The Mu3e Experiment. A new search for μ eee with unprecedented sensitivity

Similar documents
Update from the Mu3e Experiment

The Mu3e PSI

The Mu3e PSI

The Mu3e Experiment. Niklaus Berger. Physics Institute, University of Heidelberg. Charged Lepton Flavour Violation Workshop, Lecce, May 2013

PoS(ICHEP2016)552. The Mu3e Experiment at PSI. Alessandro Bravar University of Geneva

The MEG/MEGII and Mu3e experiments at PSI. Angela Papa Paul Scherrer Institut on behalf of the MEG/MEGII and Mu3e collaborations

Charged Lepton Flavour Violation:

Track reconstruction for the Mu3e experiment Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration DPG Würzburg (.03.22, T85.

The Mu3e Experiment - Goal

Flex-Prints for the Mu3e Experiment

André Schöning. Sebastian Bachmann, Christoph Dressler, Moritz Kiehn, Rohin Narayan, Dirk Wiedner. Institute of Physics University of Heidelberg

Letter of Intent for an Experiment to Search for the Decay µ eee

Track Fitting With Broken Lines for the MU3E Experiment

clfv searches using DC muon beam at PSI

Lecture 11. Weak interactions

Flavour physics in the LHC era

IoP Masterclass FLAVOUR PHYSICS. Tim Gershon, University of Warwick April 20 th 2007

Final Results from the MEG Experiment and the Status of MEG-II

Experimental Searches for Muon to Electron Conversion

Flexprint Design Studies for the Mu3e Experiment

Why a muon collider?

Flavor Physics beyond the SM. FCNC Processes in the SM

IoP Masterclass. The Physics of Flavour at the Large Hadron Collider. Tim Gershon University of Warwick March 30th 2011

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Brief Report from the Tevatron. 1 Introduction. Manfred Paulini Lawrence Berkeley National Laboratory Berkeley, California 94720

arxiv: v1 [physics.ins-det] 1 Sep 2009

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

MEG II 実験の準備状況と 今後の展望 東京大学 素粒子物理国際研究センター 岩本敏幸 他MEG II コラボレーション 2018年9月14日 日本物理学会2018年秋季大会 信州大学 JSPS Core-to-Core Program

IoP Masterclass. The Physics of Flavour at the Large Hadron Collider. Tim Gershon University of Warwick April

LHCb results and prospects

First light from. Gagan Mohanty

PoS(EPS-HEP2017)238. Experimental limiting factors for the next generation

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Beyond Standard Model Effects in Flavour Physics: p.1

Future Belle II experiment at the KEK laboratory

CLICdp work plan and foreseen documents in preparation for the next European Strategy Update

Particle Physics: Neutrinos part I

Masaharu Aoki Osaka University

Mu2e Experiment at Fermilab

Recent T2K results on CP violation in the lepton sector

Latest Results from the OPERA Experiment (and new Charge Reconstruction)

Muon to Electron Conversion: Experimental Status in Japan and the US

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Research Proposal for an Experiment to Search for the Decay µ eee

The HL-LHC physics program

Chart of Elementary Particles

The LHCb Upgrade. On behalf of the LHCb Collaboration. Tomasz Szumlak AGH-UST

Neutrino Oscillations

Digital Calorimetry for Future Linear Colliders. Tony Price University of Birmingham University of Birmingham PPE Seminar 13 th November 2013

Flavour Physics. WIN 2015 Heidelberg, Germany, June 8-13, 2015 Tatsuya Nakada. LPHE EPFL Lausanne, Switzerland

Recent results from rare decays

LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK)

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Analyzing CMS events

LFV in Tau Decays: Results and Prospects at the LHC. Tau th International Workshop on Tau Lepton Physics Beijing September 22th, 2016

IoP Masterclass B PHYSICS. Tim Gershon University of Warwick March 18 th 2009

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

New Physics search in penguin B-decays

Particle Physics: Problem Sheet 5

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

Current knowledge tells us that matter is made of fundamental particle called fermions,

Lepton Flavor Violation

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton Flavor Violation Experimental Overview

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration

PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011

R. D. McKeown. Jefferson Lab College of William and Mary

Results and perspectives of the MEG and MEG II experiments

Discovery Physics at the Large Hadron Collider

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Electroweak Physics: Lecture V

Jacopo Pinzino CERN HQL /05/2018

Intense Slow Muon Physics

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

Rare B decays in ATLAS and CMS

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

Searches for New Physics in quarkonium decays at BaBar/Belle

arxiv: v1 [hep-ex] 7 Sep 2016

Walter Hopkins. February

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

The ATLAS Silicon Microstrip Tracker

Electroweak Theory: 5

Physics Highlights from 12 Years at LEP

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Overview of mass hierarchy, CP violation and leptogenesis.

The Mu2e Transport Solenoid

Fundamental Symmetries - 2

Impact of the PXD on the Vertex Reconstruction of π 0 particles

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction

DESY Summer Students Program 2008: Exclusive π + Production in Deep Inelastic Scattering

clfv & BNV LHCb Gerco Onderwater on behalf of the LHCb collaboration

Antonio Pich. IFIC, CSIC Univ. Valencia.

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

The Standard Model of particle physics and beyond

Yang-Hwan, Ahn (KIAS)

Results on top physics by CMS

Fermilab Program. Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009

Transcription:

The Mu3e Experiment A new search for μ eee with unprecedented sensitivity Kolloquium in Freiburg, November 29, 2017 André Schöning Universität Heidelberg 1

SM of Particle Physics SM Physics after the electroweak epoch is described by the SM 2

Questions in (Particle) Physics bullet cluster Sloan digital Sky Survey Matter Dark Matter Neither we understand the observation of ordinary matter nor the observation of dark matter. Must be understood! 3

Fermions in the Standard Model Higgs field Why 3 generations of fermions? 4

Fermion Masses in the SM Top Quark m = 171 GeV/c2 Proton: m 1 GeV/c2 Elektron: m 0.5 MeV/c2 Why Higgs couplings so different? Neutrinos: m 0.01-0.1 ev/c2 5

Fermion Masses in the SM yt~1 (within 1%) PLOT with YUKAWA? 6

Experimental Observations Matter-antimatter asymmetry in universe CP-Violation Observation Dark matter require new particles or interactions beyond the SM Unknowns Fermion generations nature of neutrinos (Dirac or Majorana?) Fermion masses (Yukawa couplings) no explanation yet Problems Physics Beyond the SM (BSM) hierarchy problem, etc.... requires new particles (interactions) 7

Search Strategies High Energy Frontier Direct searches of new resonances or interactions in the mass reach of colliders LHC, Future Circular Colliders,... High Intensity and Precision Frontier LHC picture LHC accelerator (Geneva) Indirect searches via precision measurements and searches for rare processes Electric Dipole Moments (EDM) Anomalous magnetic moments (g-2) Flavor Changing Neutral Current (FCNC) Charged Lepton Flavor Violation (clfv) Muon g-2 @ Fermilab 8

Overview Standard Model and Lepton Physics (charged) Lepton Flavor Violation (clfv) Mu3e experiment tracking concept detector systems Sensitivity studies 9

Flavor Physics f f Z0, γ H f f Neutral Current Higgs-Yukawa coupling f u d c s t b νe e νμ μ ντ τ ( )( )( ) ( )( )( ) W± f 10 Charged Current

Flavor Mixing Matrices Leptons Quarks Cabibbo Kobayashi Maskawa (CKM) Pontecorvo Maki Nakagawa Sakata (PMNS) v ud v us v ub d d' s ' = v cd v cs v cb s b' v td v ts v tb b νe v e 1 v e 2 v e 3 ν1 νμ = v μ 1 v μ 2 v μ 3 ν 2 v τ 1 v τ 2 v τ 3 ν3 ντ ()( )( ) weak mass Q=-1/3 ()( weak Q=0 Q=+2/3 11 )( ) mass Q=-1

Flavor Changing Processes Flavor Changing Charged Currents are allowed. (on tree level) Flavor Changing Neutral Currents (FCNC) are forbidden! Quarks Leptons Q=-1 Q=+2/3 μ νi (W+)* Q=-1/3 μ eγ Q=0 t b t c 12

Discovery of Neutrino Oscillations W W ν1 ν2 ν3 µ l P(να νβ ) = sin 2(2Θ) sin 2 (Δm2αβ EL ) ν Neutrino Oscillations: solar neutrinos reactor neutrinos atmospheric neutrinos neutrino beams 13

FCNC via Quantum Loops μ e via ν-oscillation W W ν1 ν2 ν3 µ e L P(να νβ) = sin 2(2Θ) sin 2 (Δm2αβ EL ) ν 14

FCNC via Quantum Loops μ e via ν-oscillation W W ν1 ν2 ν3 µ e μ e γ via loop νμ νe μ e W γ L P(να νβ) = sin 2(2Θ) sin 2 (Δm2αβ EL ) ν 15

FCNC via Quantum Loops μ e via ν-oscillation W μ e γ via loop νμ νe μ e W γ W ν1 ν2 ν3 µ e L P(να νβ) = sin 2(2Θ) sin 2 (Δm2αβ EL ) ν B(μ e γ) sin 2 (2Θ) (Δ m2αβ /m2w )2 L 1/ mw E ν mw 16

Lepton Flavor Violation in the SM Higher Order! μ νμ W γ νe e μ eγ τ ντ W γ νμ LFV in generated from lepton mixing: BR(l j l k γ) μ ( i V ij (V jk ) m 2 2 νi 2 MW Δm 2 2 ν jk ) ( ) 2 MW 4 yν τ μγ τ ντ W γ νe e τ eγ 17

Lepton Flavor Violation in the SM Higher Order! μ νμ W γ νe e μ eγ τ ντ W γ νμ BR(l j l k γ) μ τ W γ νe ( i V ij (V jk ) suppression factor for µ e: m 2 2 νi 2 MW Δm 2 2 ν jk ) ( ) 2 MW 4 yν ~ 10-50 unobservable high sensitivity to new physics!!! τ μγ ντ LFV in generated from lepton mixing: e τ eγ 18

Lepton Flavor Violation in the SM Higher Order! μ νμ W γ νe e μ eγ τ ντ W γ νμ BR(l j l k γ) μ τ W γ νe ( i V ij (V jk ) suppression factor for µ e: m 2 2 νi 2 MW Δm 2 2 ν jk ) ( ) 2 MW 4 yν ~ 10-50 unobservable high sensitivity to new physics!!! τ μγ ντ LFV in generated from lepton mixing: e τ eγ FCNC in SM ~ 10-10 19 2 m2c u c.t. quark mixing: 2 MW ~10 7

Lepton Flavor Conservation is an Accidental Symmetry! 20

History of LFV Decay experiments Mu3e I Mu3e II 21

LFV Muon Decays μ+ e+ γ μ- N e- N e+ + Au μ- μ+ μ+ e+e+ee+ e- μ+ γ e- MEG (PSI) SINDRUM II (PSI) B(μ+ e+γ) 4.2 10-13 (2016) B(μ Au e Au) 7 10-13 (2006) e+ SINDRUM (PSI) B(μ+ e+e+e-) 10-12 (1988) being upgraded 22

SM Loop Diagrams μ+ e+ γ μ- N e- N e+ + Au e+ e- μ- μ+ μ+ e+e+eμ+ γ e+ e- SM: LFV loops Au branching ratios suppressed by (Δ m2ν )2 50 10 m4w 23

LFV Muon Decays and SUSY Loops μ+ e+ γ μ- N e- N e+ + Au e+ e- μ- μ+ μ+ e+e+eμ+ γ e+ e- SUSY loops Au Most BSM models (e.g. SUSY) induce naturally LFV 24

LFV Muon Decays and SUSY Loops μ+ e+ γ μ- N e- N e+ + Au e+ e- μ- μ+ μ+ e+e+eμ+ γ e+ e- SUSY loops Au enhanced by coherent conversion in nucleus field for Q2(γ*)~0 25 suppressed by extra vertex with respect to μ+ e+ γ

LFV Tree Diagrams μ+ e+ γ μ- N e- N e+ μ+ e+e+e- + Au e- μ- μ+ e+ μ+ γ e+ eq q LQ e μ not allowed e.g. Leptoquarks extra Z', LFV Higgs, etc. Additional BSM tree diagrams in μn en and μn eee 26

first version (not published yet) 27

Search for μ+ e+e+e- at PSI proton cyclotron Ip=2.4 ma @ 590 MeV world-highest intensity beam! project approved in Jan 2013 Aiming for a sensitivity of BR(μ e e e ) ~ 2 10-15 (phase I) BR(μ e e e ) < 10-16 (phase II) 28

How Big is 10-16? Number of grains of sand at all beaches in Germany ~ 10 16 Find THE grain of sand which violates lepton flavor! 29

Backgrounds for Mu3e Irreducible BG: radiative decay with internal conversion (IC) e- ν e+ signal: B(μ+ e+e+e-) eν B(μ+ e+ e+ e+e+e- νν) = 3.4 10-5 e+ i i 30 E i = mμ p i = 0

Backgrounds Irreducible BG: radiative decay with internal conversion (IC) e- ν e+ missing energy from two neutrinos steeply falling! ν B(μ+ e+ R.M.Djilkibaev, R.V.Konoplich PRD79 (2009) e+e+e- νν) = 3.4 10-5 very good momentum + total energy resolution required! 31

Accidental Backgrounds Overlays of two ordinary µ+ decays with a (fake) electron (e-) Electrons from: Bhabha scattering, photon conversion, mis-reconstruction Detector requirements: Vertex resolution Timing resolution Kinematic reconstruction 32

Tracking Resolution + Multiple Scattering limited hit resolution regime Muon decay (m=105.6 MeV): electrons in low momentum range p < 53 MeV/c Multiple scattering is dominant! Need thin, fast and high resolution tracking detectors operated at high rate (>109 particles/s @ phase II) 1 Θ MS P X / X0 mutiple scattering regime 33

Mu3e Design Concept 34

Momentum Resolution in MS Regime Standard spectrometer: multiple-scattering angle σ p Θ MS Ω P (linearised) precision requires large lever arm large bending angle Ω 35

Momentum Resolution in MS Regime Half turn spectrometer: σp O(Θ2MS ) P best precision for half turn tracks measure recurlers 36

Tracking Design Considerations muon mass ~ 105 MeV/c2 37

Tracking Design Considerations 38

Tracking Design Considerations 39

Tracking Design Considerations 40

Mu3e Baseline Design 108 muons per second (phase I) p=28 MeV/c 41

Mu3e Baseline Design 42

Mu3e Baseline Design 43

Mu3e Baseline Design Long cylinder! ~180 cm ~15 cm not to scale! 44

Mu3e Baseline Design solenoid B=1 T 45

Mu3e CAD Drawings µ minimum material budget in active region! multiple scattering is the enemy! 46

Mu3e Detector Pixel Tracker Scintillating Fibers Scintillating Tiles 47

Compact Muon Beamline (Phase I) πe5 Mu3e MEG muon rates of up to 8.4 107/s at solenoid entrance achieved in 2016 further optimizations might be possible aiming for: 108/s muons on target 48

Compact Muon Beamline (CMB) First CMB beam commissioning in December 2014 49

The Mu3e (MEG) PiE5 Area New skywalk New platforms New PSYS access Area Proposal 50

51

Mu3e Magnet B=1 Tesla homogeneous field ~3m ~35 tons Magnet (up to 2.6T) expected beginning of 2019 52

Pixel Tracker TRACKING LAYERS MUST BE THIN! 53

ATLAS Pixel Module MCC sensor FE-Chip FE-Chip 54

ATLAS Pixel Module HV-MAPS 50 µm MCC sensor FE-Chip FE-Chip 55

Pixel Detector Technology High Voltage-Monolithic Active Pixel Sensor (HV-MAPS) MuPix8 prototype transistor logic embedded in N-well ( smart diode array ) 2 cm I.Peric et al., NIM A 582 (2007) 876 active sensors hit finding + digitisation + readout HV-CMOS: 60-85 V low cost process (Austria-Micro-Systems) thinned to ~50 μm (~ 0.0005 X0) 56 MuPix has been fully characterized in the lab and in several test beams efficiency noise rate (radiation hardness) temperature-dependence

Recent Mupix8 Performance Plots Mupix8 delivered end of August test beams ad DESY x2, CERN Mupix 8 beam telescope (4 layers) efficiency noise time resolution 57

(Outer) Pixel Tracker Module MuPix7 High Density Interconnect (LTU) 50 µm 58

Ultralight Pixel Ladder module: ~ 1 per mille radiation length 59

Pixel Tracker Endrings Power Readout Control Signals He-Cooling 60

V-Fold Cooling Channels 61

Simulation of Helium Cooling to be validated (again) by measurements with mock-up power budget 62

Timing 63

Pileup 109 muon stops/second (phase II) 64

Tracks in Pixel Detector 65

Tracks in Pixel Detector additional timing detectors needed < 1ns 66

Mu3e Time Timing Detector Scintillating tiles Scintillating fibers fibres background suppression factor of 100! tiles (and fibres) 67

Scintillating Fibre Detector Scintillating Fibers 68

Scintillating Fibres Single fibre time resolutions round Two types of scintillating 250µm fibres studied: round (Kuraray SCSF-81M) squared (Saint Gobain BC 418) (coated with Al) SiPM: Hamatsu S12571-050P (LHCb) SiPM array 1 x 1 mm2, 50 µm pitch squared MuTRig readout chip time resolution 50 ps 32 channels bandwidth 1.25 Gbit/s chip received January 2017 69

Scintillating Fibre Test Beams OR condition > 0.5 Nphe Requirements and expectations fulfilled in test beams! 70 eff. ~ 98%

Scintillating Tile Detector Scintillating tiles Scintillating fibers design sketch 56 x 56 tiles (6.5 x 6.5 x 5.0 mm3) 3 x 3 mm2 single SiPM timing resolution of 100 ps mixed mode ASIC (MuTRig) 71

Scintillating Tile Detector Very promising results from test beam measurements (4 x 4 array) Time resolution < 100 ps Now testing new MuTRig readout ASIC 72

Simulation and Performance 73

Simulation and Performance Track Reconstruction Efficiency Track Momentum Resolution limited acceptance US σp/p= 1% DS excellent! gaps between pixel track stations 74

Charge Identification Main process: μ+ e+ νe νμ Time difference vs path length Δt (ns) positron loopers charge confusion positrons t1 t2 X X electrons Δs/c (ns) Significant reduction of BG for: 75 μ+ e+ e+ e

Bhabha Scattering Background Bhabha vertices target region e+ e- e+ e- Accidental background due to Bhabha scattering is difficult to simulate Bhabha's can be cut away with only small loss in signal efficiency 76

Mu3e Mass Plot 10-12 10-13 10-14 (upper limit) 10-15 77

Sensitivity versus Time 78

Mu3e Collaboration Germany University Heidelberg Karlsruhe Institute of Technology University Mainz Switzerland University of Geneva Paul Scherrer Institute ETH Zurich University Zurich United Kingdom Bristol Liverpool Oxford UC London 79

Mu3e Summary Technical Design Report Detector R&D is concluding pre production is starting First beam in 2019/20 (Phase I) More muons with High Intensity Muon Beamline (HiMB Project) Aim: B(μ+ e+e+e-) 10-16 (90% CL) Unique discovery potential for New Physics 80