5V 1M 16 CMOS DRAM (fast-page mode) DQ16 DQ15 DQ14 DQ13 RAS DQ12 DQ11 DQ10 DQ9 OE WE UCAS LCAS LCAS UCAS OE A9 A8 A7 A6 A5 A4

Similar documents
3.3 V 256 K 16 CMOS SRAM

5.0 V 256 K 16 CMOS SRAM

5 V 64K X 16 CMOS SRAM

April 2004 AS7C3256A

3.3 V 64K X 16 CMOS SRAM

IBM B IBM P 8M x 8 12/11 EDO DRAM

About the change in the name such as "Oki Electric Industry Co. Ltd." and "OKI" in documents to OKI Semiconductor Co., Ltd.

IBM IBM M IBM B IBM P 4M x 4 11/11 EDO DRAM

IBM IBM M IBM B IBM P 4M x 4 12/10 DRAM

HM514400B/BL Series HM514400C/CL Series


Vcc DQ1 DQ2 DQ3 DQ4 Vcc DQ5 DQ6 DQ7 DQ8 WE# RAS# A0 A1 A2 A3 Vcc

DQ0 DQ1 DQ2 DQ3 NC WE# RAS# A0 A1 A2 A3 A4 A5. x = speed

HB56A1636B/SB-6B/7B/8B

DQ0 DQ1 NC NC NC NC WE# RAS# A0 A1 A2 A3 A4 A5

2M x 32 Bit 5V FPM SIMM. Fast Page Mode (FPM) DRAM SIMM S51T04JD Pin 2Mx32 FPM SIMM Unbuffered, 1k Refresh, 5V. General Description.

LH NMOS 256K (256K 1) Dynamic RAM DESCRIPTION

DRAM MT4LC4M16R6, MT4LC4M16N3. 4 MEG x 16 EDO DRAM

LH5P832. CMOS 256K (32K 8) Pseudo-Static RAM

256K x 16 Static RAM CY7C1041BN. Features. Functional Description

LH5P8128. CMOS 1M (128K 8) Pseudo-Static RAM PIN CONNECTIONS

VCC DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 NC NC NC WE# RAS# NC NC A0 A1 A2 A3

I/O 8 I/O 15 A13 A 14 BHE WE CE OE BLE

INTEGRATED CIRCUITS. 74LVC138A 3-to-8 line decoder/demultiplexer; inverting. Product specification 1998 Apr 28

2-Mbit (128K x 16)Static RAM

MB81C4256A-60/-70/-80/-10 CMOS 256K x 4 BIT FAST PAGE MODE DYNAMIC RAM

INTEGRATED CIRCUITS. 74ALS138 1-of-8 decoder/demultiplexer. Product specification 1996 Jul 03 IC05 Data Handbook

16-Mbit (1M x 16) Static RAM

1-Mbit (128K x 8) Static RAM

512K x 32 Static RAM CY7C1062AV33. Features. Functional Description. Logic Block Diagram. Selection Guide

7C33128PFS32A 7C33128PFS36A. January 2001 Preliminary Information. 3.3V 128K X 32/36 pipeline burst synchronous SRAM

INTEGRATED CIRCUITS. 74LV stage binary ripple counter. Product specification 1998 Jun 23 IC24 Data Handbook

74HC General description. 2. Features. 3-to-8 line decoder, demultiplexer with address latches; inverting

HM6264A Series. Features. Ordering Information word 8-bit High Speed CMOS Static RAM

DatasheetDirect.com. Visit to get your free datasheets. This datasheet has been downloaded by

INTEGRATED CIRCUITS. 74LV00 Quad 2-input NAND gate. Product specification Supersedes data of 1998 Apr 13 IC24 Data Handbook.

16-Mbit (1M x 16) Pseudo Static RAM

256K X 16 BIT LOW POWER CMOS SRAM

74LVC574A Octal D-type flip-flop with 5-volt tolerant inputs/outputs; positive edge-trigger (3-State)

P4C164 ULTRA HIGH SPEED 8K X 8 STATIC CMOS RAMS FEATURES DESCRIPTION. Full CMOS, 6T Cell. Common Data I/O

AUSTIN SEMICONDUCTOR, INC. 4 MEG x 1 DRAM RAS *A10. Vcc 2-23

INTEGRATED CIRCUITS. 74LV273 Octal D-type flip-flop with reset; positive-edge trigger. Product specification 1997 Apr 07 IC24 Data Handbook

4-Mbit (256K x 16) Static RAM

74LV393 Dual 4-bit binary ripple counter

INTEGRATED CIRCUITS. 74LV688 8-bit magnitude comparator. Product specification Supersedes data of 1997 May 15 IC24 Data Handbook.

8-Mbit (512K x 16) Pseudo Static RAM

INTEGRATED CIRCUITS. 74ALS30A 8-Input NAND gate. Product specification 1991 Feb 08 IC05 Data Handbook

INTEGRATED CIRCUITS. 74F154 1-of-16 decoder/demultiplexer. Product specification Jan 08. IC15 Data Handbook

HEF4028B. 1. General description. 2. Features. 3. Applications. 4. Ordering information. BCD to decimal decoder

DECODER I/O DATA CIRCUIT CONTROL CIRCUIT

INTEGRATED CIRCUITS. 74F521 8-bit identity comparator. Product specification May 15. IC15 Data Handbook

8-bit binary counter with output register; 3-state

HN58C256 Series word 8-bit Electrically Erasable and Programmable CMOS ROM

The 74HC21 provide the 4-input AND function.

74LVC374 Octal D-type flip-flop; positive edge-trigger (3-State) INTEGRATED CIRCUITS

INTEGRATED CIRCUITS. 74LV259 8-bit addressable latch. Product specification Supersedes data of 1997 Jun 06 IC24 Data Handbook.

CD4514BC CD4515BC 4-Bit Latched/4-to-16 Line Decoders

MM74HC574 3-STATE Octal D-Type Edge-Triggered Flip-Flop

INTEGRATED CIRCUITS. PCK2002P 533 MHz PCI-X clock buffer. Product data Supersedes data of 2001 May Dec 13. Philips Semiconductors

74HC General description. 2. Features. Octal D-type flip-flop; positive-edge trigger; 3-state; inverting

CD74HC109, CD74HCT109

Hex inverting Schmitt trigger with 5 V tolerant input

CD74HC165, CD74HCT165

74HC4040; 74HCT stage binary ripple counter. Each counter stage is a static toggle flip-flop.

The 74LV32 provides a quad 2-input OR function.

High Speed Super Low Power SRAM

14-stage binary ripple counter

HN58C66 Series word 8-bit CMOS Electrically Erasable and Programmable CMOS ROM. ADE F (Z) Rev. 6.0 Apr. 12, Description.

INTEGRATED CIRCUITS. 74F804, 74F1804 Hex 2-input NAND drivers. Product specification Sep 14. IC15 Data Handbook

IS61C K x 16 HIGH-SPEED CMOS STATIC RAM

64K x 18 Synchronous Burst RAM Pipelined Output

MM74C90 MM74C93 4-Bit Decade Counter 4-Bit Binary Counter

74F393 Dual 4-bit binary ripple counter

1-Mbit (64K x 16) Static RAM

The 74LVC1G11 provides a single 3-input AND gate.

IS61LV K x 16 LOW VOLTAGE CMOS STATIC RAM

4 Mbit (256K x 16) Static RAM

DESCRIPTION DECODER I/O DATA CIRCUIT CONTROL CIRCUIT

The 74LV08 provides a quad 2-input AND function.

HM534251B Series word 4-bit Multiport CMOS Video RAM

MM74HC573 3-STATE Octal D-Type Latch

MM74HC374 3-STATE Octal D-Type Flip-Flop

CD4013BC Dual D-Type Flip-Flop

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

74ALVC bit dual supply translating transciever; 3-state. This device can be used as two 8-bit transceivers or one 16-bit transceiver.

MM74HCT573 MM74HCT574 Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

74LV374 Octal D-type flip-flop; positive edge-trigger (3-State) INTEGRATED CIRCUITS

CD74HC195. High Speed CMOS Logic 4-Bit Parallel Access Register. Features. Description. Ordering Information. PInout. [ /Title (CD74 HC195 ) /Subject

8-bit serial-in/parallel-out shift register

DM74LS138 DM74LS139 Decoder/Demultiplexer

HN58C65 Series word 8-bit Electrically Erasable and Programmable CMOS ROM

74HC1G86; 74HCT1G86. 2-input EXCLUSIVE-OR gate. The standard output currents are half those of the 74HC/HCT86.

DM74S373 DM74S374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

M74HCT138TTR 3 TO 8 LINE DECODER (INVERTING)

Quad bus transceiver; 3-state. The output enable inputs (OEA and OEB) can be used to isolate the buses.

74LVC823A 9-bit D-type flip-flop with 5-volt tolerant inputs/outputs; positive-edge trigger (3-State)

3-Mbit (128K 24) Static RAM

MM74HCT373 MM74HCT374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

ADVANCED. 16M (2-Bank x 524,288-Word x 16-Bit) Synchronous DRAM FEATURES OPTIONS GENERAL DESCRIPTION. APR (Rev.2.9)

Standard Products UT54ACS109/UT54ACTS109 Dual J-K Flip-Flops. Datasheet November 2010

Transcription:

August 2001 AS4C1M16F5 5V 1M 16 CMOS DRAM (fast-page mode) Features Organization: 1,048,576 words 16 bits High speed - 45/50/60 ns access time - 20/20/25 ns fast page cycle time - 10/12/15 ns CAS access time Low power consumption - Active: 880 mw max (AS4C1M16F5-60) - Standby: 11 mw max, CMOS DQ Fast page mode 1024 refresh cycles, 16 ms refresh interval - -only or CAS-before- refresh Read-modify-write TTL-compatible, three-state DQ JEDEC standard package and pinout - 400 mil, 42-pin SOJ - 400 mil, 44/50-pin TSOP 2 5V power supply Industrial and commercial temperature available Pin arrangement Vcc DQ1 DQ2 DQ3 Vcc DQ5 DQ6 DQ7 DQ8 A0 A1 A2 A3 Vcc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 SOJ 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 V SS DQ16 DQ15 DQ14 DQ13 V SS DQ12 DQ11 DQ10 DQ9 A9 A8 A7 A6 A5 A4 V SS V CC DQ1 DQ2 DQ 3 DQ4 V CC DQ5 DQ6 DQ7 DQ8 A0 A1 A2 A3 V CC 1 2 3 4 5 6 7 8 9 10 11 15 16 17 18 19 20 21 22 23 24 25 TSOP 2 50 49 48 47 46 45 44 43 42 41 40 36 35 34 33 32 31 30 29 28 27 26 V SS DQ16 DQ15 DQ14 DQ13 V SS DQ12 DQ11 DQ10 DQ9 A9 A8 A7 A6 A5 A4 V SS Pin designation Pin(s) A0 to A9 DQ1 to DQ16 V CC V SS Description inputs Row address strobe Input/output Output enable Write enable Column address strobe, upper byte Column address strobe, lower byte Power Ground Selection guide Symbol -45-50 -60 Unit Maximum access time t RAC 45 50 60 ns Maximum column address access time t AA 23 25 30 ns Maximum CAS access time 10 12 15 ns Maximum output enable () access time t A 12 13 15 ns Minimum read or write cycle time 75 80 100 ns Minimum fast page mode cycle time t PC 20 20 25 ns Maximum operating current I CC1 155 145 135 ma Maximum CMOS standby current I CC5 2.0 2.0 2.0 ma 3/22/02; v.0.9.2 Alliance Semiconductor P. 1 of 22 Copyright Alliance Semiconductor. All rights reserved.

Functional description The AS4C1M16F5 is a high performance 16-megabit CMOS Dynamic Random Access Memory (DRAM) organized as 1,048,576 words 16 bits. The AS4C1M16F5 is fabricated using advanced CMOS technology and innovative design techniques resulting in high speed, extremely low-power and wide operating margins at component and system levels. The Alliance 16Mb DRAM family is optimized for use as main memory in personal and portable PCs, workstations, and multimedia and router switch applications. The AS4C1M16F5 features high speed page mode operation where read and write operations within a single row (or page) can be executed at very high speed (15 ns from XCAS) by toggling column addresses within that row. Row and column addresses are alternately latched into input buffers using the falling edge of and xcas inputs respectively. Also, is used to make the column address latch transparent, enabling application of column addresses prior to xcas assertion. The AS4C1M16F5 provides dual and for independent byte control of read and write access. Refresh on the 1024 address combinations of A0 to A9 must be performed every 16 ms using: -only refresh: is asserted while xcas is held high. Each of the 1024 rows must be strobed. Outputs remain high impedence. Hidden refresh: xcas is held low while is toggled. Outputs remain low impedence with previous valid data. CAS-before- refresh (CBR): At least one xcas is asserted prior to. Refresh address is generated internally. Outputs are high-impedence ( and are don't care). Normal read or write cycles refresh the row being accessed. The AS4C1M16F5 is available in the standard 42-pin plastic SOJ and the 44/50-pin TSOP 2 packages, respectively. It operates with a single power supply of 5V ± 0.5V. The device provides TTL compatible inputs and outputs. Logic block diagram V CC GND Refresh controller Column decoder Sense amp Data DQ buffers DQ1 to DQ16 clock generator CAS clock generator clock generator A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 buffers Row decoder 1024 1024 16 Array (16,777,216) Substrate bias generator Recommended operating conditions Parameter Symbol Min Nominal Max Unit Supply voltage Input voltage Ambient operating temperature VIL min -3.0V for pulse widths less than 5 ns. Recommended operating conditions apply throughout this document unlesss otherwise specified. V CC 4.5 5.0 5.5 V GND 0.0 0.0 0.0 V V IH 2.4 V CC V V IL 0.5 0.8 V Commercial 0 70 T A Industrial -40 85 3/22/02; v.0.9.2 Alliance Semiconductor P. 2 of 22 C

Absolute maximum ratings Parameter Symbol Min Max Unit Input voltage V in -1.0 +7.0 V Input voltage (DQs) V DQ -1.0 V CC + 0.5 V Power supply voltage V CC -1.0 +7.0 V Storage temperature (plastic) T STG -55 +150 C Soldering temperature time T SOLDER 260 10 o C sec Power dissipation P D 1 W Short circuit output current I out 50 ma es Operation t R t C DQ0 to DQ15 Standby H H to X H to X X X X X High-Z Word read L L L H L ROW COL Data out Lower byte read Upper byte read Word (early) write Lower byte (early) write Upper byte (early) write L L H H L ROW COL L H L H L ROW COL Lower byte, Upper byte, Data out Lower byte, Data out, Upper byte L L L L X ROW COL Data in L L H L X ROW COL L H L L X ROW COL Lower byte, Data in, Upper byte, High-Z Lower byte, High-Z, Upper byte, Data in Read write L L L H to L L to H ROW COL Data out, Data in 1st cycle L H to L H to L H L ROW COL Data out EDO read 2nd cycle L H to L H to L H L n/a COL Data out Any cycle L L to H L to H H L n/a n/a Data out 1st cycle L H to L H to L L X ROW COL Data in EDO write 2nd cycle L H to L H to L L X n/a COL Data in EDO 1st cycle L H to L H to L H to L L to H ROW COL Data out, Data in read write 2nd cycle L H to L H to L H to L L to H n/a COL Data out, Data in only refresh L H H X X ROW n/a High Z CBR refresh H to L L L H X X X High Z Notes 3/22/02; v.0.9.2 Alliance Semiconductor P. 3 of 22

DC electrical characteristics Parameter Symbol Test conditions 0V V Input leakage current I in V CC (max) IL Pins not under test = 0V -45-50 -60 Min Max Min Max Min Max Unit -5 +5-5 +5-5 +5 µa Notes Output leakage current I OL D OUT disabled, 0V V out V CC (max) Operating power supply current TTL standby power supply current Average power supply current, refresh mode or CBR EDO page mode average power supply current CMOS standby power supply current Output voltage CAS before refresh current I CC1,,, cycling; =min -5 +5-5 +5-5 +5 µa 155 145 135 ma 1,2 I CC2 = = V IH, all other inputs at V IH or V IL 2.0 2.0 2.0 ma cycling, = V IH, I CC3 = min of low after XCAS low. I CC4 I CC5 = V IL, or, address cycling: t HPC = min = = = V CC - 0.2V, F = 0 145 135 125 ma 1 130 120 110 ma 1,2 2.0 2.0 2.0 ma V OH I OUT = -5.0 ma 2.4 2.4 2.4 V V OL I OUT = 4.2 ma 0.4 0.4 0.4 V I CC6, or cycling, = min 155 145 135 ma 3/22/02; v.0.9.2 Alliance Semiconductor P. 4 of 22

AC parameters common to all waveforms -45-50 -60 Symbol Parameter Min Max Min Max Min Max Unit Notes Random read or write cycle time 75 80 100 ns precharge time 30 30 40 ns t pulse width 45 10K 50 10K 60 10K ns CAS pulse width 8 10K 8 10K 10 10K ns D to CAS delay time 15 35 15 35 15 43 ns 6 to column address delay time 8 25 9 25 10 30 ns 7 CAS to hold time 10 10 10 ns to CAS hold time 40 40 50 ns CAS to precharge time 5 5 5 ns Row address setup time 0 0 0 ns Row address hold time 8 8 10 ns t T Transition time (rise and fall) 1 50 1 50 1 50 ns 4,5 t REF Refresh period 16 16 16 ms 3 t CP CAS precharge time 8 8 10 ns Column address to lead time 25 25 30 ns Column address setup time 0 0 0 ns Column address hold time 8 8 10 ns Read cycle -45-50 -60 Symbol Parameter Min Max Min Max Min Max Unit Notes t RAC Access time from 45 50 60 ns 6 Access time from CAS 10 12 15 ns 6,13 t AA Access time from address 23 25 30 ns 7,13 S Read command setup time 0 0 0 ns H Read command hold time to CAS 0 0 0 ns 9 t RRH Read command hold time to 0 0 0 ns 9 3/22/02; v.0.9.2 Alliance Semiconductor P. 5 of 22

Write cycle Symbol Parameter Min Max Min Max Min Max Unit Notes t WCS Write command setup time 0 0 0 ns 11 t WCH Write command hold time 10 10 10 ns 11 Write command pulse width 10 10 10 ns Write command to lead time 10 10 10 ns Write command to CAS lead time 8 8 10 ns Data-in setup time 0 0 0 ns 12 Data-in hold time 8 8 10 ns 12 Read-modify-write cycle Refresh cycle -45-50 -60-45 -50-60 Symbol Parameter Min Max Min Max Min Max Unit Notes t RWC Read-write cycle time 105 113 135 ns t RWD to delay time 65 67 77 ns 11 t CWD CAS to delay time 30 32 35 ns 11 t AWD Column address to delay time 40 42 47 ns 11-45 -50-60 Symbol Parameter Min Max Min Max Min Max Unit Notes t CSR CAS setup time (CAS-before-) 5 5 5 ns 3 t CHR CAS hold time (CAS-before-) 8 8 10 ns 3 C precharge to CAS hold time 0 0 0 ns t CPT CAS precharge time (CBR counter test) 10 10 10 ns 3/22/02; v.0.9.2 Alliance Semiconductor P. 6 of 22

Fast page mode cycle -45-50 -60 Symbol Parameter Min Max Min Max Min Max Unit Notes t CPA Access time from CAS precharge 28 28 35 ns 13 t P pulse width 45 100K 50 100K 60 100K ns t PC Read-write cycle time 25 30 35 ns t CP CAS precharge time (fast page) 10 10 10 ns t PCM Fast page mode RMW cycle 75 80 85 ns t CRW Page mode CAS pulse width (RMW) 54 54 60 ns Output enable -45-50 -60 Symbol Parameter Min Max Min Max Min Max Unit Notes CAS to output in Low Z 0 0 0 ns 8 t ROH hold time referenced to 8 8 10 ns t A access time 13 13 15 ns t D to data delay 13 13 15 ns t Z Output buffer turnoff delay from 0 13 0 13 0 15 ns 8 t H command hold time 10 10 10 ns t OLZ to output in Low Z 0 0 0 ns t OFF Output buffer turn-off time 0 13 0 13 0 15 ns 8, 10 3/22/02; v.0.9.2 Alliance Semiconductor P. 7 of 22

Notes 1 I CC1, I CC3, and I CC4 are dependent on frequency. 2 I CC1 and I CC4 depend on output loading. Specified values are obtained with the output open. 3 An initial pause of 200 µs is required after power-up followed by any 8 cycles before proper device operation is achieved. In the case of an internal refresh counter, a minimum of 8 CAS-before- initialization cycles instead of 8 cycles are required. 8 initialization cycles are required after extended periods of bias without clocks (greater than 8 ms). 4 AC Characteristics assume t T = 2 ns. All AC parameters are measured with a load equivalent to two TTL loads and 100 pf, V IL (min) GND and V IH (max) V CC. 5 V IH (min) and V IL (max) are reference levels for measuring timing of input signals. Transition times are measured between V IH and V IL. 6 Operation within the D (max) limit insures that t RAC (max) can be met. D (max) is specified as a reference point only. If D is greater than the specified D (max) limit, then access time is controlled exclusively by. 7 Operation within the (max) limit insures that t RAC (max) can be met. (max) is specified as a reference point only. If is greater than the specified (max) limit, then access time is controlled exclusively by t AA. 8 Assumes three state test load (5 pf and a 380 Ω Thevenin equivalent). 9 Either H or t RRH must be satisfied for a read cycle. 10 t OFF (max) defines the time at which the output achieves the open circuit condition; it is not referenced to output voltage levels. t OFF is referenced from rising edge of or CAS, whichever occurs last. 11 t WCS, t WCH, t RWD, t CWD and t AWD are not restrictive operating parameters. They are included in the datasheet as electrical characteristics only. If t WS t WS (min) and t WH t WH (min), the cycle is an early write cycle and data out pins will remain open circuit, high impedance, throughout the cycle. If t RWD t RWD (min), t CWD t CWD (min) and t AWD t AWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is satisfied, the condition of the data out at access time is indeterminate. 12 These parameters are referenced to CAS leading edge in early write cycles and to leading edge in read-write cycles. 13 Access time is determined by the longest of t CAA or or t CPA 14 t CP to achieve t PC (min) and t CPA (max) values. 15 These parameters are sampled and not 100% tested. 16 These characteristics apply to AS4C1M16F5 5V devices. AC test conditions - Access times are measured with output reference levels of V OH = 2.4V and V OL = 0.4V, V IH = 2.4V and V IL = 0.8V - Input rise and fall times: 2 ns +5V R1 = 828Ω D out 100 pf* R2 = 295Ω GND Figure A: Equivalent output load *including scope and jig capacitance Key to switching waveforms Rising input Falling input Undefined output/don t care 3/22/02; v.0.9.2 Alliance Semiconductor P. 8 of 22

Read waveform t D, S Row address Column address t RRH t ROH t ROH H t Z t RAC t Z t AA t t OFF (see note 11) A t REZ DQ t OLZ Data out Upper byte read waveform t D trsh Row S Column t ROH C H t RRH t Z t RAC t AA t OLZ t A t Z t REZ Upper DQ Lower DQ t OFF Data out 3/22/02; v.0.9.2 Alliance Semiconductor P. 9 of 22

Lower byte read waveform t D Upper DQ Lower DQ Row S t RAC Column t AA t OLZ t ROH t A t Z Data out t REZ H t RRH t OFF Early write waveform t, D Row address Column address t WCS t WCH DQ Data in 3/22/02; v.0.9.2 Alliance Semiconductor P. 10 of 22

Upper byte early write waveform Upper DQ Lower DQ Row address D t WCS t Column address Data in t WCH tdh C Lower byte early write waveform t Upper DQ Row address D Column address t WCS t WCH t WP C Lower DQ Data in 3/22/02; v.0.9.2 Alliance Semiconductor P. 11 of 22

Write waveform controlled t, D Row address Column address DQ t D Data in tdh t H Upper byte write waveform controlled t Row address Column address D C t H Upper DQ Lower DQ t D Data in 3/22/02; v.0.9.2 Alliance Semiconductor P. 12 of 22

Lower byte write waveform controlled t Row address Column address D t ACS C Upper DQ Lower DQ Data in t H Read-modify-write waveform t t RWC D, t AR Row address Column address t RWD t AWD DQ S t A t RAC t AA t OLZ t CWD t D t Z Data out Data in 3/22/02; v.0.9.2 Alliance Semiconductor P. 13 of 22

Upper byte read-modify-write waveform t t RWC Upper input Upper output Lower input Lower output D Row S t RAC t AA t ACS Column address t RWD t OLZ Data out t AWD t D t CWD t A Data in t Z t D C Lower byte read-modify-write waveform Upper input Upper output Lower input Lower output Row t C t AWD t RCS t CWD t A t t OLZ D t RWC D t RAC t ACS Column address t RWD t AA t D t Z Data out Data in 3/22/02; v.0.9.2 Alliance Semiconductor P. 14 of 22

Fast page mode read waveform t P CAS D t CP t PC t AR I/O Row tcah t RAC Column Column Column S t H t RRH RCS H t A t AA t Z t OFF t CAP t A Data out Data out Data out Fast page mode byte write waveform CAS I/O t RCS t CAH t P D t CP trah Row Column Column Column t A t PCM t RWD t CWD t CWD t CWD t AWD t AWD t Z t RAC t AA t CAP Data in Data out t D Data in Data out t A Data out Data in 3/22/02; v.0.9.2 Alliance Semiconductor P. 15 of 22

Fast page mode early write waveform t P CAS D t PC t WCS t CP t AR Row Column Column Column t WCH t H I/O t HDR t D Data In Data in Data in CAS before refresh waveform = V IH t C t CHR, t CP t CSR DQ OPEN only refresh waveform = = V IH or V IL t, C Row address 3/22/02; v.0.9.2 Alliance Semiconductor P. 16 of 22

Hidden refresh waveform (read) t t CAS t CHR D t AR Row Col address S t RRH t A t RAC t OFF t AA DQ Data out t Z Hidden refresh waveform (write) t D, t AR Row address Col address t WCR t CHR t WCS t WCH DQ R Data in 3/22/02; v.0.9.2 Alliance Semiconductor P. 17 of 22

t AS4C1M16F5 CAS before refresh counter test waveform, t CSR t CHR t CPT Col address t AA t Z t OFF DQ Data out Read cycle S t RRH H t ROH t A Write cycle DQ t WCS Data in S t WCH t CWD t AWD Read-Write cycle t A t AA t D t Z DQ Data out Data in 3/22/02; v.0.9.2 Alliance Semiconductor P. 18 of 22

Package dimensions SOJ Seating Plane 42-pin SOJ 400 mil Min Max A 0.128 0.148 A1 0.025 - A2 0.105 0.115 B 0.026 0.032 b 0.015 0.020 c 0.007 0.013 D 1.070 1.080 E 0.370 NOM E1 0.395 0.405 E2 0.435 0.445 e 0.050 NOM 50 49 48 47 46 45 44 43 42 41 40 36 35 34 33 32 31 30 29 28 27 26 TSOP 2 1 2 3 4 5 6 7 8 9 10 11 15 16 17 18 19 20 21 22 23 24 25 E H e d A A 2 A 1 0 5 b e c l 50-pin TSOP 2 Min (mm) Max (mm) A 1.2 A 1 0.05 A 2 0.95 1.05 b 0.30 0.45 c 0.12 0.21 d 20.85 21.05 E 10.03 10.29 H e 11.56 11.96 e 0.80 (typical) l 0.40 0.60 3/22/02; v.0.9.2 Alliance Semiconductor P. 19 of 22

Typical DC and AC characteristics 1.5 Normalized access time t RAC vs. supply voltage V CC 1.5 Normalized access time t RAC vs. ambient temperature T a 100 Typical access time t RAC vs. load capacitance C L Normalized access time 1.4 1.3 1.2 1.1 1.0 0.9 T a = 25 C Normalized access time 1.4 1.3 1.2 1.1 1.0 0.9 Typical access time 90 80 70 60 50 40-70 -60-50 0.8 4.0 4.5 5.0 5.5 6.0 Supply voltage (V) 0.8 55 10 35 80 125 Ambient temperature ( C) 30 50 100 150 200 250 Load capacitance (pf) 170 Typical supply current I CC vs. supply voltage V CC 170 Typical supply current I CC vs. ambient temperature T a 35 Typical power-on current I PO vs. cycle rate 1/ Supply current (ma) 160 150 140 130 120 110-50 -60 Supply current (ma) 160 150 140 130 120 110-50 -60 Power-on current (ma) 30 25 20 15 10 5 100 4.0 4.5 5.0 5.5 6.0 Supply voltage (V) 100 55 10 35 80 125 Ambient temperature ( C) 0.0 2 4 6 8 10 Cycle rate (MHz) 160 Typical refresh current I CC3 vs. supply voltage V CC 160 Typical refresh current I CC3 vs. Ambient temperature Ta 3.5 Typical TTL stand-by current I CC2 vs. supply voltage V CC Refresh current (ma) 140 120 100 80 60 40-50 -60 Refresh current (ma) 140 120 100 80 60 40-50 -60 Stand-by current (ma) 3.0 2.5 2.0 1.5 1.0 0.5 20 4.0 4.5 5.0 5.5 6.0 Supply voltage (V) 20 0.0 20 40 60 80 Ambient temperature ( C) 0 4.0 4.5 5.0 5.5 6.0 Supply voltage (V) 3/22/02; v.0.9.2 Alliance Semiconductor P. 20 of 22

3.5 Typical TTL stand-by current I CC2 vs. ambient temperature T a 70 Typical output sink current I OL vs. output voltage V OL 70 Typical output source current I OH vs. output voltage V OH Stand-by current (ma) 3.0 2.5 2.0 1.5 1.0 0.5 Output sink current (ma) 60 50 40 30 20 10 Output source current (ma) 60 50 40 30 20 10 0.0 0 20 40 60 80 Ambient temperature ( C) 0.0 0.0 0.5 1.0 1.5 2.0 Output voltage (V) 0.0 0.0 1.0 2.0 3.0 4.0 Output voltage (V) Hyper page mode current (ma) Typical hyper page mode current I CC4 vs. ambient temperature T a 140 120 100-50 80-60 60 40 20 0.0 0 20 40 60 80 Ambient temperature ( C) Hyper page mode current (ma) Typical hyper page mode current I CC4 vs. supply voltage V CC 140 120 100-50 80-60 60 40 20 0.0 4.0 4.5 5.0 5.5 6.0 Supply voltage (V) Capacitance 15 ƒ = 1 MHz, T a = Room temperature Parameter Symbol Signals Test conditions Max Unit C IN1 A0 to A9 V in = 0V 5 pf Input capacitance C IN2,,,, V in = 0V 7 pf DQ capacitance C DQ DQ0 to DQ15 V in = V out = 0V 7 pf 3/22/02; v.0.9.2 Alliance Semiconductor P. 21 of 22

Ordering information Package \ access time 45 ns 50 ns 60 ns Plastic SOJ, 400 mil, 42-pin TSOP 2, 400 mil, 44/50-pin Part numbering system AS4C1M16F5-45JC AS4C1M16F5-45TC AS4C1M16F5-50JC AS4C1M16F5-50JI AS4C1M16F5-50TC AS4C1M16F5-50TI AS4C1M16F5-60JC AS4C1M16F5-60JI AS4C1M16F5-60TC AS4C1M16F5-60TI AS4 C 1M16F5 XX X X DRAM prefix C = 5V CMOS Device number access time Package: J = 42-pin SOJ 400 mil T=44/50-pin TSOP 2 400 mil Temperature range C=Commercial, 0 C to 70 C I=Industrial, -40 C to 85 C 3/22/02; v.0.9.2 Alliance Semiconductor P. 22 of 22 Copyright Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights, mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.