R1 0.30 R1 1.355 1.557 1.635 25.00 25.00 Ø18 H7 HUB No. 1 FULL SCALE 5 DIN 6885 - A - 6 DIAMETER D 3000 mm HUB DIAMETER d h 910 mm CHORD LENGTH c 0.7 1254 mm MAX. THICKNESS t 0.7max 53.102 mm r P c t f ε θ r /R P /D c /D t /c f /c θ ε CHORD LENGTH c 0.75max 1276.560 mm [mm] [mm] [mm] [mm] [mm] [mm] [mm] [-] [-] [-] [-] [-] [ ] [ ] MAX. THICKNESS 45.511 mm 125.0 338.8 25.0 1.64 0.50-2.50 27.08 1.00 1.355 0 0.066 0.020 11.40-1.15 118.8 364.5 94.2 2.01 2.19-4.03 17.75 0.95 1.458 0.377 0.021 0.023 7.70-1.95 MODEL SCALE 112.5 382.8 104.2 2.38 2.67-5.45 9.25 0.90 1.531 0.417 0.023 0.026 4.14-2.77 DIAMETER D 250 mm 106.3 395.5 106.5 2.78 2.97-6.63 2.34 0.85 1.582 0.426 0.026 0.028 1.08-3.57 HUB DIAMETER d h 75.850 mm 100.0 403.5 107.1 3.25 3.05-7.38-2.75 1.614 0.428 0.030 0.028-1.33-4.22 CHORD LENGTH c 0.7 104.167 mm 93.8 407.6 106.4 3.78 3.10-7.67-6.68 0.75 1.630 0.426 0.036 0.029-3.36-4.68 MAX. THICKNESS t 0.7max 4.425 mm 87.5 408.8 104.2 4.43 3.09-7.50-9.58 0.70 1.635 0.417 0.042 0.030-5.04-4.90 CHORD LENGTH c 0.75 106.380 mm 75.0 405.0 94.2 6.05 2.84-5.88-12.75 1.620 0.377 0.064 0.030-7.39-4.48 MAX. THICKNESS 3.793 mm 62.5 394.5 81.3 8.14 2.36-3.35-11.50 0.50 1.578 0.325 0 0.029-7.44-3.07 50.0 376.3 65.4 10.69 1.57-1.25-6.08 1.505 0.262 0.163 0.024-4.47-1.43 DIMENSIONLESS 37.9 351.0 45.8 13.45 0.70-0.03 3.83 0.30 1.404 0.183 0.294 0.015 3.25-0.04 HUB RATIO 37.5 350.0 45.0 13.53 0.68 4.25 0.30 1.400 0.180 0.301 0.015 3.63 PITCH RATIO EXP. AREA RATIO SVA 04.04.2017 A E/A 0 1.173 R tip R LE R SS R PS R TE Hub d h/d d hle d hte l LE l TE l h SKEW θ EXT 19.148 Z 5 [mm] [mm] [mm] [mm] [mm] [-] [mm] [mm] [mm] [mm] [mm] BLADE NUMBER 0.15 1.00 1.00 1.00 1.00 H1 0.25 72.46 72.46 25.00 25.00 5 SCALE DIRECTION OF ROTATION t 0.75max t 0.75max d h/d P 0.7/D λ 0.303 1.6350 12 RIGHT-HANDED

1 Introduction 1.5 PPTC - VP1304, main data 5 PPTC Propeller Page 10

1 Introduction 1.6 PPTC - VP1304, 3D 6 PPTC Propeller Page 11

K T [-] PPTC Propeller Page 12 2 Overview 1 2.1 Open water characteristic - thrust model scale 1 K T [-] model scale D10:D14 1 2 3 4 5 1.00 1.20 1.40 Avarage over J CFD - EFD 1.00 1.20 1.40 [-] * [-] ** 1.000 EFD 0.629 0.510 0.399 0.295 0.188 0 0.0% 2.000 R01 0.628 0.516 4 0.292 0.174-2 -0.4% 3.000 R02 0.612 0.489 0.368 0.250 0.138-0.033-8.2% 4.000 R03 0.625 0.510 0.396 0.287 0.170-7 -1.6% 5.000 R04 0.624 0.506 0.394 0.291 0.186-4 -0.9% 6.000 R05 0.617 0.505 0.396 0.286 0.176-8 -2.1% 7.000 R06 0.618 0.492 0.372 0.257 0.139-0.028-7.0% 8.000 R07 0.624 0.498 0.375 0.262 0.149-0.023-5.6% 9.000 R08 0.615 0.491 0.372 0.261 0.151-0.026-6.4% 10 R10 0.634 0.504 0.379 0.262 0.150-0.018-4.5% 11.000 R11 8 0.496 0.394 0.288 0.178-0.011-2.7% 12.000 R12 0.618 0.497 0.380 0.269 0.157-0.020-4.9% 13.000 R14 0.622 0.496 0.375 0.263 0.152-0.023-5.6% 14.000 R15 0.623 0.504 0.392 0.286 0.181-7 -1.8% 15.000 R16 0.622 0.494 0.371 0.257 0.144-0.027-6.6% 0.70 0.50 0.30 1.00 1.20 1.40 R01 R02 R03 R04 R05 R06 R07 R08 R10 R11 R12 R14 R15 R16 EFD * / ** see at formula page

10K Q [-] PPTC Propeller Page 13 2 Overview 2.2 Open water characteristic - torque model scale 2 10K Q [-] model scale E10:E14 1 2 3 4 5 1.00 1.20 1.40 Avarage over J CFD - EFD 1.00 1.20 1.40 [-] * [-] ** 1.000 EFD 1.396 1.178 0.975 0.776 0.559 0 0.0% 2.000 R01 1.423 1.216 1.005 0.784 0.539 0.017 1.7% 3.000 R02 1.442 1.212 0.981 0.749 0.517 3 0.3% 4.000 R03 1.422 1.215 1.000 0.781 0.539 0.015 1.5% 5.000 R04 1.394 1.175 0.972 0.778 0.561-1 -0.1% 6.000 R05 1.425 1.224 1.022 0.813 0.583 0.037 3.8% 7.000 R06 1.431 1.196 0.973 0.752 0.518-3 -0.3% 8.000 R07 1.410 1.184 0.961 0.742 0.506-0.016-1.7% 9.000 R08 1.394 1.173 0.958 0.744 0.511-0.021-2.1% 10 R10 1.456 1.211 0.978 0.747 0.509 3 0.3% 11.000 R11 1.378 1.208 1.020 0.813 0.583 0.024 2.4% 12.000 R12 1.424 1.199 0.983 0.767 0.531 4 0.4% 13.000 R14 1.422 1.187 0.961 0.742 0.509-0.013-1.3% 14.0000 R15 1.396 1.175 0.969 0.765 0.543-7 -0.8% 15.0000 R16 1.434 1.192 0.961 0.740 0.504-0.011-1.1% 1.60 1.40 1.20 1.00 1.00 1.20 1.40 R01 R02 R03 R04 R05 R06 R07 R08 R10 R11 R12 R14 R15 R16 EFD * / ** see at formula page

η O [-] PPTC Propeller Page 14 2 Overview 2.3 Open water characteristic - efficiency model scale 3 η O [-] model scale F10:F14 1 2 3 4 5-0.0375-6% 1.00 1.20 1.40 Avarage obver J 1.00 1.20 1.40 CFD-EFD 1.000 EFD 0.430 0.551 0.652 0.726 0.749 0 0.0% 2.000 R01 0.421 0.540 0.639 0.711 0.720-0.015-2.5% 3.000 R02 5 0.514 0.596 0.637 0.594-0.072-11.6% 4.000 R03 0.420 0.535 0.631 0.701 0.701-0.024-3.9% 5.000 R04 0.427 0.548 0.646 0.715 0.741-6 -1.0% 6.000 R05 0.413 0.525 0.616 0.672 0.671-0.042-6.8% 7.000 R06 0.413 0.524 8 0.653 0.597-0.062-10.1% 8.000 R07 0.423 0.535 0.621 0.673 0.658-0.039-6.4% 9.000 R08 0.421 0.533 0.618 0.671 0.659-0.041-6.6% 10 R10 0.416 0.529 0.618 0.671 0.657-0.044-7.0% 11.000 R11 0.421 0.523 0.616 0.678 0.681-0.038-6.1% 12.000 R12 0.414 0.528 0.616 0.671 0.660-0.044-7.0% 13.000 R14 0.417 0.532 0.621 0.677 0.665-0.039-6.3% 14.0000 R15 0.426 0.546 0.643 0.714 0.741-7 -1.2% 15.0000 R16 0.414 0.528 0.614 0.663 0.638-0.050-8.1% 0.70 0.50 0.30 1.00 1.20 1.40 R01 R02 R03 R04 R05 R06 R07 R08 R10 R11 R12 R14 R15 R16 EFD * / ** see at formula page

K T [-] PPTC Propeller Page 15 2 Overview 2.4 Open water characteristic - thrust 4 K T [-] H10:H14 1 2 3 4 5 1.00 1.20 1.40 Avarage over J CFD - EFD 1.00 1.20 1.40 [-] * [-] ** 1.000 ITTC'78 0.631 0.512 1 0.297 0.190 0 0.0% 2.000 R01 0.627 0.504 0.388 0.281 0.174-0.011-2.8% 3.000 R02 0.631 0.509 0.390 0.278 0.167-0.011-2.8% 4.000 R03 0.640 0.515 0.395 0.283 0.172-5 -1.3% 5.000 R04 0.629 0.514 3 0.299 0.197 2 0.5% 6.000 R05 0.615 0.508 3 0.298 0.193-3 -0.7% 7.000 R06 0.635 0.515 1 0.293 0.189 0 0.1% 8.000 R07 0.644 0.512 0.390 0.279 0.170-7 -1.8% 9.000 R08 0.630 0.505 0.387 0.279 0.171-0.012-2.9% 10 R10 0.647 0.521 0 0.286 0.176 0 0.0% 11.000 R11 0.616 0.500 0.398 0.292 0.183-8 -2.0% 12.000 R12 0.621 0.503 0.388 0.279 0.179-0.012-3.0% 13.000 R14 0.636 0.511 0.390 0.280 0.170-9 -2.2% R15 0.628 0.502 0.383 0.274 0.165-0.016-3.9% R16 0.638 0.513 0.392 0.280 0.170-8 -1.9% 0.70 0.50 0.30 1.00 1.20 1.40 R01 R02 R03 R04 R05 R06 R07 R08 R10 R11 R12 R14 R15 R16 EFD * / ** see at formula page

10K Q [-] PPTC Propeller Page 16 2 Overview 2.5 Open water characteristic - torque 5 10K Q [-] i10:i14 1 2 3 4 5 1.00 1.20 1.40 Avarage over J CFD - EFD 1.00 1.20 1.40 [-] * [-] ** 1.000 ITTC'78 1.386 1.168 0.965 0.766 0.549 0 0.0% 2.000 R01 1.391 1.167 0.955 0.751 0.522-9 -1.0% 3.000 R02 1.429 1.204 0.983 0.762 0.527 0.015 1.5% 4.000 R03 1.442 1.211 0.989 0.771 0.536 0.023 2.4% 5.000 R04 1.393 1.184 0.982 0.787 0.576 0.018 1.9% 6.000 R05 1.388 1.191 1.005 0.797 0.577 0.025 2.6% 7.000 R06 1.425 1.207 0.998 0.790 0.584 0.034 3.5% 8.000 R07 1.414 1.183 0.966 0.751 0.515-1 -0.1% 9.000 R08 1.383 1.167 0.957 0.749 0.515-0.012-1.3% 10 R10 1.458 1.224 0.997 0.773 0.538 0.031 3.3% 11.000 R11 1.367 1.188 0.996 0.788 0.560 0.013 1.4% 12.000 R12 1.397 1.183 0.973 0.758 0.544 5 0.5% 13.000 R14 1.430 1.196 0.970 0.753 0.522 8 0.8% R15 1.394 1.163 0.946 0.736 0.506-0.017-1.8% R16 1.439 1.202 0.975 0.756 0.526 0.013 1.3% 1.60 1.40 1.20 1.00 1.00 1.20 1.40 R01 R02 R03 R04 R05 R06 R07 R08 R10 R11 R12 R14 R15 R16 EFD * / ** see at formula page

η O [-] PPTC Propeller Page 17 2 Overview 2.6 Open water characteristic - efficiency 6 η O [-] j10:j14 1 2 3 4 5 1.00 1.20 1.40 Avarage over J CFD - EFD 1.00 1.20 1.40 [-] * [-] ** 1.000 ITTC'78 0.435 0.558 0.662 0.740 0.770 0 0.0% 2.000 R01 0.430 0.550 0.646 0.716 0.742-0.016-2.6% 3.000 R02 0.422 0.538 0.631 0.696 0.705-0.035-5.5% 4.000 R03 0.424 0.542 0.636 0.701 0.715-0.030-4.7% 5.000 R04 0.431 0.553 0.653 0.727 0.761-8 -1.3% 6.000 R05 0.423 0.543 0.638 0.714 0.747-0.020-3.2% 7.000 R06 0.425 0.543 0.640 0.708 0.721-0.026-4.1% 8.000 R07 0.435 0.551 0.643 0.708 0.734-0.019-3.0% 9.000 R08 0.435 0.551 0.643 0.712 0.741-0.017-2.7% 10 R10 0.424 0.542 0.639 0.707 0.728-0.025-4.0% 11.000 R11 0.431 0.536 0.635 0.708 0.730-0.025-4.0% 12.000 R12 0.425 0.541 0.634 0.702 0.732-0.026-4.1% 13.000 R14 0.424 0.544 0.640 0.709 0.726-0.025-3.9% R15 0.430 0.549 0.644 0.711 0.728-0.021-3.3% R16 0.424 0.543 0.640 0.707 0.722-0.026-4.1% 0.70 0.50 0.30 1.00 1.20 1.40 R01 R02 R03 R04 R05 R06 R07 R08 R10 R11 R12 R14 R15 R16 EFD * / ** see at formula page

PPTC Propeller Page 18 3 Statistics 1 3.1 Tables - model scale 1 3 4 5 6 7 8 9 10 K T [-] model scale 14 $C$12:$C$D$12:$D$E$12:$E$F$12:$F$G$12:$G$49 $I$12:$I$$J$12:$J$49 1.00 1.20 1.40 Avarage over J CFD - EFD [-] * [-] ** Minimum 8 0.489 0.368 0.250 0.138-0.033-8.2% 1 th Quartile 0.617 0.494 0.373 0.261 0.150-0.025-6.2% Median 0.622 0.497 0.380 0.266 0.154-0.019-4.7% 3 th Quartile 0.624 0.505 0.394 0.286 0.175-7 -1.8% Maximum 0.634 0.516 4 0.292 0.186-2 -0.4% 7 14 15 16 17 18 19 20 21 10K Q [-] model scale $N$12:$N$O$12:$O$P$12:$P$Q$12:$Q$R$12:$R$49 $T$12:$T$U$12:$U$49 1.00 1.20 1.40 Avarage over J CFD - EFD [-] * [-] ** Minimum 1.378 1.173 0.958 0.740 0.504-0.021-2.1% 1 th Quartile 1.399 1.185 0.963 0.745 0.510-0.010-1.0% Median 1.423 1.198 0.976 0.759 0.524 1 0.1% 3 th Quartile 1.429 1.211 0.996 0.780 0.542 0.012 1.2% Maximum 1.456 1.224 1.022 0.813 0.583 0.037 3.8% 1 25 26 27 28 29 30 31 32 η O [-] model scale $Y$12:$Y$Z$12:$Z$AA$12:$AB$12: $AC$12:$AC$49 $AE$12: $AF$12:$AF$49 1.00 1.20 1.40 Avarage over J CFD - EFD [-] * [-] ** Minimum 5 0.514 0.596 0.637 0.594-0.072-11.6% 1 th Quartile 0.414 0.526 0.616 0.671 0.657-0.044-7.0% Median 0.419 0.531 0.618 0.673 0.662-0.040-6.5% 3 th Quartile 0.421 0.535 0.629 0.695 0.696-0.027-4.4% Maximum 0.427 0.548 0.646 0.715 0.741-6 -1.0% * / ** see at formula page

PPTC Propeller Page 19 3 Statistics 3.2 Tables - 2 36 37 38 39 40 41 42 43 K T [-] $AJ$12:$$AK$12:$AL$12: $AM$12 $AN$12:$AN$49 $AP$12:$$AQ$12:$AQ$49 1.00 1.20 1.40 Avarage over J CFD - EFD [-] * [-] ** Minimum 0.615 0.500 0.383 0.274 0.165-0.016-3.9% 1 th Quartile 0.627 0.504 0.388 0.279 0.170-0.011-2.8% Median 0.630 0.510 0.391 0.280 0.173-8 -1.9% 3 th Quartile 0.638 0.514 0 0.291 0.182-3 -0.8% Maximum 0.647 0.521 3 0.299 0.197 2 0.5% 8 47 48 49 50 51 52 53 54 10K Q [-] $AU$12:$AV$12:$AW$12 $AX$12:$AY$12:$AY$49 $BA$12: $BB$12:$BB$49 1.00 1.20 1.40 Avarage over J CFD - EFD [-] * [-] ** Minimum 1.367 1.163 0.946 0.736 0.506-0.017-1.8% 1 th Quartile 1.392 1.183 0.967 0.752 0.522 0 0.1% Median 1.405 1.189 0.978 0.760 0.532 0.013 1.4% 3 th Quartile 1.430 1.203 0.994 0.783 0.556 0.022 2.3% Maximum 1.458 1.224 1.005 0.797 0.584 0.034 3.5% 2 58 59 60 61 62 63 64 65 η O [-] $BF$12:$$BG$12: $BH$12: $BI$12:$$BJ$12:$BJ$49 $BL$12:$$BM$12:$BM$49 1.00 1.20 1.40 Avarage over J CFD - EFD [-] * [-] ** Minimum 0.422 0.536 0.631 0.696 0.705-0.035-5.5% 1 th Quartile 0.424 0.542 0.636 0.707 0.723-0.026-4.1% Median 0.425 0.543 0.640 0.708 0.729-0.025-3.9% 3 th Quartile 0.431 0.550 0.643 0.711 0.739-0.019-3.0% Maximum 0.435 0.553 0.653 0.727 0.761-8 -1.3% * / ** see at formula page

K T [-] 3 Statistics 3.3 Diagrams - Thrust 3 PPTC Propeller Page 20 Open water characteristics statistic description CFD 3 2 5 1 4 0.75 0.5 0.25 1 0 0.75 model test results model mo 0.622 0.617 0.634 8 0.624 ITTC'78 1 0.6 extrapolation 0.629 full ful 0.630 0.627 0.647 0.615 0.638 1.000 0.6 0.631 0.70 model mo 0.497 0.494 0.516 0.489 0.505 2.000 0.8 0.510 full ful 0.510 0.504 0.521 0.500 0.514 2.000 0.8 0.512 model 1.00 mo 0.650.380 0.373 4 0.368 0.394 3.000 1.0 0.399 full 1.00 ful 0.391 0.388 3 0.383 0 3.000 1.0 1 model 1.20 mo 0.266 0.261 0.292 0.250 0.286 4.000 1.2 0.295 full 1.20 ful 0.280 0.279 0.299 0.274 0.291 4.000 1.2 0.297 model 1.40 mo 0.154 0.150 0.186 0.138 0.175 5.000 1.4 0.188 full 1.40 ful 0.55 0.173 0.170 0.197 0.165 0.182 5.000 1.4 0.190 model Avarage -0.019-0.025-2 -0.033-7 7.000CFD-EFD full Avarage 0.50-8 -0.011 2-0.016-3 7.000CFD-EFD model Avarage -0.047-0.062-4 -0.082-0.018 8.000CFD-EFD full Avarage 0.45-0.019-0.028 5-0.039-8 8.000CFD-EFD 0.35 0.30 0.25 0.15 0.05 model full model full 1.00 model 1.00 full 1.20 model 1.20 full 1.40 model 1.40 full * / ** see at formula page

10K Q [-] PPTC Propeller Page 21 3 Statistics 3.4 Diagrams - Torque 4 1.60 3 2 5 1 4 Open water characteristics 0.5 0.25 1 0 0.75 statistic description CFD model mo 1.501.423 1.399 1.456 1.378 1.429 1model 0.6 test results 1.396 full ful 1.405 1.392 1.458 1.367 1.430 1.000ITTC'78 0.6extrapolation 1.386 model mo 1.198 1.185 1.224 1.173 1.211 2.000 0.8 1.178 1.40 full ful 1.189 1.183 1.224 1.163 1.203 2.000 0.8 1.168 model 1.00 mo 0.976 0.963 1.022 0.958 0.996 3.000 1.0 0.975 full 1.00 ful 1.300.978 0.967 1.005 0.946 0.994 3.000 1.0 0.965 model 1.20 mo 0.759 0.745 0.813 0.740 0.780 4.000 1.2 0.776 full 1.20 ful 1.200.760 0.752 0.797 0.736 0.783 4.000 1.2 0.766 model 1.40 mo 0.524 0.510 0.583 0.504 0.542 5.000 1.4 0.559 full 1.40 ful 0.532 0.522 0.584 0.506 0.556 5.000 1.4 0.549 model Avarage 1.10 1-0.010 0.037-0.021 0.012 7.000CFD-EFD full Avarage 0.013 0 0.034-0.017 0.022 7.000CFD-EFD model Avarage 1.001-0.010 0.038-0.021 0.012 8.000CFD-EFD full Avarage 0.014 1 0.035-0.018 0.023 8.000CFD-EFD 0.90 0.70 0.50 0.30 model full model full 1.00 model 1.00 full 1.20 model 1.20 full 1.40 model 1.40 full * / ** see at formula page

η O [-] 3 Statistics 3.5 Diagrams - Efficiency 5 PPTC Propeller Page 22 3Open water 2 characteristics 5 1 4 0.5statistic 0.25description 1 CFD 0 0.75 model mo 0.750.419 0.414 model test 0.427 result 5 0.421 1 1 0.430 full ful 0.425 0.424 ITTC'78 0.435 extrapolation 0.422 0.431 1.000 0.6 0.435 model mo 0.531 0.526 0.548 0.514 0.535 2.000 0.8 0.551 0.70 full ful 0.543 0.542 0.553 0.536 0.550 2.000 0.8 0.558 model 1.00 mo 0.618 0.616 0.646 0.596 0.629 3.000 1.0 0.652 full 1.00 ful 0.650.640 0.636 0.653 0.631 0.643 3.000 1.0 0.662 model 1.20 mo 0.673 0.671 0.715 0.637 0.695 4.000 1.2 0.726 full 1.20 ful 0.708 0.707 0.727 0.696 0.711 4.000 1.2 0.740 model 1.40 mo 0.662 0.657 0.741 0.594 0.696 5.000 1.4 0.749 full 1.40 ful 0.729 0.723 0.761 0.705 0.739 5.000 1.4 0.770 model Avarage 0.55-0.040-0.044-6 -0.072-0.027 7.000CFD-EFD full Avarage -0.025-0.026-8 -0.035-0.019 7.000CFD-EFD model Avarage 0.50-0.065-0.070-0.010-0.116-0.044 8.000CFD-EFD full Avarage -0.039-0.041-0.013-0.055-0.030 8.000CFD-EFD 0.45 0.35 0.30 0.25 0.15 0.05 model full model full 1.00 model 1.00 full 1.20 model 1.20 full 1.40 model 1.40 full * / ** see at formula page

Mean difference over all J of CFD and EFD values [-] 3 Statistics 3.6 Diagrams - Difference CFD and EFD 6 0.08 0.5 0.25 1 0 0.75 KT model -0.019-0.025-2 -0.033-7 KT full -8-0.011 2-0.016-3 10KQ model 1-0.010 0.037-0.021 0.012 0.06 10KQ full 0.013 0 0.034-0.017 0.022 Eta model -0.040-0.044-6 -0.072-0.027 Eta full -0.025-0.026-8 -0.035-0.019 0.04 0.5 0.25 1 0 0.75 KT model -4.7% -6.2% -0.4% -8.2% -1.8% KT full -1.9% -2.8% 0.5% -3.9% -0.8% 10KQ model 0.1% -1.0% 3.8% -2.1% 1.2% 10KQ full 1.4% 0.1% 3.5% -1.8% 2.3% Eta model 0.02-6.5% -7.0% -1.0% -11.6% -4.4% Eta full -3.9% -4.1% -1.3% -5.5% -3.0% PPTC Propeller Page 23-0.02-0.04-0.06-0.08 model scale full scale model scale full scale model scale full scale K T 10K Q η O * / ** see at formula page

Relative mean difference over all J of CFD and EFD values 3 Statistics 3.7 Diagrams - Relative difference CFD and EFD 7 20% PPTC Propeller Page 24 15% 10% 5% 0% -5% -10% -15% -20% model scale full scale model scale full scale model scale full scale K T 10K Q η O * / ** see at formula page

K T, 10K Q, η O [-] K T, 10K Q, η O [-] PPTC Propeller Page 25 4 Result EFD 1 4.1 Open Water Characteristic 1.00 1.60 0.90 1.40 1.20 0.70 1.00 0.50 0.30 EFD, model scale EFD,, ITTC'78 J K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] [-] 0 0.629 1.396 0.430 0.631 1.386 0.435 0 0.510 1.178 0.551 0.512 1.168 0.558 1.000 0.399 0.975 0.652 1 0.965 0.662 1.200 0.295 0.776 0.726 0.297 0.766 0.740 1.400 0.188 0.559 0.749 0.190 0.549 0.770 K T Open water characteristics model scale EFD K 10K T Q 0.0 0.1 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.00 1.60 Open water characteristics 0.90 1.40 EFD, ITTC'78 1.20 0.70 1.00 0.50 0.30 K T K T 10K Q 0.0 0.6 0.1 0.7 0.2 0.8 0.30.9 0.4 1.0 0.5 1.1 0.6 1.20.7 1.3 0.8 1.4 0.9 1.0 1.5 η O 10K Q η O η O 10K Q η O

K K T, T, 10K Q, Q η, O η O [-] [-] K T, 10K Q, η O [-] PPTC Propeller Page 26 4 Result EFD 4.2 EFD - Statistics EFD, model scale EFD,, ITTC'78 J σ(k T ) σ(10k Q ) σ(η O ) σ(k T ) σ(10k Q ) σ(η O ) [-] [-] [-] [-] [-] [-] [-] 0 7 0.016 4 7 0.016 4 0 6 0.015 6 6 0.015 6 1.000 5 0.015 7 5 0.015 7 1.200 5 0.014 9 5 0.014 9 1.400 4 0.013 0.014 4 0.013 0.014 1.00 1.60 Open water characteristics EFD, model scale Open water characteristics EFD,, ITTC'78 0.90 J model scale σ(kt) σ(10kq σ(ηo) model scale σ(kt) σ(10kq σ(ηo) 1.40 [-] EFD, test [-] 15F1023 [-] [-] EFD [-] [-] [-] 1.20 0.6 EFD, test 15F1228 0.636 1.413 0.434 standard 0.638 deviation 1.402 (N = 0.439 12) 0.70 0.8 0.516 1.193 0.557 0.518 1.183 0.564 1.00 1 5 0.989 0.659 7 0.979 0.669 0.50 1.2 0.300 0.790 0.735 0.302 0.780 0.750 1.4 0.192 0.572 0.762 0.194 0.562 η O 0.784 K T 0.30 EFD, model scale EFD, full 10K scale, ITTC'78 Q J σ(kt) σ(10kq σ(ηo) σ(kt) σ(10kq σ(ηo) η [-] [-] [-] [-] [-] [-] [-] O 0.6 0.622 1.380 0.426 0.624 1.369 K 10K T 0.430 Q 0.8 0.504 1.163 0.546 0.506 1.152 0.553 0.0 10.1 0.2 0.394 0.960 0.4 0.645 0.5 0.6 0.70.3960.8 0.950 0.9 0.655 1.0 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60 1.2 0.290 0.762 0.716 0.292 0.752 0.731 1.00 Open 1.4 water characteristics 0.184 0.545 0.735 Open water characteristics 0.185 0.535 0.756 0.90 1.40 model scale EFD, with ITTC'78 method EFD, test 15F1023 1.20 EFD, test 15F1228 0.70 1.00 0.50 K T 0.30 10K Q η O K T 10K Q 0.0 0.6 0.1 0.7 0.2 0.8 0.3 0.9 0.4 1.0 J 0.5 [-] 1.1 0.6 1.2 0.7 1.3 0.8 1.4 0.9 1.0 1.5 η O

K T, 10K Q, η O [-] K T, 10K Q, η O [-] PPTC Propeller Page 27 5 Result R01 model scale 5.1 R01 - Open water characteristic 5-0.012 1 J [-] 0 0 1.000 1.200 1.400 CFD, model scale CFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] 0.628 1.423 0.421 0.627 1.391 0.430 0.516 1.216 0.540 0.504 1.167 0.550 4 1.005 0.639 0.388 0.955 0.646 0.292 0.784 0.711 0.281 0.751 0.716 0.174 0.539 0.720 0.174 0.522 0.742 1.60 1.40 1.20 Open water characteristics model scale EFD CFD 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60 Open water characteristics 1.40 EFD, ITTC78 CFD 1.20 K T 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 K T

K T, 10K Q, η O [-] K T, 10K Q, η O [-] 5 Result R01 5.2 R01 - Differences CFD and EFD PPTC Propeller Page 28 1.00 1.20 1.40 CFD - EFD, model scale CFD - EFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] -1 0.027-9 -4 5-5 7 6 0.038-0.012-8 -1-8 8 4 0.030-0.013-0.014-9 -0.016 0.018-3 8-0.015-0.016-0.015-0.024 0.023-0.014-0.020-0.028-0.016-0.026-0.028 0.02889 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 Differences CFD and EFD 125 0.02655 886 modell 41 scale 542 45 555 0.03843 0.0116 K804 T 10K 083 Q 838 η O 444 0.03035 0.01265 0.01353 926 0.01611 332 751 0.01504 0.01554 0.01526 0.02448 0.01368 0.02029 0.02841 0.01567 0.02643 0.02789 1.00 1.20 1.40 Differences CFD and EFD, ITTC'78 K T 10K Q η O 1.00 1.20 1.40

5 Result R01 5.3 R01 - Radial distribution tables PPTC Propeller Page 29 model scale K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 0.011 0.010 8 6 4 0.017 0.017 0.014 0.010 4 0 0.031 0.027 0.022 0.015 7 0.063 0.062 0.054 0.041 0.024 0.500 0.049 0.043 0.036 0.027 0.015 8 3 0.092 0.076 0.052 0 0.073 0.063 0.053 0.041 0.025 0.169 0.152 0.138 0.114 0.081 0.700 0 0.086 0.071 0.055 0.035 0.235 0.210 0.182 0.150 9 0 0.130 9 0.087 0.065 0.042 0.303 0.263 0.218 0.175 0.127 0.900 0.157 0.121 0.091 0.063 0.037 0.360 0.285 0.220 0.164 0.111 0.975 0.076 0.055 0.036 0.021 0.010 0.168 0.126 0.086 0.054 0.031 K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 0.011 0.010 8 7 5 0.017 0.016 0.014 0.010 6 0 0.030 0.027 0.022 0.016 9 0.059 0.057 0.052 0.042 0.027 0.500 0.048 0.042 0.035 0.026 0.015 2 0.098 0.088 0.072 0.050 0 0.071 0.062 0.051 0.039 0.024 0.158 0.147 0.130 7 0.077 0.700 0.098 0.083 0.068 0.052 0.034 0.223 0 0.172 0.141 3 0 0.129 5 0.082 0.061 0.040 0.293 0.249 6 0.165 0.120 0.900 0.159 0.118 0.086 0.060 0.037 0.361 0.273 9 0.158 9 0.975 0.081 0.057 0.035 0.021 0.010 0.177 0.127 0.084 0.055 0.031 Differences full and model scale K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 0 0 0 1 1-1 -1 0 1 1 0-1 -1 0 1 2-4 -5-2 1 2 0.500-1 -1-1 -1 0-6 -5-4 -4-2 0-2 -1-2 -2-1 -0.011-5 -8-7 -4 0.700-2 -3-3 -3-1 -0.011-0.010-0.010-9 -5 0-1 -4-4 -4-1 -0.010-0.013-0.012-0.010-7 0.900 2-3 -5-3 0 2-0.012-0.011-6 -2 0.975 5 1-1 0 0 9 1-3 1 0

K T [-] 10K Q [-] K T [-] 10K Q [-] K T [-] 10K Q [-] PPTC Propeller Page 30 5 Result R01 J = 5.4 R01 - Radial distribution diagrams J = J = 1.00 J = 1.20 model scale J = 1.40 0.15 0.30 0.05 0.15 0.30 0.05 0.010 Differences full and model scale 0.020 5 0.010 0 0-5 -0.010-0.010-0.020

PPTC Propeller Page 31 5 Result R01 5.5 R01 - Questionaire part I model scale Solver STAR-CCM+ STAR-CCM+ Computational Domain A1 Domain topology Multiple domains Multiple domains A2 Grid-coupling technique Sliding Sliding Propeller Representation B1 Number of considered blades Complete propeller Complete propeller Computational Grid C1 Type Unstructured Unstructured C2 Local-grid refinement Possible - used here Possible - used here C3 Primary volume elements Polyhedral Polyhedral C4 Primary surface elements Other Other C5 Wall-boundary layer type Prism Layer Prism Layer C7 Number of cells at boundary layer 17 24 C8 Y + -value at r/r=0.4, 0.7, 0.9 0.73,0.88,1.045 0.974,1.24,1.53 C9 Averaged Y + -value 0.893 1.249 C10 Number of cells on blade surface 278945 520385 Norm. Dim. the Physical Domain D1 X_upstream/D, X_downstream/D 20,40 20,40 D2 Cross area of domain in prop. plain 510 510 Numerical Approximation E1 Finite Approximation Scheme (Fluid)FV-NS FV-NS E2 Coordinates Cartesian Cartesian E3 Convection scheme (momentum eq.) 2nd-order centered 2nd-order centered E4 Transient approximation implicit implicit E5 Spatial order of acc. (neglecting BC) 2nd-order 2nd-order E6 Temporal order of accuracy 1st-order 1st-order E7 Time step 0185 sec 0642 sec E8 Equivalent rot. Angle for a time step 1 deg 1deg Turbulence treatment F1 Model name k-omega k-omega F2 Convection scheme (Turb. Eqn.) 2nd-order centered 2nd-order centered Boundary conditions G1 Blade resolved resolved G2 Hub resolved resolved G3 Inlet Fixed Velocity Fixed Velocity G4 Outlet Fixed Pressure Fixed Pressure G5 Outer domain Slip flow Slip flow

PPTC Propeller Page 32 5 Result R01 5.5 R01 - Questionaire part II model scale Computational Model H1 Fluid incompressible incompressible H2 Pressure pressure correction pressure correction I Transition Please comment Gamma ReTheta method no Computational Demands J1 Number of processors used 256 320 J2 Number of timesteps (steady) 0 0 J3 Number of timesteps (transient) 2070 2088 J4 Wall-clock time per revolution 5460 sec 5813 sec K Code References STAR-CCM+ V10.04 / Primary surface elements: Polyhedral STAR-CCM+ V10.04 / Primary surface elements: Polyhedral L Comments Add. info. 0 / 0 0 / 0

K T, 10K Q, η O [-] K T, 10K Q, η O [-] PPTC Propeller Page 33 6 Result R02 model scale 6.1 R02 - Open water characteristic -0.025-4 1 J [-] 0 0 1.000 1.200 1.400 CFD, model scale CFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] 0.612 1.442 5 0.631 1.429 0.422 0.489 1.212 0.514 0.509 1.204 0.538 0.368 0.981 0.596 0.390 0.983 0.631 0.250 0.749 0.637 0.278 0.762 0.696 0.138 0.517 0.594 0.167 0.527 0.705 1.60 1.40 1.20 Open water characteristics model scale EFD CFD 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60 Open water characteristics 1.40 EFD, ITTC78 CFD 1.20 K T 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 K T

K T, 10K Q, η O [-] K T, 10K Q, η O [-] 6 Result R02 6.2 R02 - Differences CFD and EFD PPTC Propeller Page 34 1.00 1.20 1.40 CFD - EFD, model scale CFD - EFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] -0.017 0.046-0.025 0 0.044-0.013 0.022-0.021 0.034-0.037-3 0.036-0.020 0.022-0.032 6-0.056-0.011 0.019-0.031 0.021-0.045-0.027-0.089-0.019-4 -0.045 0.021-0.050-0.042-0.155-0.023-0.021-0.066 0.03367 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 Differences CFD and EFD 0.01681 0.04608 0.02487 modell 026 scale 0.04354 0.01307 0.02108 0.03354 0.03741 K342 T 10K 0.03626 Q 0.02043 η O 0.03173 637 0.0557 0.01131 0.01888 0.03101 0.04514 0.02724 0.08873 0.01928 352 0.04489 0.05008 0.04212 0.15491 0.02293 0.02148 0.06552 1.00 1.20 1.40 Differences CFD and EFD, ITTC'78 K T 10K Q η O 1.00 1.20 1.40

6 Result R02 6.3 R02 - Radial distribution tables PPTC Propeller Page 35 model scale K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 9 9 7 4 1 0.016 0.015 0.013 7 1 0 0.029 0.025 0.019 0.010 2 0.062 0.058 0.049 0.034 0.017 0.500 0.047 0.041 0.033 0.022 0.010 5 0 0.087 0.068 0.043 0 0.070 0.060 0.049 0.035 0.020 0.163 0.151 0.132 6 0.075 0.700 0.097 0.082 0.066 0.048 0.030 0.233 8 0.178 0.144 4 0 0.126 3 0.080 0.057 0.036 0.304 0.260 0.214 0.169 0.124 0.900 0.152 0.111 0.081 0.055 0.032 0.363 0.277 0.214 0.161 0.116 0.975 0.083 0.057 0.034 0.018 8 0.195 0.143 0.094 0.060 0.037 K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 0.011 0.010 8 7 5 0.017 0.017 0.014 0.010 4 0 0.031 0.027 0.022 0.015 7 0.062 0.060 0.053 0.041 0.024 0.500 0.048 0.043 0.035 0.025 0.014 5 1 0.090 0.072 0.049 0 0.071 0.062 0.051 0.038 0.023 0.162 0.150 0.133 9 0.077 0.700 0.098 0.084 0.068 0.051 0.033 0.229 4 0.176 0.143 4 0 0.128 5 0.082 0.061 0.039 0.297 0.255 0.210 0.167 0.122 0.900 0.154 0.115 0.086 0.059 0.036 0.352 0.272 0.214 0.161 0.114 0.975 0.090 0.062 0.038 0.021 9 5 0.146 0.094 0.059 0.033 Differences full and model scale K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 2 1 2 3 3 1 1 2 3 3 0 1 2 3 5 5 0 2 4 7 7 0.500 2 2 3 3 4 0 1 3 5 5 0 2 2 2 3 4-2 -1 1 2 3 0.700 2 2 2 3 3-5 -4-2 -1 0 0 2 2 2 3 4-7 -5-4 -2-2 0.900 2 4 5 5 5-0.011-5 0 0-2 0.975 8 5 3 2 2 0.010 3 0-1 -3

K T [-] 10K Q [-] K T [-] 10K Q [-] K T [-] 10K Q [-] PPTC Propeller Page 36 6 Result R02 J = 6.4 R02 - Radial distribution diagrams J = J = 1.00 J = 1.20 model scale J = 1.40 0.15 0.30 0.05 0.15 0.30 0.05 0.010 Differences full and model scale 0.020 5 0.010 0 0-5 -0.010-0.010-0.020

PPTC Propeller Page 37 6 Result R02 6.5 R02 - Questionaire part I model scale Solver Computational Domain A1 Domain topology 1 rotating domain 1 rotating domain A2 Grid-coupling technique None None Propeller Representation B1 Number of considered blades 1 blade, matching 1 blade, matching Computational Grid C1 Type Unstructured Unstructured C2 Local-grid refinement Possible - used here Possible - used here C3 Primary volume elements Tetraheder Tetraheder C4 Primary surface elements Mixed Triangles C5 Wall-boundary layer type Prism Layer Prism Layer C7 Number of cells at boundary layer 0 0 C8 Y + -value at r/r=0.4, 0.7, 0.9 0 0 C9 Averaged Y + -value 0 0 C10 Number of cells on blade surface 0 0 Norm. Dim. the Physical Domain D1 X_upstream/D, X_downstream/D 0 0 D2 Cross area of domain in prop. plain 0 0 Numerical Approximation E1 Finite Approximation Scheme (Fluid)FV-NS FV-NS E2 Coordinates Cartesian Cartesian E3 Convection scheme (momentum eq.) high-order upwind high-order upwind E4 Transient approximation implicit implicit E5 Spatial order of acc. (neglecting BC) 0 0 E6 Temporal order of accuracy 0 0 E7 Time step 0 0 E8 Equivalent rot. Angle for a time step 0 0 Turbulence treatment F1 Model name k-omega k-omega F2 Convection scheme (Turb. Eqn.) high-order upwind high-order upwind Boundary conditions G1 Blade resolved resolved G2 Hub - - G3 Inlet Fixed Velocity Fixed Velocity G4 Outlet Fixed Pressure Fixed Pressure G5 Outer domain Slip flow Slip flow

PPTC Propeller Page 38 6 Result R02 6.5 R02 - Questionaire part II model scale Computational Model H1 Fluid incompressible incompressible H2 Pressure Coupled Coupled I Transition Please comment 0 / 0 0 / 0 Computational Demands J1 Number of processors used 0 0 J2 Number of timesteps (steady) 0 0 J3 Number of timesteps (transient) 0 0 J4 Wall-clock time per revolution 0 0 K Code References 0 / 0 0 / 0 L Comments Add. info. 0 / 0 0 / 0

K T, 10K Q, η O [-] K T, 10K Q, η O [-] PPTC Propeller Page 39 7 Result R03 model scale 7.1 R03 - Open water characteristic 0 4 1 J [-] 0 0 1.000 1.200 1.400 CFD, model scale CFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] 0.625 1.422 0.420 0.640 1.442 0.424 0.510 1.215 0.535 0.515 1.211 0.542 0.396 1.000 0.631 0.395 0.989 0.636 0.287 0.781 0.701 0.283 0.771 0.701 0.170 0.539 0.701 0.172 0.536 0.715 1.60 1.40 1.20 Open water characteristics model scale EFD CFD 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60 Open water characteristics 1.40 EFD, ITTC78 CFD 1.20 K T 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 K T

K T, 10K Q, η O [-] K T, 10K Q, η O [-] 7 Result R03 7.2 R03 - Differences CFD and EFD PPTC Propeller Page 40 1.00 1.20 1.40 CFD - EFD, model scale CFD - EFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] -4 0.026-0.010 9 0.057-0.011 0.038 0 0.037-0.016 3 0.043-0.017 0.024-3 0.025-0.021-6 0.024-0.027 0.019-8 5-0.025-0.014 5-0.039 0.016-0.018-0.020-0.048-0.018-0.013-0.055 0.02378 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 Differences CFD and EFD 377 0.02581 0.01033 modell 948 scale 0.05663 0.01079 03 0.03665 0.01632 K294 T 10K 0.04305 Q 0.01676 η O 29 0.025 0.02092 647 0.02427 0.02666 827 508 0.02495 0.01392 463 0.03895 0.01813 0.01961 0.04769 0.01752 0.01252 0.05483 1.00 1.20 1.40 Differences CFD and EFD, ITTC'78 K T 10K Q η O 1.00 1.20 1.40

7 Result R03 7.3 R03 - Radial distribution tables PPTC Propeller Page 41 model scale K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 0.011 0.010 8 6 4 0.017 0.016 0.014 9 3 0 0.031 0.027 0.023 0.016 8 0.061 0.060 0.054 0.043 0.024 0.500 0.049 0.045 0.037 0.028 0.015 7 5 0.097 0.078 0.051 0 0.072 0.065 0.054 0.042 0.025 0.164 0.157 0.140 0.118 0.081 0.700 0.094 0.082 0.067 0.050 0.030 0.225 6 0.178 0.146 3 0 0.128 7 0.086 0.064 0.042 0.300 0.260 0.217 0.174 0.129 0.900 0.150 0.114 0.087 0.060 0.037 0.343 0.269 0.212 0.158 0.115 0.975 0.090 0.060 0.035 0.020 0.010 5 0.141 0.087 0.055 0.033 K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 0.012 0.010 8 6 4 0.017 0.016 0.013 9 2 0 0.031 0.027 0.021 0.015 7 0.061 0.058 0.051 0.040 0.023 0.500 0.049 0.043 0.035 0.026 0.015 5 0.099 0.089 0.073 0.049 0 0.071 0.062 0.051 0.039 0.024 0.160 0.148 0.132 9 0.078 0.700 0.099 0.084 0.069 0.052 0.034 0.227 3 0.176 0.144 7 0 0.129 6 0.084 0.062 0.041 0.299 0.257 0.214 0.172 0.127 0.900 0.156 0.117 0.088 0.061 0.038 0.356 0.275 0.220 0.166 0.117 0.975 0.095 0.066 0.038 0.021 0.010 0.218 0.153 0.095 0.058 0.034 Differences full and model scale K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 1 1 0 0 0 0 0 0-1 -2 0 1 0-1 -1 0 0-2 -4-3 -1 0.500 0-2 -2-2 0-2 -6-8 -5-2 0 0-3 -3-3 -1-4 -9-9 -9-3 0.700 4 2 2 2 4 2-3 -2-2 4 0 0-1 -2-2 -1-1 -4-4 -3-2 0.900 5 3 2 1 0 0.013 7 8 8 2 0.975 5 5 3 1 0 0.013 0.012 7 3 1

K T [-] 10K Q [-] K T [-] 10K Q [-] K T [-] 10K Q [-] PPTC Propeller Page 42 7 Result R03 J = 7.4 R03 - Radial distribution diagrams J = J = 1.00 J = 1.20 model scale J = 1.40 0.15 0.30 0.05 0.15 0.30 0.05 0.010 Differences full and model scale 0.020 5 0.010 0 0-5 -0.010-0.010-0.020

PPTC Propeller Page 43 7 Result R03 7.5 R03 - Questionaire part I model scale Solver STAR-CCM+ STAR-CCM+ Computational Domain A1 Domain topology 1 rotating domain 1 rotating domain A2 Grid-coupling technique None None Propeller Representation B1 Number of considered blades Complete propeller Complete propeller Computational Grid C1 Type Unstructured Unstructured C2 Local-grid refinement Possible - used here Possible - used here C3 Primary volume elements Hexahedral Hexahedral C4 Primary surface elements Triangles Triangles C5 Wall-boundary layer type Prism Layer Prism Layer C7 Number of cells at boundary layer 0 0 C8 Y + -value at r/r=0.4, 0.7, 0.9 0,35 0,45 0,65 40 55 65 C9 Averaged Y + -value 0.45 45 C10 Number of cells on blade surface 0 0 Norm. Dim. the Physical Domain D1 X_upstream/D, X_downstream/D 3, 8 3, 8 D2 Cross area of domain in prop. plain 64 64 Numerical Approximation E1 Finite Approximation Scheme (Fluid)FV-NS FV-NS E2 Coordinates Cartesian Cartesian E3 Convection scheme (momentum eq.) 2nd-order centered 2nd-order centered E4 Transient approximation implicit implicit E5 Spatial order of acc. (neglecting BC) 0 0 E6 Temporal order of accuracy 0 0 E7 Time step 0 0 E8 Equivalent rot. Angle for a time step 0 0 Turbulence treatment F1 Model name k-omega k-omega F2 Convection scheme (Turb. Eqn.) 2nd-order centered 2nd-order centered Boundary conditions G1 Blade resolved wall function G2 Hub wall function wall function G3 Inlet Fixed Velocity Fixed Velocity G4 Outlet Fixed Pressure Fixed Pressure G5 Outer domain resolved resolved

PPTC Propeller Page 44 7 Result R03 7.5 R03 - Questionaire part II model scale Computational Model H1 Fluid incompressible incompressible H2 Pressure pressure correction pressure correction I Transition Please comment gamma re theta model no Computational Demands J1 Number of processors used 0 0 J2 Number of timesteps (steady) 0 0 J3 Number of timesteps (transient) 0 0 J4 Wall-clock time per revolution 0 0 K Code References Star-CCM+ / 0 Star-CCM+ / 0 L Comments Add. info. 0 / 0 0 / 0

K T, 10K Q, η O [-] K T, 10K Q, η O [-] PPTC Propeller Page 45 8 Result R04 model scale 8.1 R04 - Open water characteristic -3 8 1 J [-] 0 0 1.000 1.200 1.400 CFD, model scale CFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] 0.624 1.394 0.427 0.629 1.393 0.431 0.506 1.175 0.548 0.514 1.184 0.553 0.394 0.972 0.646 3 0.982 0.653 0.291 0.778 0.715 0.299 0.787 0.727 0.186 0.561 0.741 0.197 0.576 0.761 1.60 1.40 1.20 Open water characteristics model scale EFD CFD 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60 Open water characteristics 1.40 EFD, ITTC78 CFD 1.20 K T 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 K T

K T, 10K Q, η O [-] K T, 10K Q, η O [-] 8 Result R04 8.2 R04 - Differences CFD and EFD PPTC Propeller Page 46 1.00 1.20 1.40 CFD - EFD, model scale CFD - EFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] -5-2 -3-2 7-4 6-4 -3-3 2 0.016-6 0.010-5 -3-6 2 0.018-9 0.010-4 2-0.011 2 0.021-0.014 0.013-1 2-8 7 0.027-0.010 0.02072 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 Differences CFD and EFD 493 237 264 modell 211 scale 736 374 426 331 307 K169 T 10K 0.01603 Q 574 η O 507 288 637 151 0.01753 937 362 195 0.01071 249 0.02102 0.01373 126 218 792 698 0.02748 975 1.00 1.20 1.40 Differences CFD and EFD, ITTC'78 K T 10K Q η O 1.00 1.20 1.40

K T, 10K Q, η O [-] K T, 10K Q, η O [-] PPTC Propeller Page 47 9 Result R05 model scale 9.1 R05 - Open water characteristic 7 7 1 J [-] 0 0 1.000 1.200 1.400 CFD, model scale CFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] 0.617 1.425 0.413 0.615 1.388 0.423 0.505 1.224 0.525 0.508 1.191 0.543 0.396 1.022 0.616 3 1.005 0.638 0.286 0.813 0.672 0.298 0.797 0.714 0.176 0.583 0.671 0.193 0.577 0.747 1.60 1.40 1.20 Open water characteristics model scale EFD CFD 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60 Open water characteristics 1.40 EFD, ITTC78 CFD 1.20 K T 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 K T

K T, 10K Q, η O [-] K T, 10K Q, η O [-] 9 Result R05 9.2 R05 - Differences CFD and EFD PPTC Propeller Page 48 1.00 1.20 1.40 CFD - EFD, model scale CFD - EFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] -0.012 0.029-0.017-0.016 2-0.012 0.017-5 0.046-0.026-4 0.023-0.016 0.016-4 0.047-0.036 1 0.041-0.025 0.022-9 0.037-0.054 1 0.031-0.026 0.016-0.012 0.025-0.078 4 0.028-0.023 0.01793 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 0 0.080 0.060 0.040 0.020 0-0.020-0.040-0.060-0.080-0 Differences CFD and EFD 0.01194 0.02858 0.01663 modell 0.0159 scale 227 0.01165 507 0.04632 0.02612 K448 T 10K 0.0231 Q 0.01562 η O 385 0.04718 0.03609 13 0.04067 0.02473 909 0.0366 0.05406 108 0.03068 0.02593 0.01209 0.02457 0.0777 374 0.02839 0.02347 1.00 1.20 1.40 Differences CFD and EFD, ITTC'78 K T 10K Q η O 1.00 1.20 1.40

9 Result R05 9.3 R05 - Radial distribution tables PPTC Propeller Page 49 model scale K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 0.012 0.011 0.010 8 7 0.019 0.020 0.018 0.015 0.010 0 0.030 0.027 0.022 0.016 9 0.061 0.060 0.055 0.045 0.031 0.500 0.047 0.042 0.035 0.026 0.015 6 2 0.092 0.076 0.054 0 0.071 0.062 0.051 0.038 0.024 0.165 0.154 0.136 0.113 0.083 0.700 0.098 0.084 0.069 0.052 0.034 0.233 0.211 0.183 0.151 0.113 0 0.128 6 0.084 0.062 0.040 0.304 0.263 0.221 0.179 0.132 0.900 0.154 0.118 0.089 0.062 0.037 0.360 0.287 0.228 0.174 0.122 0.975 0.078 0.054 0.035 0.021 0.010 0.177 0.129 0.090 0.060 0.037 K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 0.013 0.012 0.011 0.010 9 0.020 0.021 0.020 0.017 0.014 0 0.030 0.028 0.024 0.019 0.013 0.061 0.060 0.056 0.048 0.036 0.500 0.047 0.043 0.036 0.027 0.017 4 0 0.092 0.077 0.058 0 0.070 0.062 0.052 0.040 0.026 0.160 0.149 0.134 0.111 0.083 0.700 0.097 0.084 0.070 0.053 0.036 0.226 4 0.179 0.147 0.111 0 0.127 6 0.085 0.064 0.042 0.294 0.254 0.216 0.173 0.128 0.900 0.152 0.118 0.090 0.063 0.039 0.348 0.277 0.221 0.167 0.115 0.975 0.079 0.055 0.036 0.021 0.011 0.175 0.126 0.086 0.055 0.033 Differences full and model scale K T [-] 10K Q [-] 1.00 1.20 1.40 1.00 1.20 1.40 r /R [-] 0.300 1 1 1 1 2 1 1 1 2 3 0 1 1 1 2 3 0 1 2 3 6 0.500 0 0 1 2 3-2 -2 0 1 3 0-1 0 1 1 2-5 -4-2 -1 1 0.700-1 0 1 1 2-8 -7-3 -3-2 0-1 0 1 1 2-0.010-9 -5-6 -5 0.900-1 0 1 2 2-0.012-0.010-7 -8-7 0.975 1 1 1 1 1-2 -4-4 -5-5

K T [-] 10K Q [-] K T [-] 10K Q [-] K T [-] 10K Q [-] PPTC Propeller Page 50 9 Result R05 J = 9.4 R05 - Radial distribution diagrams J = J = 1.00 J = 1.20 model scale J = 1.40 0.15 0.30 0.05 0.15 0.30 0.05 0.010 Differences full and model scale 0.020 5 0.010 0 0-5 -0.010-0.010-0.020

PPTC Propeller Page 51 9 Result R05 9.5 R05 - Questionaire part I model scale Solver Computational Domain A1 Domain topology Multiple domains Multiple domains A2 Grid-coupling technique Multiple ref. frames Multiple ref. frames Propeller Representation B1 Number of considered blades Complete propeller Complete propeller Computational Grid C1 Type Unstructured Unstructured C2 Local-grid refinement Possible - used here Possible - used here C3 Primary volume elements Tetraheder Tetraheder C4 Primary surface elements Triangles Triangles C5 Wall-boundary layer type - - C7 Number of cells at boundary layer none none C8 Y + -value at r/r=0.4, 0.7, 0.9 35, 45,50 1200, 1500, 1800 C9 Averaged Y + -value 48 1400 C10 Number of cells on blade surface 80000 80000 Norm. Dim. the Physical Domain D1 X_upstream/D, X_downstream/D 30D, 60D 30D, 60D D2 Cross area of domain in prop. plain 3600 3600 Numerical Approximation E1 Finite Approximation Scheme (Fluid)FV-NS FV-NS E2 Coordinates Cartesian Cartesian E3 Convection scheme (momentum eq.) high-order upwind high-order upwind E4 Transient approximation implicit implicit E5 Spatial order of acc. (neglecting BC) double double E6 Temporal order of accuracy 0 0 E7 Time step 0 0 E8 Equivalent rot. Angle for a time step 0 0 Turbulence treatment F1 Model name k-epsilon k-epsilon F2 Convection scheme (Turb. Eqn.) high-order upwind high-order upwind Boundary conditions G1 Blade wall function wall function G2 Hub wall function wall function G3 Inlet Fixed Velocity Fixed Velocity G4 Outlet Fixed Pressure Fixed Pressure G5 Outer domain Slip flow Slip flow

PPTC Propeller Page 52 9 Result R05 9.5 R05 - Questionaire part II model scale Computational Model H1 Fluid incompressible incompressible H2 Pressure Coupled Coupled I Transition Please comment 0 / 0 0 / 0 Computational Demands J1 Number of processors used 11 11 J2 Number of timesteps (steady) 3500 3500 J3 Number of timesteps (transient) 0 0 J4 Wall-clock time per revolution 6.86 6.86 K Code References 0 / 0 0 / 0 L Comments Add. info. 0 / 0 0 / 0

K T, 10K Q, η O [-] K T, 10K Q, η O [-] PPTC Propeller Page 53 10 Result R06 model scale 10.1 R06 - Open water characteristic -0.024 0.013 1 J [-] 0 0 1.000 1.200 1.400 CFD, model scale CFD, K T 10K Q η O K T 10K Q η O [-] [-] [-] [-] [-] [-] 0.618 1.431 0.413 0.635 1.425 0.425 0.492 1.196 0.524 0.515 1.207 0.543 0.372 0.973 8 1 0.998 0.640 0.257 0.752 0.653 0.293 0.790 0.708 0.139 0.518 0.597 0.189 0.584 0.721 1.60 1.40 1.20 Open water characteristics model scale EFD CFD 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.60 Open water characteristics 1.40 EFD, ITTC78 CFD 1.20 K T 1.00 η O 10K Q 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 K T